

A relational algebra for SPARQL

Richard Cyganiak
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2005-170
September 28, 2005*

RDF, semantic
web, databases,
query

The SPARQL query language for RDF provides Semantic Web
developers with a powerful tool to extract information from large
datasets. This report describes a transformation from SPARQL into the
relational algebra, an abstract intermediate language for the expression
and analysis of queries. This makes existing work on query planning and
optimization available to SPARQL implementors. A further translation
into SQL is outlined, and mismatches between SPARQL semantics and
the relational approach are discussed.

* Internal Accession Date Only Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

A relational algebra for SPARQL

Richard Cyganiak
richard@cyganiak.de

HP Labs, Bristol, UK

Abstract. The SPARQL query language for RDF provides Semantic
Web developers with a powerful tool to extract information from large
datasets. This report describes a transformation from SPARQL into the
relational algebra, an abstract intermediate language for the expression
and analysis of queries. This makes existing work on query planning and
optimization available to SPARQL implementors. A further translation
into SQL is outlined, and mismatches between SPARQL semantics and
the relational approach are discussed.

The SPARQL query language is one of the latest additions to the Seman-
tic Web toolbox. It provides powerful facilities to extract information out of
large sets of RDF data. This report describes a transformation from SPARQL
queries into the relational algebra, an intermediate language for the expression
and analysis of queries that is widely used in the database area [2].

An RDF graph can be represented as a “table” with three columns, ?subject,
?predicate and ?object. Each row corresponds to one triple. Similarly, the result
of a SPARQL SELECT query is a table of RDF nodes. These tables are RDF
relations. The algebra described in this report consists of operators on RDF
relations. Some of them are well-known from regular relational algebra, others
are slightly modified to reproduce SPARQL semantics.

Figure 1 shows a SPARQL query and its translation into a relational operator
tree.

Expressing SPARQL queries in relational algebra has several benefits:

– It makes a large body of work on query planning and optimization available
to SPARQL implementers.

– It simplifies the problem of supporting SPARQL in database-backed RDF
stores by splitting off considerations specific to the store’s database layout.
Section 3 outlines a translation into SQL.

– While this report assumes a simple relation of triples without further sub-
structure as the basic building block of expressions, it might just as well be
a “view” on a more complex source of triples, like, for example, a distributed
union of RDF graphs, or an application-specific database mapped into RDF.
Substituting their definitions into the operator tree, and subsequent use of
expression transformation and query planning could yield efficient execution
strategies for those complex sources of RDF data.

SELECT ?name ?email

WHERE {

?person rdf:type foaf:Person .

?person foaf:name ?name .

OPTIONAL { ?person foaf:mbox ?email }

}

?name, ?emailπ

⋈

?person ← ?subject
 ?email ← ?object

π

?person ← ?subject
 ?name ← ?object

π?person ← ?subjectπ

?predicate=rdf:type
∧ ?object=foaf:Person

σ ?predicate=foaf:nameσ

?predicate=foaf:mboxσ

TriplesTriples

Triples

⋈

Fig. 1. A SPARQL query and its translation into a relational operator tree.

The framework presented here does not cover all of SPARQL. Only queries
against the default graph are supported; an extension with full RDF dataset
support is outlined in section 2.4, but not fully worked out. A translation of
FILTER expressions into SQL remains as future work. Some corner cases are not
easily translated; they are discussed in section 4.

1 A relational model over RDF terms

An RDF term is an IRI or an RDF Literal or a blank node, as defined in the
RDF Concepts and Abstract Syntax document [4]. RDF terms are the scalars
of the relational model presented here.

A variable is a query variable, as defined in the SPARQL document [5]. For
the purposes of this report, variables are just names and are represented like
this: ?variable.

An RDF tuple is a partial function from variables to RDF terms.

t =

?person → <http://example.org/people#Bob>
?name → "Bob"
?email → <mailto:bob@example.org>
?age → "42"

An RDF tuple is quite different from an RDF triple. A triple always has
three components with fixed names, subject, predicate and object, while an
RDF triple can have any number of components with arbitrary names. A triple
is a statement – it implies a semantic relationship between its components. A
tuple doesn’t carry meaning, it is just a container that maps some variables to
some RDF terms.

Note, however, that any triple could be represented as a tuple:

t =

?subject → <http://example.org/people#Bob>
?predicate → ex:name
?object → "Bob"

I will call this an s/p/o tuple because it has three components named
subject, predicate, object. There is a one-to-one mapping from RDF triples to
s/p/o tuples.

RDF tuples are just another term for SPARQL solutions. The term tuple is
used universally in relational algebra and I will go with it in this document.

The variables in a tuple are called its attributes. An attribute is said to
be bound if it is in the tuple’s domain, and unbound otherwise. In the first
example of this section, ?person is bound, and ?dateOfBirth is unbound because
it is not in the tuple.

1.1 RDF relations

An RDF relation is a set of RDF tuples. It can be represented as a table. Each
row is an RDF tuple and each column is an attribute, named by a variable.

?person ?name ?email ?age

ex:Alice "Alice" "33"

ex:Bob "Bob" <mailto:bob@example.org> "42"

Not all tuples of a relation need to have the same attributes. An attribute
can be unbound in some tuples. In the example, ?email is unbound in one tuple.
This is similar to the special value NULL found in some definitions of relational
algebra and SQL, but not quite the same, as discussed in section 4.

An RDF relation’s heading is the set of variables that may be bound in any
of its tuples. Intuitively speaking, the heading contains all column names. The
heading can usually obtained by looking at the attributes present in each tuple.

Defining an explicit heading that is independent from the tuples allows reasoning
about operations on relations without looking at the data they contain.

In the full relational model, every attribute has its own domain. In the
presented model, the domain of every attribute is simply the set of all RDF
terms. However, an extension that takes possible values of individual columns
into account would have benefits. For example, an implementation might choose
a more efficient strategy for handling an attribute whose domain is the set of all
RDF literals with datatype xsd:integer.

A graph relation is any relation whose heading is {?subject, ?predicate,
?object}. Each of the attributes must be bound in every tuple, ?subject must
always be a literal, and ?predicate must always be an IRI. In other words, every
tuple must be an s/p/o tuple.

?subject ?predicate ?object

ex:Alice ex:name "Alice"

ex:Alice ex:age "33"

ex:Bob ex:name "Bob"

ex:Bob ex:mbox <mailto:bob@example.org>

ex:Bob ex:age "42"

As stated above, every s/p/o tuple has a corresponding RDF triple. It follows
that every graph relation has an equivalent RDF graph, and vice versa. The
graph relation above corresponds to this RDF graph:

ex:Alice ex:name "Alice" .
ex:Alice ex:age "33" .
ex:Bob ex:name "Bob" .
ex:Bob ex:mbox <mailto:bob@example.org> .
ex:Bob ex:age "42" .

The rest of the section defines operators on RDF relations.

1.2 Selection

Selection (σ), sometimes also called restriction, is an unary operator that se-
lects only those tuples of a relation for which a propositional formula holds. The
propositions are assumed to have the expressivity of SPARQL FILTER expres-
sions [5].

σ?age≥18∨bound(?parent)(R)

A simple form of Selection is the constant attribute selection, which
accepts all tuples with a constant value on some attribute. The example uses
this operator to filter a graph relation:

σ?predicate=ex:name(R)

The heading of any σp(R) is the same as the heading of R.

1.3 Projection and Rename

The projection operator (π) restricts a relation to a subset of its attributes.
The rename operator (ρ) renames an attribute. For the purposes of this report,
I will combine them into a projection/rename operator. This is a shorthand
notation to keep the operator trees smaller.

π ?person←?subject
?name←?object

(R)

This projection contains only the ?subject and ?object attributes of rela-
tion R, renamed to ?person and ?name.

1.4 Inner Join and Left Outer Join

The inner join (./) joins two relations on their shared attributes. A ./ B
contains all combinations of a tuple from A and a tuple from B, minus those
where the shared attributes are not equal.

A shared attribute is any attribute that is bound in both tuples. This is
different from regular relational algebra, where a shared attribute would be any
that occurs in both relations. This is discussed in more detail in section 4.2.

The join’s heading is the set union of the headings of A and B.

A

?person ?name
ex:Alice "Alice"
ex:Bob "Bob"

B

?person ?parent
ex:Bob ex:Charles
ex:Bob ex:Dorothy

A ./ B

?person ?name ?parent
ex:Bob "Bob" ex:Charles
ex:Bob "Bob" ex:Dorothy

The ex:Alice from the first relation row does not appear in the join because
there is no row in the second relation with the same value for ?person.

The result of a left outer join (:./)1 additionally contains all those tuples
from the first relation that have no matching tuple in the second:

A :./ B

?person ?name ?parent
ex:Alice "Alice"
ex:Bob "Bob" ex:Charles
ex:Bob "Bob" ex:Dorothy

1 I was unable to produce the correct symbol. The “dots” are supposed to be connected
to the “bowtie”.

I introduce two additional operators, the conditional inner join and the
conditional left outer join. They drop the combined tuples that do not match
a propositional formula. The difference between A ./p B and A ./ (σp(B)) is
that the proposition p can use attributes from both A and B. The operators are
used to overcome the “FILTER scope problem” discussed in section 4.4.

1.5 Union

The union (∪) of two relations A and B is the set union of the tuples of A and
B. Unlike in regular relational algebra, the headings of A and B do not need
to be identical. Attributes unbound in the tuples of one relation are simply left
unbound in the result relation. This is sometimes called an outer union.

The heading of A ∪B is the set union of the headings of A and B.

A ∪B

?person ?name ?parent
ex:Alice "Alice"
ex:Bob "Bob"
ex:Bob ex:Charles
ex:Bob ex:Dorothy

1.6 Set Difference

This operator is not defined here because it is not necessary for the purposes of
this report and can not generally be expressed in SPARQL. I note that it would
be required for relational completeness.

2 A relational definition of SPARQL

The SPARQL specification formally defines the semantics of the query language
in terms of solutions. This is just a different term for an RDF tuple – a par-
tial function from variables to RDF terms. The formal definitions describe the
properties that a tuple must have to be a solution to a pattern when matched
against a particular RDF dataset. This style of definition makes it easy to check
if a given tuple is a solution or not, but doesn’t tell how to find all solutions.

This section provides an alternative definition that produces the same re-
sults (although no proof is offered), but better informs implementation. This
is somewhat analogous to the relational calculus and relational algebra in the
relational model. Both are equivalent, but the calculus describes the properties
of solutions, while the algebra builds the result from the data through a set of
operators that can be implemented reasonably straightforward.

The main part of a SPARQL query is the query pattern. It is usually built out
of several graph patterns, which can be combined recursively to form arbitrarily
complex query patterns. This section provides translations for the different kinds

of graph patterns into relational algebra expressions. No translation for the basic
graph pattern is given because it is just a group of triple patterns. The result of
translating any graph pattern into a relational expression is called its pattern
relation.

In the SPARQL document’s language, matching the entire query pattern
against a graph produces a solution sequence. This is the same as the pattern
relation of the entire query pattern.

All the remaining bits of SPARQL processing, like DISTINCT, ORDER BY, and
the CONSTRUCT, DESCRIBE and ASK result forms, can then be applied to the
solution sequence, as defined in the SPARQL specification.

2.1 Triple patterns

The pattern relation of a triple pattern is obtained from the graph relation by
constant attribute selection on the concrete nodes and by projection/renaming
on the variable nodes. The SPARQL triple pattern

{ ?person foaf:name ?name }

translates to this relational operation:

π ?person←?subject
?name←?object

(σ?predicate=foaf:name(Triples))

2.2 Group patterns, OPTIONAL and FILTER

SPARQL group patterns are used to build complex patterns out of simple parts.
The order of the subpatterns within the group does not matter, with the ex-
ception of OPTIONALs, where the order is significant because a match of one
OPTIONAL can cause a later one that would also have matched to fail.2 The parts
of a group pattern are translated in this order:

1. Inner join all triple patterns, UNIONs and GRAPHs. Their relative order does
not matter because A ./ B = B ./ A and A ./ (B ./ C) = (A ./ B) ./ C.

2. Then, left outer join all OPTIONAL subpatterns to the result of 1, in the order
they occur in the query, with the optional subpattern becoming the right
side of the outer join. OPTIONALs must be handled with lower precedence
than the required subpatterns because otherwise, a matching optional part
could cause a required part to fail.

3. Finally, take each FILTER’s condition and apply them as selection operators
to the result of 2. They must be applied last because the condition can
use variables from anywhere in the group. If there are multiple FILTERs
in the group, their relative order does not matter because σp1(σp2(R)) =
σp2(σp1(R)).

2 The SPARQL specification is not entirely clear on this subject, but I believe that
this is the intended behaviour of group patterns.

The group

{ p1 . FILTER (p) . OPTIONAL { p2 } . p3 . }

translates to:

σp((p1 ./ p3) :./ p2)

p1, p2 and p3 are arbitrary sub-patterns in the SPARQL expressions, and
their pattern relations in the operator tree.

This translation does not work for some cases discussed in section 4.

2.3 UNION patterns

A UNION pattern matches if any of its subpatterns matches. Its pattern relation
is obtained by connecting the relations of the subpatterns in any order with the
union operator.

{ p1 } UNION { p2 }

translates to:

p1 ∪ p2

2.4 GRAPH and the RDF dataset

This report generally assumes that the SPARQL query is evaluated against an
individual RDF graph – the default graph of an RDF dataset. This subsection
outlines an extension that works with full RDF datasets.

All triple patterns that are inside a GRAPH pattern are extended to quad
patterns. The fourth element is the graph name provided by the GRAPH con-
struct. It may be a variable or an IRIref.

Instead of the graph relation, we would have a dataset relation with a
fourth attribute, ?graph, which is bound to the graph name for triples in named
graphs, and bound to some special value DEFAULTGRAPH for triples in the default
graph. Triple patterns match only when ?graph equals DEFAULTGRAPH, quad
patterns only if the fourth element matches ?graph.

The pattern

GRAPH ?g { p1 }

would translate to:

π?g←?graph(Dataset) ./ p1

This accounts for patterns like this:

GRAPH ?g { OPTIONAL { ?a :b :c } }

Somewhat unintuitively, this pattern binds ?g to all graph names in the
dataset even if the optional part never matches.

Blank nodes in an RDF dataset can never be shared between graphs. If labels
are used to identify blank nodes, then relabelling might be necessary when graphs
are added to the dataset.

3 Mapping to SQL

This section outlines a translation from the relational algebra into SQL state-
ments. Some parts will be left a bit vague to keep the translation independent
from the database layout used to represent RDF triples and nodes. Also, the fo-
cus is not to produce optimized SQL, but rather to keep the translation straight-
forward.

The recursive nature of SPARQL’s graph patterns requires some form of
nesting in the generated SQL. An implementation may (and probably should)
use a mix of different SQL language features to construct nested queries:

Temporary tables: Intermediate results can be stored in temporary tables.
This approach is the most flexible. The temporary tables can be processed
with non-database code3 or used multiple times in different parts of the
bigger query. It also produces quite manageable SQL statements because
one big SPARQL query translates into several small SQL queries. In general
the result of processing any subtree can be stored in a temporary table. This
approach is used in 3Store [3].

Nested SELECTs: This is the approach used here. Bracketed SELECT statements
are used in the FROM clause of SQL queries. The translation is quite straight-
forward since the resulting queries closely mirror the structure of the rela-
tional algebra expression. Unfortunately, they are also very unwieldy and
unlikely to be executed with good performance. At least some “flattening”
is advisable.

Bracketed JOINs: Several aliases of the triple table are connected by JOINs
and LEFT JOINs. Brackets around the joins ensure the right order. This ap-
proach produces concise SQL statements, and informal testing with MySQL
indicates that it produces the best performance. An algorithm for translat-
ing into this form is more complex because column names from the base
tables are carried all the way up through the levels of nesting, and WHERE
conditions of lower levels must be put into the parent’s JOIN condition. The
union operator can not be translated with this approach. Bracketed JOINs
are not supported in MySQL prior to version 5.

The rest of the section provides translations for the relational operators.

3 This allows support for expressions that cannot be evaluated inside the database,
like extension functions or certain forms of regular expressions.

3.1 Projection and Rename

This operator translates straightforwardly to a SELECT statement with column
aliases. The expression

π ?person←?subject
?name←?object

(R)

translates to this:

SELECT R.subject AS person, R.object AS name FROM (...) AS R;

Into the brackets goes the translation of R to SQL.

3.2 Selection

The translation of SPARQL’s expression syntax to SQL expressions depends
strongly on the way nodes are encoded in the database and the SQL types of the
database columns. I don’t attempt a full translation and only give some general
notes. Harris [3] has some additional material.

The translated expression will be used in the WHERE clause of a SELECT state-
ment.

σ?price<30(R)

SELECT * FROM (...) AS R WHERE R.price<30;

If R translates to a SELECT statement, then the WHERE condition can be added
directly to that SELECT, avoiding one level of nesting. If R translates to a UNION
statement, then the condition can be applied to all of its branches.

3.3 Inner Join

The inner join of RDF relational algebra is roughly equivalent to an SQL inner
join over the variables shared by both relations. The translation of this expres-
sion:

π?a,?x(R1) ./ π?a,?y(R2)

to SQL looks like this:

SELECT R1.a, R1.x, R2.y
FROM (...) AS R1

NATURAL JOIN (...) AS R2;

SQL’s NATURAL JOIN joins on the columns that are present on both sides.
The translations of R1 and R2 to SQL go into the brackets.

For reasons discussed in the next section, this simple translation works only
if the shared variable is always bound on both sides. This is the case for most,
but not all SPARQL inner joins. If the variable might be unbound on either side,
then a more complex translation is required.

A NULL in an SQL join causes the row to be rejected, but an unbound
variable in a SPARQL join does not. A SPARQL join rejects only rows where
the variable is bound to different values on both sides. The following translations
reproduce this behaviour in SQL.

If ?a may be unbound on the left:

SELECT R2.a, R1.x, R2.y
FROM (...) AS R1
JOIN (...) AS R2
ON (R1.a=R2.a OR R1.a IS NULL);

If ?a may be unbound on the right:

SELECT R1.a, R1.x, R2.y
FROM (...) AS R1
JOIN (...) AS R2
ON (R1.a=R2.a OR R2.a IS NULL);

If ?a may be unbound on both sides, then SQL’s COALESCE function is used
to gather the value from the non-NULL side:

SELECT COALESCE(R1.a, R2.a) AS a, R1.x, R2.y
FROM (...) AS R1
JOIN (...) AS R2
ON (R1.a=R2.a OR R1.a IS NULL OR R2.a IS NULL);

Implementations can simply always use the last translation. It is identical to
the first one if R1.a and R2.a are never NULL. But this does not perform so
well.

Instead, implementations might choose track the attributes that may be un-
bound in each relation throughout the operator tree, and then choose the appro-
priate translation. The attributes of the graph relation are always bound. The
operators propagate this property as follows:

Inner join: An attribute may be unbound if it is unbound on both sides of the
join; otherwise, it is always bound.

Left outer join: An attribute is always bound if it is always bound on the left
side; all other attributes may be unbound.

Union: An attribute is always bound if it is always bound in both branches of
the union; otherwise, it may be unbound.

All other operators: The bound/unbound status is preserved.

The preceding examples have assumed that only one join, ?a, is shared be-
tween the relations. The next example joins on variables ?a, ?b and ?c, where
?b might be unbound on the left-hand side, and ?c might be unbound on both
sides.

π?a,?b,?c,?x(R1) ./ π?a,?b,?c,?y(R2)

(The expression doesn’t capture the fact that some variables may be un-
bound.)

SELECT R1.a, R2.b, COALESCE(R1.c, R2.c) AS c, R1.x, R2.y
FROM (...) AS R1
JOIN (...) AS R2
ON R1.a=R2.a
AND (R1.b=R2.b OR R1.b IS NULL)
AND (R1.c=R2.c OR R1.c IS NULL OR R2.c IS NULL);

Finally, to translate a conditional inner join, its condition is added to the ON
clause with the AND operator.

3.4 Left Outer Join

The translation is analogous to the inner join.

π?a,?x(R1) :./ π?a,?y(R2)

If ?a is always bound on both sides:

SELECT R1.a, R1.x, R2.y
FROM (...) AS R1

NATURAL LEFT JOIN (...) AS R2;

If ?a may be unbound on the left:

SELECT COALESCE(R1.a, R2.a) AS a, R1.x, R2.y
FROM (...) AS R1

LEFT JOIN (...) AS R2
ON (R1.a=R2.a OR R1.a IS NULL);

If ?a may be unbound on the right:

SELECT r1.a, r1.x, r2.y
FROM (...) AS r1

LEFT JOIN (...) AS r2
ON (r1.a=r2.a OR r2.a IS NULL);

If ?a may be unbound on both sides:

SELECT COALESCE(R1.a, R2.a) AS a, R1.x, R2.y
FROM (...) AS R1

LEFT JOIN (...) AS R2
ON (R1.a=R2.a OR R1.a IS NULL OR R2.a IS NULL);

To translate a conditional outer join, its condition is added to the ON clause
with the AND operator.

3.5 Union

SQL’s UNION can be used. Attributes used only on one side of the union have to
be filled with NULLs and all attributes must be brought into the same order.

π?a,?b(R1) ∪ π?b,?c(R2)

SELECT R1.a, R1.b, NULL AS c FROM (...) AS R1
UNION
SELECT NULL AS a, R2.b, R2.c FROM (...) AS R2;

The performance of joins on UNION results appears to be poor on many
database engines. This makes unions prime candidates for optimization by trans-
forming the expression tree: Inner joins can be distributed over both sides of the
union, turning A ./ (B ∪ C) into (A ./ B) ∪ (A ./ C).

3.6 Flattening nested SELECTs

JOIN and LEFT JOIN expressions involving nested SELECTs can be flattened into
simpler SQL expressions.

This expression, which is already somewhat simplified from the operator tree
in figure 2:

SELECT sub1.name, sub2.email
FROM

(SELECT t1.subject AS person,
t1.object AS name

FROM Triples AS t1
WHERE t1.predicate=’foaf:name’)

AS sub1
LEFT JOIN
(SELECT t2.subject AS person,

t2.object AS email
FROM Triples AS t2
WHERE t2.predicate=’foaf:mbox’)

AS sub2
ON sub1.person=sub2.person

can be flattened into this:

?person ← ?subject
 ?email ← ?object

π?person ← ?subject
 ?name ← ?object

π

?pred=foaf:nameσ ?pred=foaf:mboxσ

Triples Triples

?name, ?emailπ

Fig. 2. This operator tree can be translated into a “flat” SQL query.

SELECT t1.object AS name, t2.object AS email
FROM Triples AS t1

LEFT JOIN (Triples AS t2)
ON t1.subject=t2.subject
AND t1.predicate=’foaf:name’
AND t2.predicate=’foaf:mbox’

References to variables from a sub-expression (sub1.person, sub1.name,
sub2.email) are substituted by their definitions (t1.subject, t1.object, t2.object).

The WHERE clause of the inner SELECTs become part of the join condition.
This is important for LEFT JOINs because the condition should apply only to
rows where the right-hand side matches, not to all rows.

Note the brackets around Statements AS t2 in the flattened expression. If
this clause was itself a nested sub-expression, then the brackets would determine
the execution order of the JOINs. Inner joins are commutative and can be eval-
uated in any order, but left outer joins must be evaluated in the order implied
by the operator tree.

4 Mismatches between the relational model and SPARQL
semantics

Most SPARQL queries can be translated into a relational form without much
trouble, but some issues – semantic mismatches and interesting corner cases –
deserve closer attention.

Despite being in the Last Call stage of the W3C recommendation track, the
SPARQL query language document currently lacks mathematical rigor and fails

to accurately define the semantics for some cases. I expect this to be addressed
before SPARQL becomes a W3C recommendation. This report may need revision
in response to these changes.

4.1 Unbound variables, the NULL value and headings

SPARQL and the relational algebra take different approaches to the problem of
missing information.

The common approach in relational algebra is to indicate an unknown value
using the special value NULL. Also, relations have an explicit attribute list in
the heading, and every tuple must have exactly these attributes, either with a
value or with NULL.

SPARQL doesn’t use a special value to indicate missing information, but
simply leaves variables unbound. There’s no explicit heading. The SPARQL
model does not, for example, distinguish between an OPTIONAL variable that
is unbound in some solutions, and a variable that is not used in the query at all.

The model presented attempts to be compatible with both accounts. There
is no special NULL value, but relations have an explicit heading. An attribute
that is not in the heading must not be bound in any tuple, but an attribute that
is in the heading may be unbound in some tuples.

4.2 Join behaviour with missing information

To accommodate SPARQLs handling of missing information, the join operators
have to be defined slightly different from their counterparts in regular relational
algebra. In a regular join, a NULL in any join attribute causes a tuple combina-
tion to be rejected.

In RDF relational algebra, the combination is rejected only if there is a
conflict – an attribute is bound on both sides, but to different values. If a shared
attribute is unbound on one side, then the value from the other side is taken
for the result tuple. If a shared attribute is unbound on both sides, then the
attribute is unbound in the result tuple.

This accounts for cases like the following:

SELECT ?resource ?titleOrLabel
WHERE {

?resource a ex:MyClass .
OPTIONAL { ?resource dc:title ?titleOrLabel }
OPTIONAL { ?resource rdfs:label ?titleOrLabel }

}

This query returns all instances of ex:MyClass, and their title if they have
one. The title can come either from the dc:title or rdfs:label property, with
preference for dc:title because it is first. The corresponding operator tree is
shown in figure 3. The first OPTIONAL corresponds to the lower join operator,
the second OPTIONAL corresponds to the upper one.

?resource
rdf:type

ex:MyClass

?resource
dc:title

?titleOrLabel

?resource
rdfs:label

?titleOrLabel

Fig. 3. Multiple OPTIONALs introduce the same variable.

The “unbound variable causes join failure” semantics would only match re-
sources that have the same dc:title and rdfs:label. The second OPTIONAL
would never have any effect.

The “only conflicts cause join failure” semantics produces the desired be-
haviour. If a resource has one of dc:title and rdfs:label, then the join on
?titleOrLabel takes whatever side is bound. If a resource has both, and they are
different, then the join fails, but the dc:title side is taken anyway because it
is a left outer join.

4.3 The “Nested OPTIONALs” Problem

?a → _:a
?c → "2"

?a → _:a
?b → "3"

?a → _:a
?b → "1"

[] :p1 "1"; :p2 "2"; :p3 "3".

SELECT ?b ?c

WHERE {

?a :p1 ?b

OPTIONAL {

?a :p2 ?c .

OPTIONAL { ?a :p3 ?b }

}

}

Fig. 4. The “Nested OPTIONALs” problem: Which of the left joins will fail?

Unfortunately, the join rule stated above does not fully reproduce SPARQL
semantics. The problem, illustrated in figure 4, occurs in a corner case where
two OPTIONALs are nested, and a variable is used both outside the OPTIONALs
and inside the inner one, but not in the outer one.

The question is: If ?b can only be bound to two different values at its two
occurrences, which of the left joins will fail? The question is important because
?c will be bound to 2 if the lower one fails, and unbound if the upper one fails.

According to the relational model presented here, the upper one will fail.
When evaluating the lower join, there’s no conflict and ?b will be bound to 3. At
the upper join, there’s a conflict between the two different values bound to ?b,
and thus the join will fail and the result will be the tuple from the left relation
(figure 5).

?a → _:a
?c → "2"

?a → _:a
?b → "3"

?a → _:a
?b → "1"

×
✔ ?b = 3

?b = 3

✔

?b = 1✔

Fig. 5. Nested OPTIONALs with relational processing: Bindings travel “up”, the upper
join fails.

According to the current SPARQL semantics, the lower one will fail. The
inner OPTIONAL will fail because ?b has “already been bound earlier” to 1, and
cannot be bound again to something different. The outer OPTIONAL doesn’t cause
a conflict then and will bind ?c (figure 6).

?a → _:a
?c → "2"

?a → _:a
?b → "3"

?a → _:a
?b → "1"

?b = 1

×✔ ?b = 3

Fig. 6. Nested OPTIONALs with SPARQL processing: Bindings travel “left to right”,
even down the tree.

Essentially, looking at the operator tree, solutions are assembled left-to-right
in the SPARQL model and bottom-to-top in the relational model. This mismatch
is not easily reconciled. Fortunately, this is a rather obscure case that is not likely
to occur often in practice.

4.4 The “FILTER scope” problem

In SPARQL, FILTER expressions are free to use any variable, regardless of where
the FILTER is located. They can use variables from outside of the current group
pattern. This is a problem for the relational approach because a selection in the
operator tree has no access to variables from outside of its subtree.

There are cases where access to variables from other parts of the tree is
beneficial:

SELECT ?x ?type ?name
WHERE { ?x rdf:type ?type .

OPTIONAL { ?x foaf:name ?name .
FILTER (?type == foaf:Person) }

}

This query returns all resources, their types, and the name only if it is a
person. The operator tree is shown on the left in figure 7. ?type is only known in
the left subtree, and the selection on ?type in the right subtree does not work.

 ?x ← ?subject
?name ← ?object

π

 ?x ← ?subject
?type ← ?object

π

?pred=rdf:typeσ

?pred=foaf:nameσTriples

Triples

?type=foaf:Personσ ?x ← ?subject
?name ← ?object

π ?x ← ?subject
?type ← ?object

π

?pred=rdf:typeσ ?pred=foaf:nameσ

Triples Triples

?type=foaf:Person

✔

Fig. 7. The FILTER scope problem. ?type is bound in the left subtree; its value is not
available to the selection. The right side shows a solution: The selection can be pulled
up to form a conditional left join.

The specific case in figure 7 – an expression inside an optional group refers
to a variable bound outside – might be the most common incarnation of this
problem. A special translation from SPARQL to relational algebra can account
for this case: The selection is pulled up into the next join to form a conditional
join. This works if the out-of-scope variable is defined in the other branch of that
join.

The question if the other cases, where a variable’s value is accessible only even
further up the operator tree, can also be solved by re-arranging the operator tree,
remains as future work.4

5 Acknowledgements

This report owes much to the work of Benjamin Nowack, Steve Harris and
Jörg Gabers. I couldn’t have worked on this topic without Chris Bizer and his
D2RQ [1]. Andy Seaborne’s comments, support, and patience were invaluable.

References

1. C. Bizer, R. Cyganiak, and J. Gabers. D2RQ - Treating Non-RDF Databases
as Virtual RDF Graphs. Freie Universitt Berlin, http://www.wiwiss.fu-
berlin.de/suhl/bizer/d2rq/.

2. C. J. Date. An Introduction to Database Systems. Addison Wesley, eighth edition,
2003.

3. S. Harris. Sparql query processing with conventional relational database systems,
2005. Submitted to International Workshop on Scalable Semantic Web Knowledge
Base System (SSWS 2005). http://eprints.ecs.soton.ac.uk/11126/.

4. G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts
and Abstract Syntax - W3C Recommendation, 2004. http://www.w3.org/TR/rdf-
concepts/.

5. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF - W3C
Working Draft 21 July 2005, Jul 2005. http://www.w3.org/TR/2005/WD-rdf-
sparql-query-20050721/.

4 The FILTER scope problem does not occur if a FILTER variable is bound in another
branch of a union because union branches can not affect each other.

