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We present a method to automatically detect Atrial Fibrillation (AF) for
ambulatory monitoring with arbitrary lead placements. We aim for robust
AF detection in the face of significant muscle artifact and potentially
changing morphology. Our approach is based on the variance of R-R 
intervals since the QRS spike is the most prominent feature of an
ambulatory ECG and the least confounded by muscle noise. Specifically,
we use the morphology-independent QRS detector wqrs to compute R-R 
intervals and variance and then smooth the resulting classifications for 
further robustness. Experiments on the MIT-BIH AF database (AFDB) 
show our AF detection algorithm has sensitivity 0.96 with specificity
0.89 which is sufficient for AF screening. 
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1 Introduction

Healthcare spending is increasing at alarming rates in most industrialized countries. At-home
care and prevention promise to reduce costs and improve availability of healthcare to aging
populations. Cardiac arrhythmias are one of the major health care issues facing an aging pop-
ulation and, in particular, atrial fibrillation (AF) is reported to be responsible for 15-20% of all
strokes[4] and is predicted to be associated with over 3 million hospitalizations by 2025[6].
AF is a cardiac arrhythmia that causes the heart to beat irregularly, leading to inefficient pump-
ing of blood and ultimately blood clots and strokes. The early detection and diagnosis of this
condition is problematic however since AF can be asymptomatic. Ambulatory monitoring pro-
vides a way of detecting AF in these cases. However, the ECGs collected by Holter monitors
and the like can contain significant muscle artifact, as demonstrated in Figure 1, and may be
from non-standard electrode placements. This paper presents an algorithm to automatically de-
tect AF in the face of these challenges. Our aim is to estimate patients’ daily AF burden and
thus perform well enough to screen for the disease. Our algorithm is based on the robust open
source QRS detector wqrs[5] and analysis of R-R intervariation.
This paper is organized as follows. In Section 2 we describe our algorithm for AF detection.
We next present experiments demonstrating its efficacy. In Section 4 we discuss implementation
issues. Finally we present conclusions in Section 5.

2 Methods

Our method relies on combining three key insights. First is the fact that the variance of R-R
intervals is a good indicator of AF. This can be seen in Figures 2 and 3 below. Here we show
histograms of the variance of R-R intervals calculated over 10 second windows for heart data
from the MIT-BIH AF database (AFDB)[2]. Figure 2 shows the histogram for data labeled as
AF and Figure 3 shows the histogram for normal heart data. Clearly the two conditions exhibit
different characteristics which can be used to classify unseen signals as normal or AF.
The second key insight is that wqrs provides a morphology independent QRS detector which
allows accurate calculation of R-R intervals regardless of lead placement. As shown in Figure 4
the shape of the QRS complex in an electrocardiogram differs depending on where the elec-
trodes are placed on the body. The R-wave spike can either be upwards pointing, downwards
pointing, or can have both up and down components. Using a technique similar to that found in
wqrs, we implement a linear transform of the ECG signal where, for each time window, w, the
length of the line of the ECG signal over that time is calculated. The result is a line transform
of the ECG where each point represents a successive line integral of a sliding window, w. The
effect of the line transform on three ECG morphologies: upward, downward and cross is shown
in the lower half of Figure 4 . We see that regardless of morphology, the line transform peaks at
the QRS complex allowing it to be found.
The third key insight used is that the QRS spike is the most prominent feature in an ECG and the
least affected by muscle noise. Figure 1 shows an example of an ECG signal collected during
a period of significant movement. Note that while the QRS spikes are very prominent, other
features of the ECG wave are difficult to distinguish.
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Figure 1: ECG signal collected during a period with significant movement. Note that while the
QRS spikes are prominent, other features are less so. The plot shows signal amplitude vs sample
number.
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Figure 2: Histogram of R-R intervals calculated over 10s windows for AF ECG data from the
MIT-BIH AF database.
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Figure 3: Histogram of R-R intervals calculated over 10s windows for normal ECG data from
the MIT-BIH AF database.
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Figure 4: Demonstration of the effect of the length transform on three ECG morphologies.

Based on the three key insights described above, our AF detector is constructed as follows.

1. We first use wqrs to determine R-R intervals.

2. We then normalize the R-R intervals according to the following equation:

RR
norm

=
RR

R̄R
∗ 100 (1)

where R̄R = 0.75R̄R + 0.25RR where RR is the current R-R interval.

This method is inspired by the feature normalization by Moody and Mark [3] and com-
pensates for different patient resting heartrates.

3. The variance of the RR
norm

statistic is then computed over 10 second sliding windows.

4. An initial AF detection is computed according to whether the variance over each 10s
window is greater than a settable threshold. A typical threshold is 200.

5. These initial classifications are then smoothed to eliminate spurious errors. Any of the
many smoothing algorithms can be applied. Our system uses a simple majority voting
scheme over 600 beat windows.

4



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1 − Specificity

S
en

si
tiv

ity
R−R Var           
%R−R Mean Var     
Smoothed %R−R Mean

Figure 5: Results for 3 variants of our AF detection algorithm.

3 Experiments

We tested the performance of our algorithm on the MIT-BIH AF database (AFDB) [2]. This
database contains 10 hour ambulatory recordings from 25 patients using 2-lead electrodes in a
standard configuration. We only used the 23 patients for which signal files are available. The
data is labeled as AF, normal or in rare cases with other arrhythmias by experts. For the purposes
of scoring, we considered all non-normal heart data to be AF.
Figure 5 shows ROC curves for three variants of our algorithm. The first, denoted “R-R Var”,
is without beat normalization or smoothing (steps 2 and 5 above). The second, denoted “%R-
R Mean Var”, incorporates beat normalization and the third “Smoothed %R-R Mean Var” is
the full algorithm. The figure shows that the R-R interval normalization and smoothing steps
improve performance. A typical operating point of the full algorithm is sensitivity 0.96 with
specificity 0.89. This is acceptable for AF screening and estimating AF burden.

4 Implementation Issues

We have implemented our AF detection algorithm as a plan in BioStream, our architecture for
real-time processing of streaming physiological signals [1]. BioStream processes data using
plug-in analysis components that can be easily composed into plans using a graphical program-
ming environment. The architecture is scalable, allowing implementation on systems ranging
from desktops to server farms. It guarantees real-time response and data persistence in a dis-
tributed environment.
The use of BioStream implies “start-up” delays as the input streams to each module of the system
fill. Figure 6 shows a graphical representation of the plan for our AF detection algorithm. Each
box on this diagram represents a BioStream operator which processes streaming data.
The first operator, EcgFileSource reads a stored ECG file. In a real-time implementation, this
operator is replaced by an operator to obtain the ECG from a ECG monitor. The next operator
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Figure 6: BioStream plan for AF detection. Each box represents an operator which processes
streaming ECG data.

WQRS implements the line-integral based QRS detector. It has an 8 second start-up delay as
various thresholds are set.
The next two operators BeatDiff and BeatDiffVariance compute the difference between beats
as defined by Equation 1 and then the variance of this. BeatDiff has a start-up time of 2 beats.
BeatDiffVariance operates over sliding windows, currently set to 10s. Hence it has a start-up
time of 10s.
The AfibClassify operator makes an initial threshold-based decision as to whether each beat is
part of an AF sequence. It has no start-up delay. The SmoothAfibClassify operator smoothes
classification by voting over a settable sliding window. This is currently set to 600 beats hence
it has a start-up delay of 600 beats.
Thus the main start-up delay introduced by our implementation is that of SmoothAfibClassify.
For a heartrate of 60 beats per minute, this would be of the order of 10 minutes. Since AF is not
immediately life threatening, a 10 minute delay is not problematic.

5 Conclusions

We have developed an algorithm that can reliably detect AF using only the analysis of R-R inter-
vals. Since the QRS complex is the most prominent feature of an ambulatory ECG and the least
sensitive to muscle noise, we anticipate our algorithm will perform well in many ambulatory
monitoring situations. Our algorithm is also morphology-independent, giving good performance
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for arbitrary lead placements. Experiments on the MIT-BIH database showed our approach cor-
rectly identifies AF with sensitivity 0.96 and specificity 0.89 on the MIT-BIH database. This is
sufficient accuracy for AF screening.
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