

Active Document Versioning: from layout understanding to adjustment

Xiaofan Lin, Hui Chao, Greg Nelson, Elsa Durante
Imaging Systems Laboratory
HP Laboratories Palo Alto
HPL-2005-186
October 17, 2005*

variable data
printing, layout
adjustment, layout
understanding,
document
versioning

This paper introduces a novel Active Document Versioning system that
can extract the layout template and constraints from the original
document and then automatically adjust the layout to accommodate new
contents. “Active” reflects several unique features of the system: First,
the need of handcrafting adjustable templates is largely eliminated
through layout understanding techniques that can convert static
documents into Active Layout Templates and accompanying constraints.
Second, through the linear text block modeling and the two-pass
constraint solving algorithm, it supports a rich set of layout operations,
such as simultaneous optimization of text block width and height,
integrated image cropping, and non-rectangular text wrapping. This
system has been successfully applied to a wide range of professionally
designed documents. This paper covers both the core algorithms and the
implementation.

* Internal Accession Date Only Approved for External Publication
© Copyright 2006 SPIE. Published in SPIE Conference on Document Recognition and Retrieval XIII, 15-19
January 2006, San Jose, CA, USA

 1

Active Document Versioning: from layout understanding to
adjustment

Xiaofan Lin, Hui Chao, Greg Nelson, Elsa Durante

Hewlett-Packard Laboratories

1501 Page Mill Rd MS 1203, Palo Alto, CA 94304
Email: {xiaofan.lin, hui.chao, elsa.durante}@hp.com, greg@perlnelson.org

ABSTRACT

This paper introduces a novel Active Document Versioning system that can extract the layout template and constraints
from the original document and then automatically adjust the layout to accommodate new contents. “Active” reflects
several unique features of the system: First, the need of handcrafting adjustable templates is largely eliminated through
layout understanding techniques that can convert static documents into Active Layout Templates and accompanying
constraints. Second, through the linear text block modeling and the two-pass constraint solving algorithm, it supports a
rich set of layout operations, such as simultaneous optimization of text block width and height, integrated image
cropping, and non-rectangular text wrapping. This system has been successfully applied to a wide range of
professionally designed documents. This paper covers both the core algorithms and the implementation.
Keywords: variable data printing, layout adjustment, layout understanding, document versioning

1. INTRODUCTION

Automatic document layout technology is of great commercial interests because it can relieve or even eliminate the
bottleneck of creating documents composed of highly customized text and image contents in end-to-end automated
publishing solutions. It is also a very challenging technical problem since it involves 2-D optimization of positions and
dimensions of multiple types of contents: images, texts, and vector graphics. Thus, there has been extensive research in
this area. Jacobs et al [3] introduced an adaptive document layout system that automatically selects the best template for
given contents. Purvis et al [5] formalized the creation of personalized documents as a multi-objective optimization
problem and used a genetic algorithm to automatically assemble such documents. Johari et al [6] created a specialized
pagination and layout system for yellow pages. Badros et al [2] proposed a constraint extension to Scalable Vector
Graphics (SVG) to enable interactive graphics on the Web. Heydon and Nelson [7] developed the Juno-2 constraint-
based drawing editor. Berkner et al [4] introduced a method to intelligently scale picture and text portions of an image
by utilizing information available in the JPEG2000 file.

Obviously, automatic layout is a very wide area and no single algorithm can solve all of the challenges. One interesting
sub-area is document versioning, whose goal is to automatically adjust an existing document layout to accommodate
new contents. Adobe Acrobat’s Touchup function only allows very limited PDF text editing without changing the
overall text line breaking. Another common approach used by commercial software packages such as Adobe InDesign
[13] and QuarkXpress [14] is to define copy holes of fixed positions and sizes and then fill variable content into the copy
holes. In order to avoid content truncation, each copy hole must be sufficiently large to hold the maximal possible
amount of content. If the content varies significantly and there are multiple variable-data copy holes, the resulting layout
may have unnecessary white spaces and cannot meet the required visual quality standard. To address this problem, some
commercial products such as PageFlex [15] allow a user to manually design adjustable templates so that the positions
and sizes of copy holes can adapt in the runtime according to variable content. However, this approach imposes heavy
burden on the creation side: The graphic designer has to take into account all kinds of interactions between different
objects to obtain rules governing adjustable templates. Although by training a graphic designer can easily figure out a

 2

good concrete layout for a given set of content, he/she may find it difficult to formulate abstract layout rules and
constraints that can work for different content combinations.

To deal with the above drawbacks of existing methods, we have created a comprehensive solution (see Figure 1) to
document versioning by combining layout understanding and adjustment techniques. This system only requires standard
documents such as PDF files as input. It then automatically extracts the text, image, and graphics objects from the input
document and converts the original static document to an Active Layout Template (ALT), which uses variables to
replace numeric constants in standard layout description languages such as XSL-FO and SVG. It also intelligently infers
the constraints among the variables to govern the dimensions and positions of different objects. With the extracted ALT
and the layout constraints, the layout adjustment engine can automatically modify the layout to accommodate new
contents. Based on linear text block modeling and two-pass constraint solving algorithm, the layout adjustment engine
supports a rich set of layout operations, such as simultaneous optimization of text block width and height, integrated
image cropping, and non-rectangular text wrapping, as demonstrated in Figure 8.

Section 2 discusses various techniques on the layout understanding subsystem: layout extraction, constraint inference,
and ALT generation. Section 3 is devoted to the layout adjustment subsystem: linear text block modeling, two-pass
constraint solving, and layout generation. Section 4 summarizes this paper and points out future research directions.

Figure 1: Comprehensive document versioning system

2. LAYOUT UNDERSTANDING

The template of a PDF page is extracted by first identifying logical blocks and associated layout styles. The outline and
style of each logical block is described as a feature vector and expressed as an XML file. The layout relationships among
different logical blocks are then analyzed and expressed as the constraints in another XML file. The following
subsections discuss the layout extraction and constraint inference techniques respectively.

2.1 Static layout extraction
Although tagged PDF documents can have embedded logical structure information, most PDF documents are not tagged
and thus do not express logical structure explicitly. As shown in Figure 2, a processing pipeline is built to automatically
identify different logical blocks and associated styles. Overlaid blocks are very common in documents with rich
graphical content. For example, a text block or a logo is embedded in an image. This makes the analysis more
complicated. To minimize the potential effect of component overlay and the interference between different logical
components, we first divide the page into three layers: text, image and vector graphics. Each layer then becomes an
individual PDF document. To identify the logical blocks in each layer, we either directly analyze the PDF document or
convert the PDF document into a bitmap image and perform image-based segmentation. The outline of each logical
block is expressed as a polygon. For the identified polygon, the layout style within each outline is extracted and
described as a style vector. For the text block, the vector includes the font name, font style, font size, line spacing,
paragraph spacing, orientation, color, and block layering order. For the image block, the vector includes the

Static Layout
Extractor

Input Document
(PDF, etc.)

Static Layout
Description (XSL-

FO, SVG)
ALT Generator

Constraint
Extractor

Two-pass
Constraint Solver
with Linear Text
Block Modeling

New
Contents

Constraints

Layout Generator
Variable
Values

ALT

Rendering Engine

Layout Description
(XSL-FO, SVG)

PDF Reflecting
New Contents

Layout Understanding

Layout Adjustment

 3

transformation matrix (for rotation and scaling purposes), compression format, layering order, and shape clipping path.
For the vector graphics block, we identify the path objects within each component, convert them into SVG path objects,
and create an SVG file for each vector graphics block. The style vector includes the outline of the block and laying
order. Additional details for this work can be found in the reference [8].

Extensible Stylesheet Language Formatting Objects (XSL-FO) is used to store the final extracted layouts because it is an
open XML-based document layout standard with strong support by open-source (for example, Apache FOP [10]) as well
as commercial software. SVG objects can also be embedded in to XSL-FO to describe sophisticated text and graphics
objects.

Figure 2: Template extraction processing pipeline

2.2 Constraint inference
The layout constraint rules are extracted to determine the position relationships among different logical blocks and
relative to the page boundary. The constraints that describe how one block should be placed relatively to other blocks
include layering orders, gaps, overlaps, embedding relationships and alignments among blocks. The constraints that
describe the overall page appearance include margins and bleeding effects. The alignments that run across page also
affect the overall page look and feel. The extracted layout constraints are all linear equality or inequality constraints and
they are prioritized using three levels of strengths: required, strong and weak.

2.2.1 Inter-block relationship constraints
Layering order determines the order of the logical blocks being placed on the page. This order is important when there
are overlaid blocks. For example, if there is a text block sitting on the top of an image block, this order is preserved as a
required constraint to govern which block should be rendered first.

A gap is the white space between two blocks. The gap relationship is considered only if the two logical blocks are
adjacent with no other logical blocks located between the bounding rectangles of the two blocks. Although during
document layout adjustment the gap between two adjacent blocks needs to be preserved and no intersection is allowed
between the two originally separated blocks, a limited flexibility is allowed for the size of the gap during adjustment.

For two overlapping blocks, their layout relationship is locked. If the two blocks partially overlap, the constraint is set
to fix the amount of the overlapping area. If one block is completely embedded in another block, the constraint is set to
fix the ratio of the left margin to the right margin, and the ratio of the top margin to the bottom margin. In Figure 3, the
bounding polygon of TB is embedded in the bounding polygon of ImgB, and thus the constraint should be:

<constraint “rule=dT/dB= constant1” strength= “required”>
<constraint “rule=dL/dR=constant2” strength= “required”>
where constant1 and constant2 are the ratios obtained from the original document.

 4

Text Block (TB)

Image Block
(ImgB)

Text Block (TB)

Image Block
(ImgB)

(a) (b)

dT
dB

dRdL dL’ dR’

dT’
dB

’

Figure 3 (a) The original document where a text block is embedded in the image block (b) A modified document where
the layout relationship between the image and text block is preserved

Alignments also play an important role in the appearance of the document [17]. Left, right, center, top, bottom and
middle alignments are considered. All alignments are originally set to be “required” unless there are multiple alignments.
In case of multiple alignment relationships among logical blocks, the priorities of the constraints are set in accordance
with a predefined reading order as follows:

Top Alignment >Bottom Alignment >Middle Alignment
Left Alignment >Right Alignment >Center Alignment
When there are conflicting constraints, the ones with lower priorities are reset to be “strong” instead of “required.”

2.2.2 Block-page relationship constraints
Page margins are the distances between the edges of a page and the edges of the minimal bounding rectangle of all non-
bleeding blocks. Constraints are defined to make sure that all non-bleeding blocks stay within the page boundary. On
the other hand, the margin values are flexible and set to be “weak” constraints with the original margins as references.
For example, the constraint for the left margin would be:

<constraint rule=“left_margin=constant” strength= “weak”>

Block2

Block1

Page

Figure 4: A page with two bleeding blocks.

A bleeding block has some of its edges extending beyond the page boundary. Correspondingly, constraints are set to
preserve the bleeding effect. Strong constraints are set so that the distances between the edges of the page and the edges
of the bleeding block are close to those on the original document. In Figure 4, the layout rule for Block 1 on the top
should be:
<constraint rule=“Block1.top<page.top” strength= “required”>
<constraint rule=“Block1.top-page.top = constant” strength=“strong”>
Similar constraints are also generated for the left and right bleeding edges. Although most layout constraints are
automatically inferred by the layout understanding subsystem, users or other intelligent programs are also allowed to add

 5

or modify the constraints to satisfy special needs. For the document shown Figure 8, constraints governing are added by
an automatic image cropping algorithm [11] to dictate how much the image at the bottom can be cropped.

2.3 Active Layout Template generation
Besides the core layout understanding algorithms, another important aspect is how to describe adjustable layouts.
Although many standard formats, such as SVG, XSL-FO, are designed for static layouts, few formats are available for
adjustable layouts. Badros et al have designed Constraint SVG (CSVG) [2] to support adjustable graphics by introducing
variables into standard SVG. We extend this idea to convert almost any XML-based layouts to adjustable templates,
called Active Layout Templates (ALT). In ALT, the numerical values of the attributes in XML layout documents are
replaced with variables and expressions (see Figure 5). Special characters are introduced to avoid ambiguities and also to
concatenate variables into expressions. In the current implementation, “##” means that the attribute value is generated
for ALT purpose rather than as an ordinary string (for example, “absolute” in the following example). “!!” separates the
symbol/expression from the unit (for example, “pt”). “+” is used in expressions to mean that the two sides of “+” should
be added together.

(a) Standard layout document in XSL-FO

(b) Corresponding ALT

Figure 5: Conversion of standard layout document to ALT

In layout adjustment applications, the ALT is automatically generated on the basis of the original layout document using
a converter. The converter parses the original layout XML file and replaces numerical values with expressions and
variables according to the protocol introduced earlier. We have also defined a variable naming protocol. For example, if
a block’s ID is “block1”, then the height will be named “block1_height” and the left coordinate will be named
“block1_left”, etc. The same variable protocol is also followed by the constraint inference algorithm discussed in the
previous subsection so that a variable cited in the ALT is always associated a variable used in the constraint file.

3. LAYOUT ADJUSTMENT

 As shown in Figure 1, with the Active Layout Template and constraints from the layout understanding subsystem, the
layout adjustment subsystem adjusts the original layout to accommodate the new contents. The next several subsections
will describe the major techniques used in this subsystem. We will also discuss system implementation issues at the end
of this section.

3.1 Linear text block modeling
As a key feature of the proposed system, individual text blocks are allowed to have variable widths in order to obtain the
optimal layouts. However, such freedom in text block width poses a difficult technical challenge. When the text content
in a rectangular block is fixed, the block’s width (w) and height (h) roughly follow a nonlinear relationship: w*h=a,
where a is a constant. The exact relationship is even more complex. h is not a continuous function of w and instead
follows a stepwise pattern, as shown in Figure 6.

<fo:block-container height="792pt" left="0pt"
position="absolute" top="0pt" width="612pt">…

<fo:block-container height="##+block1_height!!pt"
left="##+block1_left!!pt" position = "absolute" top =
"##+block1_top!!pt" width = "##+block1_height
+10!!pt">…

 6

Figure 6: Non-linear relationship between the width and height of a rectangular text block, given the text content

This nonlinear relationship renders many efficient constraint solving methods such as Simplex useless. So our first
strategy is to build linear models for the text block height-width relationships. If the adjustment is not too dramatic, we
can use a single linear model to approximate the height-width function of a text block. Let us assume the original width
of a text block is W0 and the original height is H0. Then we attempt another width W1. By accessing the line-breaking
function of the rendering engine, such as Apache FOP [10], we can get the new height H1. In this way the linear model
between the width and height can be defined as:

H=H0+k*(W-W0) (1)
where k=(H1-H0)/(W1-W0)

In fact, the above linear model can also be applied to non-rectangular text blocks, which are very common in
professional designs. Block A in Figure 8 is an example of such text wrapping.

3.2 Two-pass constraint solving
The linear models are approximate and cannot guarantee completely correct layouts. Thus, we run two passes of constraint solving.
Using the linear models of the text blocks, the first pass decides the optimal width for each text block. Then through actual line-
breaking, we can calculate the exact height for each text block. In the second pass, we fix the dimension of each text block and decide
the final positions of the text blocks as well as the positions and sizes of the image blocks. Figure 7 shows the workflow.

Figure 7: Workflow of two-pass constraint solving

The following example illustrates why the two-pass algorithm is necessary and how it works. The left side is the
document containing the original contents. Then more text contents have been added to the two text blocks and the
layout after the first pass is shown in the middle. As can be seen, this layout is roughly good with Block A expanded

Text Content
and Style

Linear Modeling

1st Pass Simplex

Text Block Dimension
Adjustment

2nd Pass Simplex

Constraints
from Layout

Understanding

 7

horizontally and Block B expanded vertically. The only problem is that the bottom of Block A overlaps with the title text
under it. This is due to the approximate nature of the linear models used in the first pass. After the second pass, the
overlap problem has been corrected and the bottom image is cropped a little to make the extra room for the text content.

Figure 8: Example of the two-pass constraint solving algorithm

3.3 Constraint formulation
The constraints are formulated in the format specified by CSVG [2]. They are easy-to-understand infix expressions of
equalities or inequalities. There are two parts of constraints in the first pass (see Figure 9). One part is the original
constraints from the layout constraint inference component described in Section 2.2, and the other part is the
approximate linear constraints based on the linear text block modeling. Figure 10 shows the solution after the first pass.
Then we make corrections to the first pass results. As shown in Figure 10, based on the linear model, when the ∆width
of the text block P0T5 (P0T5_deltawidth) is 48.72 (here ∆ means relative value compared with that of the original
layout), the height of P0T5 (P0T5_height) is 123.23. On the other hand, we can actually place the text into P0T5 under
the condition that P0T5_deltawidth is 48.72, and the height is calculated to be 162, which is different from the linear
estimate. So we use height obtained from actual content placement to replace that based on linear model and generate the
constraints for the second pass (see Figure 11). The constraint solver will produce the final solution (see Figure 12).

Layout with
original

Layout with original content

Overlap due to
estimate error of the

linear model

After the first pass

Text block height is
increased

Image cropped to make
extra room for the text

A A A

B B B

After the second pass

Text block width is
increased

Overlap is fixed

 8

Figure 9: Sample CSVG file for the first pass Simplex

Figure 10: Solution from Cassowary solver after the first pass: P0T5_deltawidth and P0T5_height comply with the linear constraint

defined in Figure 9

Figure 11: Sample CSVG file for the second pass Simplex: The linear constraint dictating P0T5_deltawidth and P0T5_height is now

replaced by fixed values from actual text placement.

Figure 12: Sample solution after the second pass Simplex

Original constraints:
<constraint rule="P0T2_left = P0I2_left" strength="required"/>
<constraint rule="P0T4_left = P0I2_left" strength="required"/>
<constraint rule="P0T5_left = P0I2_left" strength="required"/>
<constraint rule="P0I0_left >= P0T4_right" strength="required"/>
<constraint rule="P0I0_left >= P0T5_left" strength="required"/>…
Approximate linear constraints:
<constraint rule="P0T4_deltawidth = P0T4_right - P0T4_left - 186.48" strength="required"/>
<constraint rule="P0T5_deltawidth = P0T5_right - P0T5_left - 190.97" strength="required"/>
<constraint rule="P0T1_height = 13.93-P0T1_deltawidth*0.6966" strength="required"/>
<constraint rule="P0T2_height = 32.00-P0T2_deltawidth*0.0" strength="required"/>
<constraint rule="P0T3_height = 37.92-P0T3_deltawidth*0.9480" strength="required"/>
 <constraint rule="P0T4_height = 11.85-P0T4_deltawidth*0.0" strength="required"/>
<constraint rule="P0T5_height = 189.00-P0T5_deltawidth*1.3500" strength="required"/>…

Text block dimensions:
P0T3_deltawidth = 13.63
P0T3_height = 25.00
P0T4_deltawidth = 0.0
P0T4_height = 11.85
P0T5_deltawidth = 48.72
P0T5_height = 123.23
P0T6_deltawidth = 0.0
P0T6_height = 11.85

Other variables:
P0T3_left = 510.53
P0T3_top = 61.56
P0T4_left = 56.32
P0T4_top = 80.91
P0T5_left = 56.32
P0T5_top = 94.15
P0T6_left = 468.34
P0T6_top = 111.99

P(Bi) related constraints:
<constraint rule="P0T2_left = P0I2_left" strength= "required"/>
<constraint rule="P0T4_left = P0I2_left" strength= "required"/>
<constraint rule="P0T5_left = P0I2_left" strength= "required"/>
<constraint rule="P0I0_left >= P0T4_right" strength= "required"/>
<constraint rule="P0I0_left >= P0T5_left" strength= "required"/>…
S(Bi) related constraints:
 <constraint rule="P0T3_deltawidth = 13.63" strength= "required"/>
<constraint rule="P0T3_height = 18.96" strength= "required"/>
<constraint rule="P0T4_deltawidth = 0.0" strength= "required"/>
<constraint rule="P0T4_height = 11.85" strength= "required"/>
<constraint rule="P0T5_deltawidth = 48.72" strength= "required"/>
<constraint rule="P0T5_height = 162.00" strength= "required"/>
<constraint rule="P0T6_deltawidth = 0.0" strength= "required"/>
<constraint rule="P0T6_height = 11.85" strength= "required"/> …

P0T3_left = 510.53
P0T3_top = 73.58
P0T4_left = 56.32
P0T4_top = 79.65
P0T5_left = 56.32
P0T5_top = 92.89
P0T6_left = 468.34
P0T6_top = 124.01 …

 9

3.4 Layout generation
After the two-pass constraint solving engine has decided the optimal values for the variables that define object positions
and dimensions, the layout generator can produce a standard layout document based on the Active Layout Template
described in Section 3.3. The ALT is parsed using DOM or SAX APIs. Each attribute value is analyzed and the abstract
variables and expressions are replaced with concrete numeric values from the layout adjustment engine and the result is
a standard layout document in XSL-FO and SVG, which can be then rendered into PDF by Apache FOP [10] for
printing and electronic distribution.

3.5 System implementation
The layout adjustment subsystem is implemented in Java and invokes a number of third-party Java packages (see Figure
13). Apache FOP [10] is an open-source software package that can parse and render XSL-FO document. In our system,
it is extensively utilized in the text modeling and placement as well as the final PDF generation. We have chosen
Cassowary solver [1] for the two passes of linear constraint solving because of its several attractive features. First, it
supports non-required constraints, such as “strong” and “weak” constraints, in addition to the conventional required
constraints. As described in Section 2, this feature is very convenient for layout adjustment purpose. Second, it supports
efficient incremental constraint solving. It can be very useful to increase the processing speed of high-volume VDP
applications by obtaining a new layout from the existing states of the solver rather than from scratch. Third, Cassowary
solver has demonstrated impressive robustness and stability throughout our experiments.

In order to reduce the overhead of loading the engine and thus accelerate the layout adjustment, we have implemented
the system in client/server mode. The heavyweight layout adjustment engine, including FOP and Cassowary solver, is
started as a server in advance. It then listens to a particular TCP socket for incoming requests and executes the two-pass
constraint solving algorithm. The layout adjustment client a very lightweight shell program that simply sends requests to
the layout adjustment engine through TCP sockets. Under the client/server mode, it only takes a 2.8GHz Windows XP
computer 6 seconds to adjust the document shown in Figure 8. The original execution time is 17 seconds without the
client/server mode. In addition, because TCP/IP is a standard protocol supported by different programming languages,
this approach also makes the layout adjustment engine accessible to client programs in various languages, such as C,
Java, and C#.

Figure 13: The client/server implementation of the layout adjustment subsystem

Besides, a Web interface has been designed to make the editing easier. The user can simply click on a text block or
image block and then change the content. Then the updated contents are sent to the layout adjustment engine. After the
new layout is produced, the browser will automatically refresh to display the new layout. Figure 14 is a snapshot of this
interface. This system has been successfully applied to a wide range of professionally designed documents. Besides the
vacation brochure example shown in Figure 8, Figure 15 is another example featuring a marketing flyer. The SVG-based
black frames are expanded to accommodate extra text. The circular image and the text surrounding it move up together.

JVM

Layout Adjustment Engine

FOP Cassowary
solver

Layout Adjustment
Client

TCP
Socket

 10

Figure 14: Web user interface of the system

(a) Original document (b) After layout adjustment
Figure 15: Another example of layout adjustment

4. CONCLUSIONS

Through several innovations such as layout template and constraint extraction, linear text block modeling, two-pass
constraint solving algorithm, the proposed Active Document Versioning system provides a robust and generic solution
to relieve the bottleneck on the creation side of end-to-end automated publishing pipeline. It supports a rich set of layout
adjustment operations in professional graphic designs, such as simultaneous optimization of text block width and height,
integrated image cropping, and non-rectangular text wrapping. On the other hand, there are a number of promising
future research topics on both layout understanding and adjustment:

As with any task related to artificial intelligence, layout template and constraint extraction is not and will not be perfect.
There are a number of other factors that also have a lot of influence on the look and feel of the page, such as the
repetitive patterns, colors, visual balance, and they are yet to be studied. Also, sometimes the interpretation of a graphic
design’s intent is quite subjective. So we should allow the user to edit the automatically discovered rules through a
friendly graphic user interface.

The current experimental system runs on a single machine. In the high-throughput production environment, it is
imperative to distribute the layout engine on multiple machines. A number of technical questions then need to be
answered: How to do the load balancing? How to synchronize the processes across different computers? What
distributed computation protocol (CORBA, Web Service, etc.) should be adopted? This is another direction of our future
research.

Clickable text
region

Pop-up editor

 11

ACKNOWLEDGMENTS

The authors are grateful to Greg Badros and Alan Borning for their help with the Cassowary solver. Steven Simske has
kindly provided us with the software of bitmap image analysis. Anna Durante, Gary Vondran, and Henry Sang have
supported this research from the start.

REFERENCES

1. G. Badros and A. Borning, “The Cassowary Linear Arithmetic Constraint Solving Algorithm: Interface and
Implementation,” Technical Report UW-CSE-98-06-04, University of Washington, Seattle, Washington, June 1998.

2. G. Badros, J. Tirtowidjojo, et al, “A Constraint Extension to Scalable Vector Graphics,” Proceedings of Tenth
International World Wide Web Conference, Hong Kong, May 2001.

3. C. Jacobs, W. Li, et al, “Adaptive Grid-based Document Layout,” ACM Transaction on Graphics, vol 22 no 3,
2003, pp 838-847.

4. A. Berkner, EL. Schwartz, “SmartNails: Display- and Image-dependent Thumbnails,” SPIE Conference on
Document Recognition and Retrieval XI, pp. 54-65, San Jose, USA, January 2004.

5. L. Purvis, S. Harrington, et al, “Creating Personalized Documents; An Optimization Approach,” ACM Conference
on Document Engineering, 2003, pp 68-77.

6. R. Johari, J. Marks, et al, “Automatic Yellow-Pages Pagination and Layout,” Mitsubishi Electric Research
Laboratory Technical Report TR-96-29, 1996, http://www.merl.com.

7. A. Heydon and G. Nelson, “The Juno-2 Constraint-based Drawing Editor,” Technical Report 131a, Digital Systems
Research Center, Palo Alto, USA, December 1994.

8. H. Chao and J. Fan, “Layout and Content Extraction for PDF Documents,” International Workshop on Document
Analysis Systems, Florence, Italy, September 2004.

9. http://www.w3.org/TR/xsl/
10. http://xml.apache.org/fop
11. P. Cheatle, “Automated Cropping of Electronic Images,” US Patent Application 20020191861.
12. http://www.cs.sandia.gov/opt/survey/mip.html
13. http://www.adobe.com
14. http://www.quark.com
15. http://www.pageflex.com
16. H. Chao and X. Lin, “Layout and Content Extraction from PDF Documents,” 7th International Conference on

Document Analysis and Recognition, August 2005.
17. S. Harrington, J. F. Naveda, et al, “Aesthetic Measures for Automated Document Layout,” ACM Conference on

Document Engineering, 2004.

