

Towards Automated Deployment of Built-to-Order Systems

Akhil Sahai, Calton Pu1, Gueyoung Jung1, Qinyi Wu1, Wenchang Yan1,
Galen Swint1
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2005-167
September 21, 2005*

automation,
deployment, utility
computing,
SmartFrog, XML,
XSLT

End-to-end automated application design and deployment poses a
significant technical challenge. With increasing scale and complexity of
IT systems and the manual handling of existing scripts and configuration
files for application deployment that makes them increasingly error-prone
and brittle, this problem has become more acute. Even though design
tools have been used to automate system design, it is usually difficult to
translate these designs to deployed systems in an automated manner as
multiple activities are involved in such a deployment. We describe a
generic process of automated deployment and an evaluation of the tool.

* Internal Accession Date Only
1 Georgia Institute of Technology, Atlanta, GA, USA
Published in Distributed Systems: Operations and Management (DSOM) 2005, 24-26 October 2005, Barcelona,
Spain
 Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

 1

Towards Automated Deployment of Built-to-Order Systems

Akhil Sahai, Calton Pu†, Gueyoung Jung†, Qinyi Wu†, Wenchang Yan†, and Galen
Swint†

HP Laboratories,Palo-Alto, CA
 Georgia Institute of Technology†, Atlanta

akhil.sahai@hp.com, [calton, helcyon1, qxw, wyan, galen.swint]@cc.gatech.edu

Abstract

End-to-end automated application design and deployment poses a significant technical challenge. With

increasing scale and complexity of IT systems and the manual handling of existing scripts and
configuration files for application deployment that makes them increasingly error-prone and brittle, this
problem has become more acute. Even though design tools have been used to automated system design, it
is usually difficult to translate these designs to deployed systems in an automated manner as multiple
activities are involved in such a deployment.. We describe a generic process of automated deployment and
an evaluation of the tool.

1. Introduction
New paradigms such as autonomic computing and adaptive enterprises reflect recent

developments in industry [1][2][3] and research [4] require easy and automated
application design, deployment, and management tools.

Our goal is to create “Built-to-Order” systems. In order to achieve this goal we need
to create detailed designs and deploy systems based on these detailed design
specification. These designs have to be based on user requirements, taking into account
operator constraints and technical capability constraints, Creating design in an automated
manner in itself is a hard problem. In Quartermaster Cauldron [8], this goal was achieved
by modeling system components with an object-oriented class hierarchy, the CIM
(Common Information Model) meta-model, and embedding constraints on composition
within the models as policies. We have used a constraint satisfaction approach to create
system designs and create a workflow to deploy these designs. However, these workflows
and designs are expressed in system-neutral Managed Object Format (MOF). These
workflows typically involve multiple systems and formats that have to be dealt with in
order to deploy a complex system, for example deploying a complex three tier e-
commerce system on a virtualized environment may involve, dealing with the blade
server interfaces, VMWare/Virtual Server Interfaces, Operating System installations,
Service container interfaces for web servers, appservers and databases and execution of
client scripts. A single design thus has to deal with a large number of system actuators to
automatically install a complex system The problem of translating generic design in a
system indepemdent format like MOF to multiple languages/interfaces understood by
various system actuators/deployment environments in a generic manner is thus non-
trivial.

 2

The main technical contribution of the paper is the generic mechanism for translating
design specification written in a system independent format into multiple and varied
deployment environments. In order to achieve this generic translation, we use an XML-
based intermediate representation and a flexible code generation method [6] to build an
extensible translator, ACCT (Automated Composable Code Translation tool), that
accepts a design specification in the form of CIM instance models expressed in MOF and
converts them into a high level deployment specification language called SmartFrog [5]
and generates the Java code for execution. executable Java code that installs the
application components on appropriate hardware and software platforms, and then starts
the application execution. The SmartFrog compiler links generated design specification
and Java code.

The translation between the two models is a significant result for two reasons. First,
the models are quite dissimilar in some aspects and the translation is not straightforward
one-to-one mapping. Specifically, the workflow models differ significantly between the
design and deployment environments. Second, ACCT is designed to be more generic and
be capable of handling multiple input and output formats thus making it flexible enough
to handle multiple design and deployment environments.

2. Automated Design and Workflow Generation

2.1 Design Environment
Quartermaster is an integrated tool suite supporting automated design of distributed

applications at a high level of abstraction. Tools in the Quartermaster suite are built
around the MOF. One of its key features, Cauldron, supports applying policies and rules
to govern composition of resources. Cauldron is a constraint satisfaction engine that can
generate a system description that satisfies the administrative and technical constraints.

For this paper, we will concentrate on constraints for deploying distributed
applications. Deployment is non-trivial, since each component of an application often
depends on the pre-deployment of other components or completion other components’
work. Deployment is modeled as an Activity, and an Activity can comprise a series of
sub-activities. Each activity has a set of attributes parameters that must be set, and an
activity can only deploy when its contraints are met. At this time, we generate
configuration templates and, by associating configuration activities to the classes, also
generate pair wise dependencies between the deployment activities.

Between any pair of Quartermaster activity entities, there are four types of
synchronization dependencies.

SS (Start-Start) – activities must start together. This is a symmetric and
transitive dependency.

FF (Finish-Finish) –activities must finish together (synchronized). This is also
a symmetric and transitive dependency.

FS (Finish-Start) – predecessor activity must before the successor activity is
started, that is, sequential execution. This dependency implies a strict
ordering, and the MOF must assign either the Antecedent (A) or the
Dependant (D) role to each component.

SF (Start-Finish) – predecessor activity is started before the successor activity
is finished. Similar observations on its properties follow as from FS.

 3

(While this seems an odd dependency at first, it is actually quite common.
For example, in a producer-consumer relationship, the producer must
often create a communication endpoint before the consumer starts and
attempts attachment or else it will abort.)

Cauldron, however, can not actually deploy activities it is used to design, for that, we
need a dedicated deployment tool that can initiate, monitor, and kill components in a
distributed environment.

2.2 Deployment Environment
Automatically generated system configurations and workflow are translated to the

specific formats to be used as inputs for deployment/life-cycle management
environments. In order to deploy Quartermaster components without any further human
interactions, we must resolve both syntactic differences and structural differences
between Quartermaster MOF and deployment specifications such as SmartFrog.
Especially, the global workflow usually involves many components, their complex
relationships, and dependencies among components, but Quartermaster MOF only
contains a list of partial dependencies between component pairs.

The ACCT translation tool addresses these impedance mismatches through the
construction of a workflow expressing global dependencies among all involved
components and mapping MOF syntax to an XML specification. The ACCT is also
designed to generate various deployment specification formats (e.g., SmartFrog
description, Radia). Thus, it can be used as a pluggable code translation component for
any resource management and deployment systems. Section 2.3 describes the ACCT in
more detail.

SmartFrog is a framework for service configuration specification, deployment and
lifecycle management of distributed Java applications [10]. It has been used on the Utility
Computing model for deploying rendering code on demand. There is a PlanetLab port
[11] and the CDDLM standardization effort leverages the expertise of SmartFrog for Grid
deployment [12]. The SmartFrog source code is available under the LGPL license [13].

SmartFrog consists of a component model supporting application-lifecycle operations
and workflow facilities, a data description language, a validator for these descriptions,
and tools for distribution, lifecycle monitoring, and control. The main features of
SmartFrog are as follows:

Lifecycle operations – The component model wraps deployable components
and transitions them through their life phases: initiate, deploy, start,
terminate and fail.

Workflow facilities – These allow flexible control over configuration
dependencies between components to create workflows. Examples:
Parallel, Sequence, and Repeat.

SmartFrog runtime – Responsible for component instantiation, monitoring and
security, the runtime manages daemons running on remote hosts and
controls the interaction between them including providing an event
framework to send and receive events without disclosing component
locations.

The SmartFrog language features data encapsulation, inheritance, and composition
which allow system configurations to be incrementally declared and customized. In

 4

practice, there are three types of files that SmartFrog needs to deploy an application.
First, SmartFrog needs a set of component definition files that define components’ Java
interfaces. This is somewhat analogous to the interface exposure role of the C++ header
file with respect to the class construct. Second, there must be Java source files that
implement the components as objects. These files correspond one-to-one with SmartFrog
component descriptions. Third, SmartFrog needs a single instantiation and deployment
file that defines deployment parameters and proper deployment order for the components
and workflows.

2.3 Translating Design Specifications to Deployment Environments
In this section, we describe ACCT, the tool used in our evaluation (Section 3). First,

we describe the design and the implementation of ACCT, and then we describe the
mapping approach needed to resolve mismatches between the design tool output format
and deployment tool input. ACCT is based on an extensible XML-based architecture and
maps the model-level MOF code to a SmartFrog Language specification document.

There are several challenges when logically connecting Cauldron to SmartFrog. First,
there is the syntax problem in which Cauldron tool is unified around and generates MOF
specification, but SmartFrog has its own language syntax. Furthermore, while the MOF
may contain all data woven into a single description file SmartFrog needs three kinds of
files, as outlined above, and neither SmartFrog nor Quartermaster supports building Java
source files from the component design documents. Also, Cauldron only produces pair
wise dependencies between deployment activities. SmartFrog, on the other hand, needs
dependencies calculated over the entire set of deployment activities to generate
deployment workflows for each component in the system.

 In ACCT, code generation is built around an XML document which is compiled
from a high-level human-friendly specification language (MOF) and then transformed
using a general purpose language facility and XSLT. So far, the architecture has been
applied to a code generation system for information flow architectures and has proven to
support rapid development, is extensible to new target and input languages, and can
support advanced features such as aspect weaving. Multiple input languages and multiple
output languages are goals of the architecture, and SmartFrog deployments require ACCT
to generate multiple output formats (Java and SmartFrog’s language). In fact, we aim to
employ ACCT as a pluggable code translation component for any resource management
and deployment system pair.

The code translation process consists of three phases (see Figure 1). In the first phase,
conversion, ACCT reads MOF files and compiles them into a single XML specification

Figure 1. The ACCT code generator.

 5

(CIM-XML specification) using the publicly available WBEM Services’ CIM-to-XML
converter. The WBEM Services project is an open-source Java implementation from Sun
Microsystems [14]. We modified the CIM-to-XML converter to use it as MOF compiler
of ACCT.

The second phase converts CIM-XML into a set of XACCT documents, the
intermediate format of the ACCT tool. In this transformation, ACCT processes CIM-
XML as an in-memory DOM tree and extracts the three types of information woven into
the MOF by Cauldron: Components, Instances, and Deployment Workflow. The
extracted data sets are each processed by three dedicated XML-to-XML generators
written in Java. The component generator creates a XML component description, the
instance generator produces a set of attributes and values for deployed components, and
the workflow generator computes a complete, ordered workflow from Cauldron’s pair
wise dependency rules defined according to MOF’s SS, FF, SF, and FS synchronizations.
(We will describe the workflow construction in more detail later.)

These generated structures are passed to an XML composer which performs
rudimentary type checking on the instances to ensure instances are only present if there is
also a class, and re-aggregates the XML fragments back into a whole XML documents.
At this point, there may be multiple XACCT component description documents, but there
is only one instantiation+workflow document containing all data necessary for a single
deployment.

Next, ACCT forwards each XACCT component description document and the
XACCT instantiation and workflow document to the XSLT engine. In the engine, the
XSLT templates detect the XACCT document type and generate the appropriate files
(SmartFrog or Java) which are written to disk.

Using the approach of the XML-to-XACCT phase mentioned above, components,
configurations, constraints, and workflows from input languages of any resource
management tool can be described in the intermediate XACCT representation. Once an
input language is mapped to the XACCT, the user merely creates an XSLT template
perform the final mapping of the XACCT to the one of the specific target languages.

Purely syntactic differences between MOF/CIM and SmartFrog’s language can be
resolved using only the XSLT processor, and the first version of ACCT was developed
on XSLT alone. However, because XSLT has certain limitations, we incorporated a
Java/DOM pre-processing stage (XML-to-XACCT). At first, the XSLT only version was
limited to a single output file, but as newer XSLT standards versions enable multi-file
output, this was not available during initial development. This was solved by generating
to several smaller documents. Future plans are to incorporate all XACCT XML into a
single document. A second, and more important, reason is that XSLT is limited in its
capability to compute workflows from the partial dependencies Cauldron supplies. This is
because XSLT, again at the time we began work on ACCT, did not support on-the-fly
computation of new XML structures that could be used as in-program storage. We
addressed this limitation with the Java/DOM pre-processing stage that computed the
overall event ordering.

Overall system ordering derives from the Cauldron computed partial synchronizations
encoded in the input MOF. As mentioned in Section 3.1, there are four types of partial
synchronization dependencies: SS, FF, SF, and FS. To describe the sequential and
parallel ordering of components with only these partial dependencies, we implemented an

 6

event queue model with an algorithm
that synchronizes activities correctly.
It is helpful to consider this process as
that of building a graph in which each
component is a node and each
dependency is an edge in the graph.
Each activity component has one
associated EventQueue containing list
of actions:

Execute - the action to execute a
specific sub component.

EventSend - the action to send a
specific event to other components’
EventQueues. This may accept a list
of destination components.

OnEvent – the action to wait for an incoming event. This may wait on events from
multiple source components. It is the dual of EventSend.

Terminate – the action to remove the EventQueue.

C A component, C.
Ca • Cb Component Ca sends event to Cb.
Ca • Cb Component Ca waits for event from Cb.
Ca — Cb Components must perform action together

Table 1. Event dependencies between
components.

To pass the execution turn to another activity
component, an activity component sends a
message as an event to a second activity
component which waits, blocking, for an event in
its EventQueue.

In Figure 2(a), since two activity components
must start to deploy their sub-components at the
approximately same time as the definition
mentioned in Section 2.1, two activity
components are blocked until each event
receives a notification. This is achieved by
making entries into the EventQueues to send then wait for events from the peered
components. Similarly, Figure 2(b) illustrates the FF scenario. In Figure 2(c), since Cb’s
deployment must be finished after Ca starts to deploy, Cb is blocked in its EventQeue
after completing deployment until the event of Ca is received at Cb’s EventQueue. In
Figure 2(d), since Cb may deploy only after Ca completes its task, Cb blocks until a
SmartFrog “finished” event from Ca is received at Cb’s EventQueue. For now, we assume
the network delay of each direction between two components is ignorable.

Figure 3 illustrates the XACCT for the FS dependency described in (d). The SS and
FF operations of (a) and (b) represent the parallel deployment while the SF and FS of (c)
and (d) represent the sequential deployment.

Figure 2. Diagrams and dependency formulations
of (a) SS, (b) FF, (c) SF, and (d) FS.

<Instance Name="Ca" Class="Activity">
 <Workflow>
 <Work Name="--" Type="Execute">
 </Work>
 <Work Name="--" Type="EventSend">
 <To>Cb</To>
 </Work>
 <Work Name="--" Type="Terminator">
 Ca</Work>
 </Workflow>
</Instance>
<Instance Name="Cb" Class="Activity">
 <Workflow>
 <Work Type="OnEvent">
 <From>Ca</From>
 </Work>
 <Work Name="--" Type="Execute">
 </Work>
 <Work Name="--" Type="Terminator">
 Cb</Work>
 </Workflow>
</Instance>

Figure 3. XACCT snippet of FS
dependency.

 7

The exact content of each EventQueue depends on its dependencies to all other
activity components. Combinations of actions used in four partial dependencies described
in Figure 2 are the simplest cases. However, each activity component frequently has
multiple dependencies. We have devised an algorithm to calculate EventQueue contents.

First, the algorithm visits the each activity component, Ci, in the CIM-XML
document and builds a global action list. If a dependency of the component is a parallel
dependency (i.e., SS or FF), then the algorithm transitively examines checks for
dependencies of the same type on the related activity component until it finds no more
parallel dependencies of that type. For example, if there is a dependency in which Ci is SS
with Cj, and Cj is also SS with Ck, it records “Cj and Ck” as SS on its action list before
proceeding to check component Ci+1. If it is a sequential dependency (i.e., FS or SF),
then, the algorithm adds the dependency to the global action list and moves on to the next
component. That is, if Ci has FS with Cj, and Cj has FS with Ck, only the pairwises like
“Ci and Cj with FS” are entered into the global action list.

For deadlock avoidance, there is a static order of actions in each activity component
based on the activity component’s role (Antecedent or Dependant) in each dependency.
The algorithm checks the six possible combinations of roles and dependencies as follows.

First, it checks whether the activity component participates as a Dependant of
any FS dependency. If this is true, then it adds one OnEvent action to the
EventQueue per each FS-Dependant dependency to the combination list.

Second, it checks whether the activity component has any SS dependencies.
For SS, it adds all EventSend and OnEvent actions to the EventQueue.

Third, it checks whether the activity component functions as Antecedent in SF
dependencies. Per dependency, it adds an EventSend action to the
EventQueue.

Next, an Execute action is added to EventQueue. Fourth, it checks whether the
activity component participates as a Dependant in an SF dependency. This
maps to one OnEvent action per dependency.

Fifth, it checks whether the activity component has any FF dependencies and
adds all EventSend and OnEvent actions to the EventQueue.

Sixth, it checks whether the activity component works as any Antecedent roles
with FS. If so, it adds EventSend actions per occurrence.

Finally, Terminate action is appended to the EventQueue.
XACCT captures the final workflow as the set of per-component EventQueues, and

those then translated to the input format of the deployment system (i.e. SmartFrog).
The Java source code generated by ACCT is automatically compiled, packaged into a

jar file, and integrated into SmartFrog using its class loader. We also employ an HTTP
server as a repository to store some scripts and application source files. Once a generated
SmartFrog description is fed to the SmartFrog workflow daemon, it spawns threads to
start all activities in the workflow simultaneously. From there synchronization among
activities is controlled by the EventQueues.

3. Demo Application and Evaluation
We present in this section how the toolkit described in Section 2 automatically

generates the system configurations and the workflow, automatically translate both the
configurations and the workflow into the input of SmartFrog used as a deployment

 8

environment, and automatically deploys distributed applications with various
complexities. In the sub section 4.1, we describe 1-, 2-, and 3-tier testbeds used in our
experiment, and system setup for the experiment. We evaluate in the sub section 3.2 our
toolkit by showing the actual result code of each phase of toolkit, and comparing the
deployment execution time of SmartFrog with the automatically generated code to the
manually written scripts.

3.1 Experiment Scenario and Setup
We evaluated our translator by employing it on 1-, 2-, and 3-tier applications. The 1-

and 2-tier applications are simple tests that provide a baseline for comparing a generated
SmartFrog description to handcrafted scripts. The 3-tier testbed comprises the web
server, an application server, and the database server; it is of small enough size to be
easily testable, but also has enough components to indicate the power of the toolkit in
managing complexity. Table 2. Components of the 1-, 2-, and 3-tier applications.

 lists the applications’ components.

Scenario Application Components
1-tier Static web page Web Server : Apache 2.0.49
2-tier Web Page Hit

Counter
Web Server : Apache 2.0.49
App. Server : Tomcat 5.0.19
Build System: Apache Ant 1.6.1

3-tier iBATIS
JPetStore 4.0.0

Web Server : Apache 2.0.49
App. Server : Tomcat 5.0.19
DB Server : MySQL 4.0.18
DB Driver : MySQL Connector to

Java 3.0.11
Build System : Apache Ant 1.6.1
Others : DAO, SQLMap, Struts

Table 2. Components of the 1-, 2-, and 3-tier applications.
We installed SmartFrog 3.04.008_beta on four 800 MHz dual-processor Dell Pentium

III machines running RedHat 9.0 for the evaluation. In order to evaluate the deployment
of applications, we needed to run four separate SmartFrog daemons; one daemon runs on
each machine.

In the 1-tier application, we deployed only Apache as a web server, and verified the
deployment by visiting a static web page. In the 1-tier application evaluation, we used
two machines. The first for the web server and the second to execute the generated
SmartFrog workflow.

 9

 In the 2-tier Hit Counter
application, Apache and Tomcat
application server with Ant were
used in the 2-tier testbed. Each
tier was deployed on a separate
host. To verify the 2-tier
deployment, we visited the web
page to ensure it properly
recorded page hits. The
application simply consists of a
class and a jsp page. In the 2-tier
application evaluation, we used
three machines. As in the 1-tier
test, we used one machine to run
the deployment script. Then, we
dedicated one machine to each
deployed tier (Apache and
Tomcat).

The 3-tier application was the iBATIS JPetStore, a ubiquitous introduction to 3-tier
programming. In the 3-tier application evaluation, we used four machines. Again, we
dedicated one machine for each tier (Apache; Tomcat, JPetStore, Ant, MySQL Driver,
Struts; MySQL DB) and used a fourth machine to run the SmartFrog workflow.

Figure 1 illustrates the dependencies of components in each testbed. We consider
three types of dependencies in the experiment; installation dependency, configuration
dependency, and activation dependency. The total number of dependencies in each
testbed is used as the level of the complexity. In the, 1-, 2-, and 3-tier testbeds are
considered as simple, medium, and complex cases respectively. Intuitively, the
installation, configuration, and activation dependencies of each component in each
testbed must be properly sequenced. For instance, the Apache configuration must start
after Apache installation completes, and Apache activation must start after Apache
configuration completes for the 1-tier testbed. For space, we have omitted these
dependencies from the figure.

3.2 Experiment Result
We modeled 1-, 2-, and 3-tier applications in Quartermaster with and Cauldron

module created the configurations and deployment workflows. The resultant MOF files
were fed into ACCT and yielded a set of Java class files, SmartFrog component
descriptions, and a SmartFrog instances+workflow specification for each application
tested. Figure 8 illustrates part of the transformation process as ACCT translates the MOF
file of the 3-tier application to intermediate XACCT and then finally to a SmartFrog
description. We especially highlight the FS dependency between the Tomcat installation
and MySQLDriver installation, and related configurations.

The metric we choose for the evaluating the 1-, 2-, and 3-tier testbeds is deployment
execution time as compared to manually written scripts. We executed SmartFrog and
scripts 30 times each for each tier application and report the obtained averages.

 (a) (b)

(c)
Figure 4. Dependency diagrams of (a) 1-tier

application, (b) 2-tier application, and (c) 3-tier
application.

 10

Figure 5 shows that for simple cases (1- and 2-tier) SmartFrog took longer when

compared to the scripts based approach because SmartFrog daemons need the Java VM
and environment and impose extra costs when loading Java classes or engaging in RMI
communication. Note, however, the time penalty of the medium case is less in absolute
and relative terms than the one of the simple case. In the very complex case, SmartFrog
took less time than scripts based approach.

In this case, SmartFrog was able to exploit maximal concurrency between application
components since it had a computed workflow. The simple and medium cases contain
fewer concurrent dependencies than the 3-tier case. Nevertheless, in all cases our toolkit

Figure 6. (a) MOF, (b) Intermediate XML, and (c) SmartFrog code snippets. The solid line box
indicates the FS workflow between Tomcat and MySQLDriver applications. Others indicate
configurations.

0

100

200

300

400

500

600

700

800

900

1000

Simple(1-tier) Medium(2-tier) Complex(3-tier)

Complexity

Ti
m

e
(s

ec
)

SmartFrog

Scripts

Figure 5. Deployment time using SmartFrog and

scripts as functions of the complexity.

(a) MOF (b) XML (c) SmartFrog

instance of LogicalServer {
 Id = "Tomcat_LS1";
 Caption = "Tomcat Logical Server";
 Description = "Logical Server for Tomcat ";
 IpAddress = "130.207.5.228";
 HostName = "artemis.cc.gatech.edu";
};
instance of LogicalServerInLogicalApplication {
 LogicalApplication = "Tomcat\";
 LogicalServer =Tomcat_LS1\";
};
instance of LogicalApplication {
 Id = "Tomcat";
 Version = "5.0.19";
 Caption = "Tomcat";
 Description = "Tomcat application Server";
};
instance of LogicalApplication {
 Id = "MySQLDriver";
 Version = "3.0.11";
 Caption = "MySQLDriver";
 Description = "MySQL driver";
};
instance of Activity {
 Id = "Tomcat_Installation";
 ActivityType = "script";
};
instance of Activity {
 Id = "Tomcat_Installation";
 ActivityType = "script";
};
Instance of ActivityPredecessorActivity {
 DependenceType=”Finish-Start”;
 AntecedentActivity=”Tomcat_Installation”;
 DependentActivity=”MySQLDriver_installation”;
};

 <Instance Name="Tomcat" Class="LogicalApplication">
 <Variable Name="Id"Type="string">Tomcat</Variable>
 <Variable Name="Version"Type="string">
 5.0.19</Variable>
 <Variable Name="Entity" Type="string">
 Activity_Tomcat_Installation</Variable>
 <Variable Name="Host" Type="string">
 artemis.cc.gatech.edu</Variable>
 </Instance>
 <Workflow>
 <Work Type=”Execution”></Work>
 <Work Type=”EventSend”>
 <To> MySQLDriver_Installation</To></Work>
 <Work Type=”Terminate”>
 Tomcat_Installation </Work>
 </Workflow>
 <Instance Name="MySQLDriver"
 Class="LogicalApplication">
 <Variable Name="Id" Type="string">
 MySQLDriver</Variable>
 <Variable Name="Version" Type="string">
 3.0.11</Variable>
 <Variable Name="Entity" Type="string">
 Activity_MySQLDriver_Installation</Variable>
 <Variable Name="Host" Type="string">
 demeter.cc.gatech.edu</Variable>
 </Instance>
 <Workflow>
 <Work Type=”OnEvent”>
 <From> Tomcat_Installation</From> </Work>
 <Work Type=”Execution”></Work>
 <Work Type=”Terminate”>
 MySQLDriver_Installation</Work>
 </Workflow>

sfProcessComponentName "Tomcat_Installation";
LogicalApplication_Tomcat extends LogicalApplication {
 Id "Tomcat";
 Version "5.0.19";
 Activity LAZY ATTRIB Activity_Tomcat_Installation;
 sfProcessHost "artemis.cc.gatech.edu";
}
Activity_Tomcat_Installation extends Activity {
 Id "Tomcat_Installation";
 Entity LAZY ATTRIB LogicalApplication_Tomcat;
}
-- extends EventSend {
 sendTo eventQueue:queue_Tomcat_Ignition;
 event "Activity_Tomcat_Installation_FS";
}
-- extends Terminator {
 kill eventQueue:queue_Tomcat_Installation;
}
sfProcessComponentName "MySQLDriver_Installation";
-- extends OnEvent {
 registerWith queue_MySQLDriver_Installation ;
 Activity_Tomcat_Installation_FS extends DoNothing
}
LogicalApplication_MySQLDriver extends LogicalApplication {
 Id "MySQLDriver";
 Version "3.0.11";
 ActivityLAZYATTRIBActivity_MySQLDriver_Installation;
 sfProcessHost "demeter.cc.gatech.edu";
}
Activity_MySQLDriver_Installation extends Activity {
 Id "MySQLDriver_Installation";
 Entity LAZY ATTRIB LogicalApplication_MySQLDriver;
}
-- extends Terminator {
 kill eventQueue:queue_MySQLDriver_Installation;
}

 11

retains the important advantage of an automatically generated workflow, while in

scripts based approach, system administrators must manually control the order of
installing, configuration, and deployment.

4. Related Work
Recent years have seen the advent of wide range of resource management systems.

For e-business, OGSA Grid Computing [15] aims to provide services within a data center
infrastructure that provides resources on demand. IBM’s Autonomic Computing Toolkit
[16], HP’s Adaptive Enterprise and MicroSoft’s DSI initiative [3].

Another trend is deployment automation tools. CFengine [21] provides rich facilities

for system administration and is specifically designed for testing and configuring
software. It defines a declarative language so that the transparency of a configuration
program is optimal and management is separate from implementation. Nix [20] is another
popular tool used to install, maintain, control, and monitor applications. It is capable of
enforcing reliable specification of component and support for multiple version of a
component. However, since Nixes does not provide automated workflow mechanism,
users manually configure the order of the deployments. For deployment of a large and
complicated application, it becomes hard to use Nixes. By comparison, SmartFrog
provides control flow structure and event mechanism to support flexible construction of
workflow.

The ACCT architecture adopts the architecture developed for the Infopipe Stub
Generator + AXpect Weaver (ISG) [6] in that both of them utilize an XML intermediate
format that is translated by XSLT to target source code. Unlike ACCT, however, ISG is
oriented toward communication stubs for information flow systems. There are other
commercial and academic translation tools, like MapForce [22] and CodeSmith [23].
Similar to ISG, they target general code generation and do not support deployment
workflows.

5. Conclusion
We described an approach for Automated Deployment. We described in detail

ACCT (Automated Composable Code Translator) that translates Cauldron output (in
CIM/MOF format) into SmartFrog specification input format. A demonstration
application (JPetStore) illustrates the automated design and implementation process and
translation steps, showing the advantages of such automation.

6. References

[1] IBM Autonomic Computing,
 http://www.ibm.com/autonomic
[2] SUN N1, http://wwws.sun.com/software/solutions/n1/
[3] Microsoft DSI, http://www.microsoft.com/management/
[4] Global Grid Forum, http://www.ggf.org
[5] SmartFrog, http://www-uk.hpl.hp.com/smartfrog/

 12

[6] Galen Swint and Calton Pu, “Code Generation for WSLAs using AXpect”, IEEE International Conference on
Web Services, 2004.
[7] Salle, M., Sahai, A., .C. Bartolini, S. Singhal, “A Business-Driven Approach to Closed-Loop Management”, HP
Labs Technical Report HPL-2004-205, November 2004.
[8] Sahai A, Singhal S, Joshi R, Machiraju V, “Automated Policy-Based Resource Construction in Utility Computing
Environments”, In the proceedings of NOMS 2004.
[9] Sahai A, Singhal S, Joshi R, Machiraju V. “Automated Generation of Resource Configurations through Policies”,
IEEE Policy 2004.
[10] Goldsack, P., et al., “Configuration and Automatic Ignition of Distributed Applications”, HP Openview University
Association conference, 2003.
[11] Peterson, L, et al., “A Blueprint for Introducing Disruptive Technology”, PlanetLab Tech Note, PDN-02-001, July
2002.
[12] CDDLM Charter Document,
 https://forge.gridforum.org/projects/cddlm-wg
[13] Smartfrog open source directory,
 http://www.smartfrog.org
[14] Open source of WBEM project,
 http://wbemservices.sourceforge.net
[15] Foster, I. et al., “The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems
Integration.“
[16] Codesmith, http://www.ericjsmith.net/codesmith
[17] HP Utility Data Center,
 http://www.hp.be/egov/en/solutions/aoii_data_center.asp
[18] DMTF-CIM Policy,
 http://www.dmtf.org/standards/cim/cim_schema_v29
[19] PARLAY Policy Management,
 http://www.parlay.org/specs/
[20] Eelco Dolstra, Merijn de Jonge, and Eelco Visser, “Nix: A safe and policy-free system for software deployment”,
In Proceeding of the Eighteenth Large Installation System Administration Conference, Atlanta, Georgia 2004.
[21] Cfengine, http://www.cfengine.org/
[22] Altova Mapforce,
 http://www.altova.com/products_mapforce.html
[23] Codesmith, http://www.ericjsmith.net/codesmith

