

Note on database layouts for SPARQL datastores

Richard Cyganiak
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2005-171
September 28, 2005*

RDF, semantic
web, databases,
query

The SPARQL query language for RDF provides a standardized way to
access Semantic Web data. This report summarizes some lessons learnt
while implementing a SPARQL datastore on top of ModelRDB, the
database backend of the Jena Semantic Web Framework, and puts
forward recommendations for the database layout of a future, dedicated
SPARQL datastore.

* Internal Accession Date Only Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

Note on database layouts for SPARQL
datastores

Richard Cyganiak
richard@cyganiak.de

HP Labs, Bristol, UK

Abstract. Abstract: The SPARQL query language for RDF provides a
standardized way to access Semantic Web data. This report summarizes
some lessons learnt while implementing a SPARQL datastore on top of
ModelRDB, the database backend of the Jena Semantic Web Framework,
and puts forward recommendations for the database layout of a future,
dedicated SPARQL datastore.

This report summarizes some lessons the author has learnt while implement-
ing the sparql2sql triple store [2]. sparql2sql is based on the database backend
of the Jena Semantic Web Framework [1], which is also known as ModelRDB [6].
I argue that the ModelRDB database layout, while being a good persistent back-
end for the Jena API, is not a good match for a SPARQL datastore. My recom-
mendations for a better schema include:

1. using a normalized representation of RDF triples,
2. using an index on the GraphID column,
3. using a separate index on the Predicate column,
4. using the same node encoding for S, P, O and GraphID,
5. using separate tables for the default graph and the named graphs of an RDF

dataset,
6. storing model metadata in a form accessible to SQL.

The recommendations put forward here are largely consistent with the find-
ings presented in [3], which, at the time of writing, is the most comprehensive
work on database layouts for SPARQL stores.

1 Normalized and denormalized layout

Contrary to common database design wisdom, ModelRDB uses a denormalized
schema. URIs and literals are stored directly in the statement table. This decision
is justified in [6]: ModelRDB has been optimized for find queries, that is, for
finding all triples matching a simple triple pattern where subject, predicate and
object may be wildcards. The denormalized schema avoids the need for database
joins when performing find queries. This improves performance.

There are, however, several reasons why a normalized schema works better
for more complex SPARQL queries.

SPARQL requires joins anyway. SPARQL queries typically involve several
or many triple patterns. This means joins cannot be avoided. Furthermore,
the columns used in join conditions represent RDF nodes. In a denormalized
table, the joins are made over big string columns. In a normalized table, the
joins are made over key columns, which are typically integers. Joins over
integers are faster because less data has to be retrieved from disk.

SPARQL queries have higher selectivity. Find queries are not very dis-
criminate. A find query will often return a sizable chunk of the datastore.
Much filtering will be done in application code. This means lots of node data
has to be accessed per find query. SPARQL queries are much more accurate
in pinpointing the bits of data required by the client. Most of the processing
is done by matching triples against each other; the actual node representa-
tions don’t have to be accessed unless the node is in the results. The number
of accesses into the nodes table of a normalized schema might actually be
quite low.

Memory savings: A normalized schema occupies less space on disk because
each node representation is stored only once, even if the node occurs in
many triples.

For a store that mostly has to support find queries, a denormalized schema
works better. For a store that mostly has to support SPARQL, a normalized
schema should work better. The question is where the balance tips. Some in-
formal tests suggest that a denormalized schema might be faster for queries
involving one and two triple patterns, and might be slower for three or more
triple patterns.

2 Indexed columns

The ModelRDB schema doesn’t have an index on the GraphID column in the
statements table. This is understandable with the ModelRDB case where you
typically have a very low number of graphs (one!) in the same table.

With SPARQL, it is not uncommon to have thousands of graphs in the same
dataset. This makes operations like fetchGraph and deleteGraph very slow. An
index on GraphID is necessary.

The Jena schema has one combined index on Subject and Predicate, and
one on Object. One group has found that individual indices on S, P and O are
faster [4], but it is not known if this finding generalizes to other database layouts.

3 Node encoding

ModelRDB uses an intricate scheme to store a node in a single column. The first
letter indicates the type of node. Offset numbers point to different parts of the
node, like the language tag or datatype URI of a literal node. URI prefixing and
long objects further complicate the issue.

This makes it nearly impossible to push value testing reliably down into the
database. Complicated expressions involving substring functions and condition-
als are necessary to extract the lexical value of a literal node or the URI of an
URI node. Although value testing in the database is not strictly necessary, the
schema should strive to make it possible.

(The same applies to ORDER BY, although I’m not aware of any attempt to
do it inside the database.)

If all the value testing for a given query is done in the DB, then it’s possible
to execute OFFSET and LIMIT in the DB, which might be a large benefit for some
queries. That’s why I think pushing at least some common value testing idioms
into the DB is important and worthwhile.

A database layout that facilitates value testing in the database has been
proposed in [3].

4 Dataset Structure

SPARQL’s data model is the RDF dataset, a set of graphs named by URIs
plus a single unnamed default graph. This concept was not yet developed when
ModelRDB was designed. Nevertheless, ModelRDB is very flexible and can be
made to store RDF datasets: Its ability to store multiple models in the same
statement table can be used to simulate a set of named graphs.

The exercise of shoehorning RDF datasets into a ModelRDB store has high-
lighted some properties that a SPARQL database layout should have:

One table for all named graphs: If they were stored in different tables, then
SPARQL queries like this become much harder:

GRAPH ?any { ... }

This is because this type of query has to go through the triples of all named
graphs. If they are stored in different tables, then the corresponding SQL
must either name all these tables (might be thousands), or must make use
of SQL’s information schema, a feature that is not universally implemented
and not well known.

Separate tables for default graph and named graphs: The default graph
might be put in the same table with the named graphs, or in a different
table. In SPARQL, query patterns over the named graphs are clearly distin-
guished from query patterns over the default graph, so the “GRAPH ?any {
... }” construct doesn’t match the default graph. Having the default graph
in a different statement table thus slightly simplifies queries (no need to add
“WHERE in default graph” or “WHERE in named graph” to every triple pat-
tern) and should have slight performance advantages because it keeps tables
smaller. On the other side, it makes it harder to build a union over named
graphs and default graph, but it’s not clear that this would be useful.

Model metadata accessible to SQL: ModelRDB stores additional metadata
about models as RDF triples in a special system model. This has a downside:
To create and delete graphs, Java code must be run to insert or remove ap-
propriate statements from the system model. Although not part of SPARQL,
there’s a strong case for features like this:

DELETE GRAPH ?g WHERE { ?g }

Efficient implementation is easier when the creation or deletion of graphs
can be done completely in-database.1

Explicit per-dataset graph list: Aside from the statement table, some kind
of graph list is needed because an RDF dataset might contain empty graphs,
and these cannot be represented in a pure statements-plus-GraphID table.
The graph list might be a simple table with a single column that indicates
the node IDs of all graphs in the dataset.
In Jena, there’s a graph list, but it is shared between all models in the
database and not just the models in a particular dataset. This adds over-
head when several datasets are stored in the same database. Queries over
multiple datasets, and sharing of graphs between datasets are no goals at
the moment, and so a separate graph list table for each dataset seems like
the best approach.

Same node representation for S, P, O and GraphID: SPARQL requires
joins from graph names to other nodes, e.g. in patterns like this:

?graph dc:date "..." .
GRAPH ?graph { ... }

With the ModelRDB layout, the node encoding used for S, P and O cannot
be used for the GraphID if multiple RDF datasets are to be stored in the
same database. This is because they all have to share the same graph name
table. To avoid collisions, some kind of dataset ID has to be encoded together
with the graph URI into the model name column. This makes joins for cases
like the example above expensive.

5 Reified Statements and the RDF Dataset

ModelRDB has a dedicated table for reified statements to reduce the storage
bloat that results from extensive use of reification. There are some reasons why
this special support, while not harmful, might be less beneficial for a SPARQL
datastore:

– SPARQL and the RDF dataset address some common use cases for reification
in a more practical way. This might reduce usage of reification in the future.

1 In gnowsis [5], which uses sparql2sql in recent development versions, there’s a re-
quirement to delete all graphs older than a certain date, and it’s often thousands of
graphs.

– If the SPARQL schema would be normalized, then the memory savings from
a reified statements table would be small, because the nodes table dwarfs the
statements table anyway. (But there should still be performance benefits.)

– The task of translating SPARQL into SQL is much more complex than
RDQL or find queries. Specialized tables add further to this complexity.

6 Aknowledgements

Throughout the work leading to this report, Kevin Wilkinson and Andy Seaborne
provided many invaluable comments and insights into the design of ModelRDB
and SPARQL.

References

1. J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson.
Jena: Implementing the Semantic Web Recommendations. In 13th World Wide Web
Conference, 2004.

2. R. Cyganiak. sparql2sql: A query engine for SPARQL over Jena triple stores. HP
Labs, http://jena.sourceforge.net/sparql2sql/.

3. S. Harris. Sparql query processing with conventional relational database systems,
2005. Submitted to International Workshop on Scalable Semantic Web Knowledge
Base System (SSWS 2005). http://eprints.ecs.soton.ac.uk/11126/.

4. L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. Rstar: an rdf storage and query system
for enterprise resource management. In CIKM ’04: Proceedings of the thirteenth
ACM conference on Information and knowledge management, pages 484–491, New
York, NY, USA, 2004. ACM Press.

5. L. Sauermann and S. Schwarz. The Gnowsis Semantic Desktop. DFKI,
http://www.gnowsis.org/.

6. K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds. Efficient rdf storage
and retrieval in jena2. In First International Workshop on Semantic Web and
Databases (SWDB 2003), http://www.hpl.hp.com/techreports/2003/HPL-2003-
266.html, 2003.

