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A new method for combining classifiers is introduced for two problem types. (1)
Archiving and re-purposing are automated using zoning analysis that performs
segmentation (region boundary definition), classification (region typing) and bit-depth 
determination. For performance throughput reasons, zoning analysis is often performed
on a low-resolution (e.g. 50-100 ppi) representation of the document. At these 
resolutions, heuristic metrics for classification are required. Reported here are metrics
for distinguishing photos and color drawings, and a novel classification technique based
solely on the statistics of each heuristic metric. The statistical technique allows ready
combination of multiple binary classifiers, and provides a lower classification error than
simple voting or metric-confidence techniques. This technique permits new metrics to
improve the overall classification. The benefit of this technique on archival optimization 
is shown. (2) The classification of documents with sparse text, and video analysis, relies
on accurate image classification. We herein present a method for binary classification
that accommodates any number of individual classifiers. Each individual classifier is 
defined by the critical point between its two means, and its relative weighting is
inversely proportional to its expected error rate. Using 10 simple image analysis metrics,
we distinguish a set of "natural" and "city" scenes, providing a "semantically 
meaningful" classification. The optimal combination of 5 of these 10 classifiers provides
85.8% accuracy on a small (120 image) feasibility corpus. When this feasibility corpus
is then split into half training and half testing images, the mean accuracy of the optimum 
set of classifiers was 81.7%. Accuracy as high as 90% was obtained for the test set when
training percentage was increased. These results demonstrate that an accurate classifier
can be constructed from a large pool of simple classifiers through the use of the 
statistical ("Normal") classification method described herein.   
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ABSTRACT 

 
A new method for combining classifiers is 
introduced for two problem types. (1) Archiving 
and re-purposing are automated using zoning 
analysis that performs segmentation (region 
boundary definition), classification (region 
typing) and bit-depth determination. For 
performance throughput reasons, zoning 
analysis is often performed on a low-resolution 
(e.g. 50-100 ppi) representation of the 
document. At these resolutions, heuristic metrics 
for classification are required. Reported here are 
metrics for distinguishing photos and color 
drawings, and a novel classification technique 
based solely on the statistics of each heuristic 
metric. The statistical technique allows ready 
combination of multiple binary classifiers, and 
provides a lower classification error than simple 
voting or metric-confidence techniques. This 
technique permits new metrics to improve the 
overall classification. The benefit of this 
technique on archival optimization is shown. (2) 
The classification of documents with sparse text, 
and video analysis, relies on accurate image 
classification. We herein present a method for 
binary classification that accommodates any 
number of individual classifiers. Each individual 
classifier is defined by the critical point between 
its two means, and its relative weighting is 
inversely proportional to its expected error rate. 
Using 10 simple image analysis metrics, we 
distinguish a set of "natural" and "city" scenes, 
providing a "semantically meaningful" 

classification. The optimal combination of 5 of 
these 10 classifiers provides 85.8% accuracy on 
a small (120 image) feasibility corpus. When 
this feasibility corpus is then split into half 
training and half testing images, the mean 
accuracy of the optimum set of classifiers was 
81.7%. Accuracy as high as 90% was obtained 
for the test set when training percentage was 
increased. These results demonstrate that an 
accurate classifier can be constructed from a 
large pool of simple classifiers through the use 
of the statistical ("Normal") classification 
method described herein. 
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1. PHOTO/DRAWING CLASSIFICATION 
PROBLEM 

During automated document scanning, 
segmented regions must be differentially 
classified (as, for example, text, drawing, photo 
and table regions) to ensure they are stored with 
appropriate resolution and bit depth, and 
undergo appropriate processing (sharpening, 
color palette selection, etc.) during their 
capture—this allows re-purposing of the 



documents while keeping file size as small as 
possible. 

Statistical models for classification generally 
distinguish text (and tabular) regions from 
image (photo and drawing) regions readily; for 
example, using projection profile information or 
size heuristics [2-3]. Differentially classifying 
photos from drawings is important because 
drawings benefit from sharpening, use a reduced 
color palette not exceeding 8-bits (one-third the 
normal 24-bits), and require higher resolution 
for repurposing than photos. Thus, 
distinguishing these two types of regions can 
lead to significant reduction in archiving 
overhead. Because halftone patterns are not 
detectable at the low (50-100 ppi) resolutions 
used for typical dedicated zoning engines, other 
metrics for differentiating these regions types 
must be used. 
 

  
Figure 1. Sample photo region (left) and drawing region 
(right). The originals were in color. 
 

  
Figure 2. Histograms [1] for photo (left) and drawing 
(right) as shown in Figure 1. 
 

Group Pct2Pk Pct0.5 Bimod 
Photo (n=50) 0.26 ± 0.11 0.27 ± 0.11 1.0 ± 0.12 
Drawing (50) 0.68 ± 0.15 0.14 ± 0.09 1.3 ± 0.25 
Photo (37) 0.22 ± 0.15 0.29 ± 0.15 1.0 ± 0.15 
Drawing (15) 0.73 ± 0.15 0.10 ± 0.06 1.5 ± 0.26 

Table 1. Mean (μ) ± standard deviation (σ) for the metrics 
for photos and drawings in training and test sets. 
 

Three metrics useful for photo/drawing 
classification are: (1) Percent of the histogram 

range in the largest two peaks (Pct2Pk). For this 
metric, the two peaks, if present, containing the 
largest number of pixels, are computed. Peaks 
are defined as containing > 0.5% of the total 
number of pixels and being consecutive bins 
between two minima (inflection points, 
themselves limited to 10% of the histogram 
range). For the photo (left) in Figure 1, the 
histogram in Figure 2 contains three large peaks, 
the largest two of which contain 30% of the 
pixels in the region. This value is 90% for the 
drawing region shown (right) in Figures 1-2. (2) 
Percent of histogram bins with > 0.5% of the 
pixels (Pct0.5). For the photo shown, this value 
is ~60%. In contrast, the Pct0.5 value is ~10% 
for the drawing. (3) Bimodality of nearest-
neighbor pixel differences (Bimod). Because 
photos are continuous tone and drawings 
comprise areas of uniform color separated by 
lines and curves, the drawing regions are 
expected to have a more bimodal appearance in 
comparing the differences between nearby 
pixels. Difference histograms for pixels 1, 2 and 
3 places apart (at 75 ppi) are computed and 
compared to difference histograms for random 
pairs of pixels in the region. The ratios are 
summed to yield the final Bimod value. 

For the training set of 50 photos and 50 
drawings, and the test set of 37 photos and 15 
drawings (all scanned at 75 ppi, all taken from 
the same 50 scanned pages), the mean and 
standard deviations of the values for each of the 
three metrics is given in Table 1. Statistically (t-
test), the ranking of these metrics for 
distinguishing photos from drawings are Pct2Pk 
> Bimod > Pct0.5.  

 
2. IMAGE CLASSIFICATION PROBLEM 

The purpose of this research was to determine 
if a reasonably accurate binary classifier for 
images could be constructed from a set of 
simple classifiers through the use of a statistical 
method for classifier combination. A set of 120 
images was assigned to 2 equal size classes: one 
of "natural" scenes, the other of "city" scenes. 



These images were purposely rather diverse as 
relative, but not absolute, classification accuracy 
was of interest. 
 

3. CLASSIFIER DESIGN AND 
APPLICATION TO REGION 

CLASSIFICATION 
 

 
Figure 3. A=area below the critical point (CPt) of the 
population with the higher mean, and B=area below the 
critical point of the population with lower mean (B). 
When the population area is normalized to 1.0, A = B. 
 
All classification involves the generation of a 
decision boundary [4]. Since each of the metrics 
described above is used as a binary threshold 
classifier, the decision boundary is a critical 
point (or threshold), designated CPt, falling 
between the means of the two curves—above 
CPt one class is assigned and below CPt the 
other class is assigned to each sample. 

Figure 3 demonstrates the critical point CPt 
(vertical line segment between A and B), along 
with the “error areas” A and B. Thus, CPt is 
defined as the point between the two means that 
is equidistant from the two means in multiples 
of their standard deviations (the two populations 
need not have equal variance). That is, CPt is 
selected so that the distance from the mean of 
each population to CPt is the same in terms of 
standard deviations of the means. The number of 
standard deviations from each mean, σCPt, is 
determined by: 

σCPt = |μ1 – μ2|/(σ1 + σ2) Equation 1 

where μ1 and μ2 are the population means, and 
σ1 and σ2 are the population standard deviations. 
After computing σCPt (which is not the midpoint 
between the two means unless σ1 = σ2), the 
normalized area A (which is also normalized 
area B) in Figure 1 is determined directly from a 

Table of Normal curve areas (“z” value), and 
designated α(σCPt). With CPt determined, the 
number of correctly classified values in the 
training set can then be ascertained directly 
(Table 2). 
 

 Pct2Pk Pct0.5 Bimod 
CPt 0.4428 0.2107 1.097 
σCPt 1.612 0.720 0.973 
α(σCPt) 0.0535 0.2358 0.1652 
Photo (50) 46 (92%) 38 (76%) 39 (78%) 
Drawing (50) 47 (94%) 41 (82%) 42 (84%) 

Table 2. Normal Method data, training set. 
 

In Table 2, the predicted accuracy is given by 
the value 1-α(σCPt). For Pct2Pk, Pct0.5 and 
Bimod, these values are 94.6%, 76.4% and 
83.5%, respectively, which are similar to the 
observed values of 93%, 79%, and 81% 
determined with reference to CPt. These results 
rely on modeling the binary classification as the 
problem of finding a decision boundary that is a 
threshold. Next the multiple classifiers need to 
be combined. However, the difference in metric 
accuracy is a problem (Table 3). 

 
Case Pct2Pk Pct0.5 Bimod p 
1 R (.9465) R (.8348) R (.7642) .6038 
2 R (.9465) R (.8348) W (.2358) .1863 
3 R (.9465) W (.1652) R (.7642) .1195 
4 R (.9465) W (.1652) W (.2358) .0369 
5 W (.0535) R (.8348) R (.7642) .0341 
6 W (.0535) R (.8348) W (.2358) .0105 
7 W (.0535) W (.1652) R (.7642) .0068 
8 W (.0535) W (.1652) W (.2358) .0021 

Table 3. Truth table of probabilities for combinations of 
the three classifiers making the right (R) or wrong (W) 
classification. The overall probabilities (p) sum to 1.0. 
 

Using the Pct2Pk classifier by itself (sum 
cases 1-4) leads to the correct classification 
94.65% of the time. Using the best two out of 
three (sum cases 1-3 and 5) is only 94.37% 
accurate, as is the use of Pct2Pk unless the other 
two disagree (also the sum of cases 1-3 and 5). 
These are the most obvious "voting" schemes, 
and the results for the training data matches 
these predictions. Using the Pct2Pk classifier by 



itself (Table 1, col. 2) gives 93% accuracy on 
the training data, while the other strategies each 
give 90% accuracy on the training data. 

The Normal Method for classification 
provides the means to assign relative weights to 
each of the individual binary (threshold) 
classifiers. For 2 or more binary classifiers using 
the Normal Method, the metric weighting is 
defined to be inversely proportional to the 
predicted classification error rate; that is, 
proportional to 1/ α(σCPt). Thus, α(σCPt) x WMi 
is a constant, and so the metric weighting for the 
i’th classifier, WMi, is determined from: 

WMi = [α(σCPt)i x (Σi=1..N{1/α(σCPt)i}) ]-1

Equation 2 
where i=1...N and N is the number of binary 
classifiers to be used together. Using Equation 
2, the weightings for the engines are as shown in 
Table 4. 
 

 Pct2Pk Pct0.5 Bimod 
WM 0.6449 0.1463 0.2088 

Table 4. Weightings for each classifier based on the 
training data, the Normal Method and Equation 2. 
 

 
Figure 4. Assigning WC for a sample S (dotted line) 
classified as belonging to the population with lower mean. 
The ratio of the areas C/(D+C) is WC (Normal Method), 
which is then multiplied by the metric weighting, WM, to 
give the classification weight for this metric and sample 
(S). B and CPt are as in Figure 3. 
 

Since the metric weight for Pct2Pk in Table 4 
is greater than 0.5, it will outperform any 
possible voting scheme using the other metrics, 
as shown in Table 3 and in [6]. However, the 
Normal Method provides the means to using all 
three classifiers on any sample by assigning 
each sample a “sample confidence weight”, WC 
(Figure 4). 

The value for WC is determined by marking 
the sample value relative to CPt, and then 

determining the residual area under the normal 
curve for the non-selected class. An example 
will help elucidate this technique. Suppose for 
the Pct2Pk classifier, the sample value is 0.446. 
Since this value is greater than CPt(Pct2Pk), 
the classification is “Drawing” rather than 
photo. Now, 0.446 is (0.446-0.259)/0.114 
standard deviations from the Photo mean of 
0.259. This is 1.640 standard deviations, for 
which the z-value is 0.0505. Thus, referring to 
Figure 4, D = 0.0505, C = (0.0535-0.0505) = 
0.0030, and WC = (0.0030/0.0535) = 0.0561. 
Multiplying WC by WM yields a weighted 
classification of WCWM = 0.0561x0.6449 = 
0.0362 for Drawing for the Pct2Pk classifier. 

The use of WCWM for each classifier thus 
provides a means for: (1) the ability to use 
multiple binary classifiers simultaneously, even 
when one classifier has a majority of the metric 
weighting (e.g. Table 4); and (2) a means to 
rank the samples by distance from the decision 
boundary. 

To illustrate (1), let us further suppose that 
the Pct0.5 and Bimod values for the example 
above are 0.113 and 0.80, respectively (Pct2Pk 
= 0.446). For Pct0.5, (0.287-0.113)/0.106 = 
1.642 standard deviations from the Photo mean, 
for which the z-value is 0.0503 and thus WC = 
((0.2358-0.0503)/0.2358) = 0.7867. Multiplying 
by WM (0.1463), the weighted Drawing 
classification is 0.1151 for the Pct0.5 classifier. 
For the Bimod classifier, the 0.80 value yields a 
Photo classification, and so the value for WC is 
determined from the Drawing mean: (1.34-
0.80)/0.25 = 2.16 standard deviations, for which 
the z-value is 0.0154. Thence, WC = ((0.1652-
0.0154)/0.1652) = 0.9068. Multiplying by WM 
(0.2088), the weighted Photo classification is 
0.1893 for the Bimod classifier. 

Summing these weighted classifications, the 
0.1893 for Photo > (0.0362+0.1151) for 
Drawing, and so the region is (correctly, as it 
turns out) classified as Photo, even though 
Pct2Pk, the most accurate classifier, and Pct0.5 
classified the region as Drawing. Using this 



technique (dubbed the Weighted Normal 
Method); the same 93% accuracy was obtained 
for the training set, although two regions were 
classified differently than using Pct2Pk by itself 
(Table 5). The WCWM classification strategy 
provided the best overall accuracy (94.2%) for 
the test set of 52 regions. For the Pct2Pk, Pct0.5 
and Bimod, classifiers, the accuracies on the test 
set were 90.4%, 76.9% and 71.2%, respectively. 

 
 WCWM classification 
Photo (50) 46 (92%)—two changed from Pct2Pk 
Drawing (50) 47 (94%)—none changed from Pct2Pk 

Table 5. Results, training set, Weighted Normal Method. 
 

4. ARCHIVING OPTIMIZATION 
 
Using the weighted classification results allows 
the ranking of samples based on their distance 
from the decision boundary. The value for the 
example above is “Drawing, 0.1893-0.1513” or 
“Drawing, 0.0380”. Another sample with values 
of 0.434, 0.160 and 0.98 for Pct2Pk, Pct0.5 and 
Bimod, respectively, has a bias of “Photo, 
0.1129”. These relative values can be used to 
rank regions by how likely, statistically, they are 
to be mistyped. Regions within a range of 
relative values can then be preserved at 
sufficient resolution and bit depth to allow full 
repurposing. For example, photos may be 
preserved at 200 ppi, 24 bit, and color drawings 
at 300 ppi, 8-bit paletted color. For regions near 
the decision boundary, a full-ppi, full-bit depth 
representation (300 ppi and 24-bit, which 
increases file size by either 225% or 300%) can 
be used to ensure that the effects of mistyping 
will be avoided for these “borderline” 
classifications. This provides a balance between 
the need for reduction in file size on one end and 
the need to preserve region re-purposability on 
the other. If we use the full representation for 
the 20% of regions nearest the border between 
classes, and the (correct) classification (all of the 
error cases for the WCWM approach fell within 
this band) for all of the other test cases, 
archiving the test set requires 94.9 MB. 

Correctly classifying each region, by contrast, 
requires 71.9 MB. However, saving all regions 
at the full representation requires 176 MB (In 
general, the storage savings will be 100%-the 
range in which all the errors occur). All of the 
regions left as "unclassified" can be repurposed 
with a user interface (UI) based tool [7], if 
desired, or left at full resolution and full bit 
depth. 
 

5. DISCUSSION AND CONCLUSIONS, 
REGION CLASSIFICATION 

 
Several heuristic metrics for classifying photos 
and drawings are presented. The Pct2Pk metric 
provides > 90% accuracy in classification at low 
resolution (75 ppi). The other two (Pct0.5 and 
Bimod) are less accurate, and in voting 
combination do not provide any improvement 
over using Pct2Pk by itself. The novel 
Weighted Normal Method for classification 
provides the means to combine multiple binary 
classifiers of highly varying accuracy, and 
allows the identification of “uncertain” cases so 
that they can be archived at full resolution and 
bit depth. The method described herein requires 
no data scaling, no kernel definition, and is 
easily updated when new training data is 
obtained—it can thus be deployed in 
environments where user feedback can be used 
to improve future workflow performance. 

Though the training and test data are shown 
assumed to be Gaussian in distribution for the 
model of Figures 3-4, similar results can be 
obtained by applying the WCWM techniques in a 
classification that “trusts” all of the data more 
(similar techniques are taken in determining the 
kernel to use in kernel methods [4]). In this 
simplified technique, the decision boundary is 
set based on minimizing the errors in the 
training set, and so the boundary is selected to 
provide the fewest overall errors. On the training 
set, these boundaries were 0.477, 0.243 and 
1.155 for the Pct2Pk, Pct0.5 and Bimod, 
classifiers, respectively, with (implicitly) 



improved training accuracies of 96%, 82% and 
89%. On the test data, these classifiers had 
92.3%, 71.2% and 82.7% accuracy, similar to 
the Normal Method results. This is likely due to 
the use of a smaller test than training set, but 
provides a potential alternative method to define 
CPt for certain classes. Extending this 
simplified technique, the WCWM strategy can be 
deployed (Equation 2) for relative weighting 
(.6306, .1401 and .2293 for the Pct2Pk, Pct0.5 
and Bimod classifiers, respectively) and using 
the relative location of sample values in the 
“error values” of the non-selected class to 
compute the values for WC. That is, if there are 
four error values and the sample value falls in 
the middle of these four, then WC = 0.5 for this 
value. Deploying this strategy to the test data 
resulted in 90.4% accuracy (less than that of the 
non-simplified method, but again with sparse 
data sets). Further investigation is necessary to 
explore other reasonable means of assigning WC 
and WM values and to compare to other [4-5] 
classification methods. 

A practical use of this classification technique 
is now considered. Using this classification 
scheme together with the full-resolution, full-bit 
depth approach to regions not readily assigned 
to either group offers an advantage to archiving. 
Predicted storage savings for a very large corpus 
[8] are nearly 50%, while photo and drawing 
regions will be archived with desired resolution 
and bit depth. The "failure" rate can be set at any 
desired level of statistical certainty using the 
method described herein. 
 

6. CLASSIFIER DESIGN AND 
APPLICATION TO IMAGE 

CLASSIFICATION 
 

To extend the work on this classifier, software 
(GOSSIP, or Gaussian Ordering System for 
Statistical Image Processing) was generated and 
a new problem domain (image classification) 
approached. Ten simple metrics for image 
comparison were implemented—none were 

expected to perform as well as the best methods 
observed for this type of classification problem 
[9]. They are (1) image entropy, (2) standard 
deviation of the image histogram, (3) the percent 
of the image classified as edges (pixels with 
nearest neighbor variance above a threshold), 
(4) mean edge value (sharper edges have higher 
values), (5) mean nearest neighbor variance 
across the image, (6) mean region size after 
segmentation with the edge pixels, (7) mean 
variance within these regions, (8) mean image 
saturation, (9) mean region size after 
segmentation by unsaturated pixels, and (10) the 
mean variance within these regions. These are 
all very simple metrics, which require no image 
model, no a priori information about the images, 
and moreover were calculated on relatively 
small (60 each) class sizes. The original images 
were all JPEG images, 2048 x 1536 pixels in 
size, taken with a digital camera (HP R707).  

 
Metric Predicted 

Accuracy 
Observed 
Accuracy 

Weight 

1. Entropy 0.581 0.558 0.0956 
2. ImageHistStd 0.512 0.658 0.0821 
3. PctEdges 0.518 0.558 0.0832 
4. MeanEdge 0.614 0.625 0.1039 
5. MeanPixVar 0.506 0.533 0.0811 
6. MeanRegSize 0.625 0.700 0.1070 
7. MeanRegVar 0.593 0.667 0.0984 
8. MeanSat 0.717 0.783 0.1418 
9. MeanSatRegSize 0.613 0.683 0.1037 
10. MeanSatRegVar 0.612 0.700 0.1034 
Table 6. Simple image metrics used and their relevant 
statistics for the full set of 120 (60 "natural, "60 "city" 
images). Weight is computed using Equation 2. 

The results for these 10 metrics are shown in 
Table 6. The mean image saturation was the 
"best" of these simple classifiers, providing 
94/120 correct classifications. Due to the non-
Gaussian distribution of its data, however, its 
predicted accuracy was 0.717, or 71.7%. 
 
Combination Set {from Table 1} Observed Accuracy 
1. Best 2 simple classifiers {6,8} 0.783 
2. Best 3 simple classifiers {6,8,10} 0.792 
3. Best 4 simple classifiers {6,8,9,10} 0.750 
4. Best 5 simple classifiers {6,7,8,9,10} 0.817 



5. Best combination {1,4,6,8,10} 0.858 
6. Best 3 + {1}, or {1,6,8,10} 0.775 
7. Best 3 + {4}, or {4,6,8,10} 0.825 
8. Best + {4}, or {4,8} 0.783 

Table 7. Some combined classifiers and their accuracies 
on the entire 120-image corpus (compare to the accuracies 
of single simple classifiers as shown in Table 6). 

 
Next, 2N – 1 (where N=10, the number of 

simple classifiers), or in this instance 1023, 
distinct classifiers were created by using these 
ten metrics in all possible combinations. Table 6 
shows the results for 10 of these—that is, the 10 
simple classifiers themselves. The best 
combination was the set (represented in {}) of 
simple classifiers {1,4,6,8,10}, even though 
{1,4} have lower accuracy than, for example 
{2,7,9}. Results for some of these combined 
classifiers are given in Table 7.  

Table 7 shows that the single best simple 
classifier {8} provides an accuracy of 78.3%. In 
combination with any other simple classifier, the 
same accuracy is obtained. Only after three 
classifiers are combined does the accuracy rise 
to 79.2% (e.g. for {6,8,10}, or {4,8,10}). When 
a fourth classifier is added, the peak accuracy 
rises to 82.5% (for {4,6,8,10}). Five classifiers 
happen to provide the highest overall accuracy 
at 85.8% for the combination of {1,4,6,8,10}. 
Any combinations of six or more classifiers 
reduces the accuracy from this set of five. The 
combination of {1,4,6,8,10} reduces the error 
rate of the best single, simple classifier by 
34.6%. 

Although our corpus was small, we divided it 
into two equal-sized sets for training followed 
by testing. We used two groups of size 30 for 
training and testing, and then reversed them. 
Averaging the two sets, we found that the best 
single classifier (mean image saturation) 
performed well in testing (at 78.3%, the same as 
when the entire corpus is considered for the 
training set). Deploying the best classifier 
combination for the training data to the test data 
improved the classification accuracy to 81.7%. 

Interestingly, the best classifier combinations for 
these smaller sets each included classifiers 4 and 
8, emphasizing the utility of edge-based and 
saturation-classifiers for this particular domain 
of classification. The "optimal" combination 
from the feasibility testing (the combination of 
{1,4,6,8,10}) also provided 81.7% mean 
accuracy in testing, though it is worth noting 
that sparser training data in these runs altered 
the statistics of the Normal classifier. During 
testing, some classification combinations 
provided accuracy as high as 90%. 
 

7. DISCUSSION, IMAGE 
CLASSIFICATION 

 
The primary goal of this research was to 

demonstrate that combinations of simple 
classifiers can provide a reasonable binary 
image classifier. However, because one simple 
classifier (mean image saturation) was 
considerably more accurate than the other 9 
simple classifiers, the results also demonstrate 
that a reasonably accurate classifier can be 
further improved in combination with relatively 
inaccurate classifiers. Four such classifiers—
with accuracies ranging from only 55.8% to 
70%–in combination with the highest accuracy 
classifier (mean image saturation) reduced the 
classification error rate by 34.6%. The resulting 
classifier has a respectable "feasible" accuracy 
(85.8%) for such a small corpus (120 
documents). Experiments with half of the corpus 
used for training and half for testing ("unseen") 
demonstrated that even sparse training sets (30 
images per classification) can be used with the 
method for classifier combination described 
herein. The error rate during testing was reduced 
by 15.4% in comparison to the single best 
classifier.  

This paper demonstrated that a large 
population of simple classifiers can be used to 
provide an effective domain-specific 
("semantic") classifier. The ten image metrics 
chosen here were not expected to have excellent 



discriminative power, and with the exception of 
(8) mean image saturation, this was the case. In 
spite of their limitations, a classifier was derived 
with 85.8% accuracy, even for the limited (120 
image) corpus studied.  

The optimal classifiers are not simply 
weighted combinations of the best classifiers. 
Rather, the optimal combinations are affected by 
the solution space and, likely, the relative utility 
of the different classifiers to help "cover" the 
overall solution space. For example, it is 
interesting that the optimal set, {1,4,6,8,10} 
represented five quite distinct metrics. Simple 
classifier pairs with higher expected correlation 
(e.g. {6,7} and {8,9}) did not both belong to this 
optimal set, in spite of the higher accuracies of 
{7,9} in comparison to {1,4}. This may be 
analogous to the enhanced performance of some 
genetic algorithms when both the fittest and 
least fit strings are propagated to the next 
generation.  

To explore this, the percent of classification 
decisions shared in common by classifiers {1}, 
{4}, {7} and {9} with the best three classifiers 
{6,8,10} were computed. Not surprisingly, for 
{1}, {4}, {7} and {9} when compared to 
{6,8,10}, the percentage of classifications in 
agreement were 55.2%, 61.9%, 68.3% and 70%, 
respectively. {6,8,10} themselves averaged only 
61.7% of their classifications in common, far 
lower than their mean classification accuracy of 
72.8%. Thus, we believe that lack of correlation 
amongst classifiers may be beneficial in the 
optimal set of classifiers.  

An interesting finding was that the metrics 
consistently provided greater observed accuracy 
(Table 6) than predicted accuracy (9 out of 10 
times, with mean observed accuracy of 0.647 
substantially higher than the mean predicted 
accuracy of 0.589). This is likely a result of the 
Gaussian fitting of non-normal data.  

One previous study [9] reported on "city vs. 
landscape" classification. They found color 
histograms, color coherence vector DCT 
coefficient, edge direction histogram, and edge 

direction coherence vectors to have high 
discriminative power in a weighted k-NN 
classifier, and obtained an accuracy of 93.9% on 
a 2716 image corpus. Our future work in this 
area will focus on comparing the Normal 
method to k-NN, SVM [4], boosting [10] and 
other classification methods directly. This 
requires extension from binary to N-classes. 
While our method shares common ground with 
boosting [10], it differs in that it involves no 
iterative weighting of the training sample, 
simple coefficient adjustment when new ground 
truth data is obtained, a linear discrimination 
boundary, and no reliance on optimization 
theory. 
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