

Simplified clustering algorithms for RFID networks

Vinay Deolalikar, Malena Mesarina, John Recker, Salil Pradhan
HP Laboratories Palo Alto
HPL-2005-163
September 16, 2005*

clustering, RFID,
sensors

The problem of clustering in networks of RFID readers in particular and
active sensors in general is addressed using techniques from sensor data
fusion. Two algorithms are provided that are simple and do not need
extensive computation. For smaller networks these algorithms can be
implemented without any computational assistance. The constraints these
algorithms place on the time scheduling of readers in the network are
discussed.

* Internal Accession Date Only Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

Simplified clustering algorithms for RFID
networks

Vinay Deolalikar1, Malena Mesarina2, John Recker2, and Salil Pradhan2

1 Information Theory Research Group
vinayd@hpl.hp.com

2 Mobile and Multimedia Systems Labs
{mesarina, jrecker, salil}@hpl.hp.com

Hewlett-Packard Labs
Palo Alto CA 94304

Abstract. The problem of clustering in networks of RFID readers in
particular and active sensors in general is addressed using techniques
from sensor data fusion. Two algorithms are provided that are simple
and do not need extensive computation. For smaller networks these al-
gorithms can be implemented without any computational assistance. The
constraints these algorithms place on the time scheduling of readers in
the network are discussed.

1 Introduction

The development and deployment of Radio Frequency Identification (RFID)
has generated several problems that need to be solved in order to operate larger
networks of RFID readers in an optimal fashion. Perhaps the two foremost prob-
lems in this regard are the clustering and the scheduling problems for networks
of RFID readers. Briefly, the clustering problem asks the question - how should
one combine the outputs of the various RFID readers so as to obtain the best
estimate of any event. The scheduling problem asks the question - what is the
optimal time sequence for firing the various RFID readers in the network. In this
paper, we focus on the clustering problem, although we do discuss the interplay
of its solution with the scheduling algorithm.

Both these problems are rendered nontrivial because of two major types of
interactions between the readers. The first is correlation. Readings of various
readers are correlated not just to the event, but to each other. The second
interaction is collision. Readers lying in each other’s field can collide with each
other, resulting in faulty or missing reads. The challenge then is to optimize the
functioning of the network across both these interactions.

2 The clustering problem

Clustering is a major challenge in the optimal functioning of RFID networks.
Roughly, clustering is the problem of finding, given certain constraints, the set
1 Contact author.

of sensors whose outputs can be combined to provide the best estimate of the
event that is being sensed. If there were no constraint, then clearly we could do
no better than use the outputs of every sensor to estimate each event. But often
we operate under a set of constraints that forces us to choose a relatively smaller
subset of all the sensors and then combine their outputs to obtain our estimate.

The clustering problem has received attention in various fields. There are
several algorithms proposed to solve it. We provide two simplified algorithms
that need almost no computation, yet provide good clusters in many practical
applications. Thus the emphasis of this article is on providing easy to use clus-
tering algorithms based on sound principles of data analysis that can be used in
concrete application scenarios.

Let us begin by examining a formalization of the clustering problem for
networks of generic sensors. We are given a set of sensor outputs {Si}i=1,...,n

and a cost function f of n arguments, each of which corresponds to a sensor.
All of the sensors give us information about an event E. Formally, for each
sensor, we are given the correlation corrSi, E with the event to be estimated.
The clustering problem then is to identify the subset of {Si}i=1,...,n that provides
the best estimate Ê of E under certain constraints on f . Specifically, we wish
to maximize the correlation corr(E, Ê). It is the cost constraint that makes the
problem non-trivial. Without any constraint, clearly we could do no better than
choose the entire set {Si}i=1,...,n.

In order to approach networks of RFID readers in the framework above, we
must fix a notion of correlation could in the context of RFID readers. Things
are somewhat complicated because we are dealing with sets of readings here,
and not just one random variable. We provide one such notion of correlation.
Assume that the readers in the RFID network all have the same capacity for
reading tags. We pass several test boxes of tags, each of which has more tags
than the capacity of the readers, through the network. We record for each box

1. the fraction of tags present in the box that is read by each reader
2. the fraction of tags read in common by each pair of readers.

The mean values of Steps 1 and 2 provide us with numerical quantities that lie
in [0, 1] and satisfy all the properties of correlations. The averages of readings
in step 1 will provide us with the correlations between each reader and the box
of tags, while those of step 2 will provide us with the cross correlations between
each pair of readers.

Finally, the ratio of the number of tags read by the readers in the cluster to
the actual number of tags present in the box will provide us with the value of
corr(E, Ê).

2.1 A Min-Max algorithm for clustering

The basic intuition for this algorithms is that if two sensors give a similar view
of an event, then picking one of these readings is sufficient. On the other hand,
if two sensors give a very different view of the event, then it is important to get

2

both readings in order to have a good description of the event. It just remains to
formalize this intuition using the values of correlations defined in the previous
section. We do this as follows. Given event E and sensors {Si}i=1,...,n, include
Sj in the cluster if
1. corr(Sj , E) is high and
2. corr(Si, Sj) is low for all sensors Si, i 6= j that lie in the cluster.

Viewed in this manner, clustering becomes a Min-Max problem that seeks to
find subset of {Si}i=1,...,n such that reader Si lies in this subset if corr(Si, E)
is high and corr(Si, Sj) is low for Sj , i 6= j in the subset. In other words, we
want to find clusters with the property that correlations within a cluster are
minimized, but correlations intracluster are maximized. There are sophisticated
algorithms in data analysis that perform this min-max for data sets. However,
the algorithm we provide below is considerably simpler, and still retains the
basic skeleton of these more sophisticated algorithms.

We provide our algorithm for multiple readers as a recursive algorithm with
two performance parameters that will quantify the notions of high and low in
the discussion above.

Algorithm 1 Min-Max sensor clustering algorithm
1: Order {Si}i=1,...,n in descending order of correlation with event.
2: Pick two thresholds 0 < γ, δ < 1. These will be the performance parameters.
3: From remaining sensors in {Si}i=1,...,n, delete sensors whose cross-correlation with

sensor picked in Step 1 exceeds γ and correlation with event is below δ.
4: Goto Step 1.

The stress here is on simplicity. As one can see, this algorithm can be per-
formed by hand for small networks.

2.2 An eigen-analysis based algorithm for clustering

Next we provide another simple algorithm to perform clustering based on an
eigenvalue analysis of the correlation matrix of the sensors.

First we compute the cross-correlation matrix R of the set of readers {Si}i=1,...,n

as follows. Cross correlation between two readers is modelled simply as the frac-
tion of tags that are read by both the readers. We can extend this to correlation
between any number of readers similarly.

R =




corr(S1, S1) . . . corr(S1, Sn)
...

...
...

corr(Sn, S1) . . . corr(Sn, Sn)




The matrix R is symmetric, invertible and positive definite. It follows that all
its eigenvalues λ1, . . . , λn are positive. R is diagnonalizable. Let T be the diag-
onalizing matrix. In other words R′ = TRT−1 = Diag(λ1, . . . , λn) is a diagonal
matrix. Without loss of generality, let us assume that λ1 > . . . > λn.

3

T is thus a linear transformation that transforms the input sensor set {Si}i=1,...,n

into a set of virtual sensors {S′i}i=1,...,n. The virtual sensors {S′i}i=1,...,n are pair-
wise uncorrelated. From this it follows that the correlation matrix R′ of the set of
virtual sensors set is diagonal. If we arrange the diagonal eigenvalue matrix ele-
ments in the order of magnitude, the virtual sensor corresponding to the highest
eigenvalue is the virtual sensor with the most information. Given our definition
of correlation between a reader and the event, this implies that this virtual sen-
sor will read more tags than the other virtual readers. This is a very useful piece
of knowledge.

This knowledge immediately leads to an algorithm for selecting sensors for the
cluster. Based on the performance that is desired, we pick a threshold and select
the virtual sensors from the set {S′i}i=1,...,n whose corresponding eigenvalues
are larger than the chosen threshold. The tranformation T then specifies the
required sensors in terms of the original set of sensors set {Si}i=1,...,n. These
then form the desired cluster.

Algorithm 2 Eigenvalues based clustering algorithm
1: Transform set {Si}i=1,...,n into uncorrelated set {S′i}i=1,...,n

2: Let λ1 > . . . > λn be corresponding eigenvalues (reorder if necessary)
3: Use performance measure to pick threshold κ
4: Discard sensors from {S′i}i=1,...,n whose correlation is less than κ
5: Transform the remaining sensors from {S′i}i=1,...,n into their corresponding original

set {Si}i=1,...,n.
6: This set forms the desired cluster.

3 Interplay between clustering and scheduling

In this section we explore the scheduling constraints imposed by the clustering
algorithms of the previous section. First we start with the observation that the
algorithms provided in this article do not take into account the collision between
readers. They are only concerned with the correlations between the various read-
ers. Collision imposes its own constraints on the scheduling of readers in RFID
networks. For more details on the collision problem, the reader is referred to [1].
While using the algorithms provided in this article therefore, we must also take
into consideration the extra constraints posed by collision avoidance.

While the Min-Max algorithm provides clusters directly as a subset of origi-
nal set of sensors {Si}i=1,...,n, the eigenvalue based algorithm yields clusters of
virtual sensors {S′i}. Each of these virtual sensors is a linear combination of the
sensors {Si}i=1,...,n. The sensors that appear with a non-zero coefficient in the
expression for virtual sensor S′i will be said to be the support of the S′i. We now
state the constraint posed by a choice of virtual sensors in a cluster.

Proposition 1. For each virtual sensor that appears in a cluster, the real sen-
sors that lie in its support must not fire simultaneously.

4

Proof. We eventually seek to combine the readings of the sensors in a virtual sen-
sor to gain information about a particular event of interest. There are two cases
to consider. If the readers collide, then they should not read simultaneously. On
the other hand if they do not collide, then their fields do not overlap and therefore
it is not possible for the event of interest to lie in all their fields simultaneously.
In either case, firing all the sensors simultaneously is counter-productive. 2

In the first case of the proof above, the clustering algorithm does not place
any additional constraint over collision avoidance. But in the second case it does.
As an example, if the virtual sensor S′1 = S1 − 2S2 + S5 then the real sensors
S1, S2 and S5 must not fire simultaneously. This is significant because it may be
the case that S1, S2 and S5 have no collision. Hence the graphical algorithms to
design scheduling schemes presented in [1] would not preclude their simultaneous
firing. However the additional constraint imposed by the clustering algorithm
does preclude this. The net result is that the time cycle for the completion of a
firing sequence increases.

Coming back to the partitioning of the RFID readers into partitions, we then
see that a cluster for a given event would have to be chosen from readers such
that no two are in a single partition. In other words, a cluster would be chosen
from across partitions. One strategy would be to choose a cluster such that it
has exactly one reader from each partition. This idea of choosing a cluster across
partitions is illustrated in Fig 1.

R

R

R

R
R

R

R

R

R

R

R

Fig. 1. Tripartite graph, edges denote reader collision

The question that immediately poses itself then is: do we allow clusters to
overlap? In other words, can the same RFID reader represent its partition in
two different clusters? When would one prefer one approach over the other? The
two scenarios are depicted in Figures 2 and 3.

In our experience with deploying such systems, we have found several cases
where the application demands the choice of one over the other. Overlapping
clusters might be preferred in a situation where some significant feature of the
sensors motivates such a scenario. One such case would be when a high power
reader is shared with lower powered local readers. Another case would be when

5

R

R

R

R

R

R

R

Fig. 2. Bipartite system with overlapping clusters. Overlaps are advantageous in cer-
tain scenarios.

R

R

R

R

R

R

R

Fig. 3. Bipartite system with non-overlapping clusters. This eliminates single points
of multiple cluster failure

6

a clustered sensor is a multi-sensor device, for example a camera/RFID reader
combination.

In other cases, overlaps are not desirable. This is particularly the case where
we do not want any single point of multiple cluster failure, as may happen in
critical real time applications. This brings us to the question of whether a non-
overlapping cluster exists at all. To answer this question, we need the notion of
a perfect matching.

Definition 1. A perfect matching in a bipartite graph G = (V1 ∪ V2, E) is an
injective mapping f : V2 → V1 such that for every x ∈ V2 there is an edge e ∈ E
with endpoints x and f(x).

For any subset A ⊂ V2 , define ∆A to be the set of all vertices y ∈ V1 that
are endpoints of edges with one endpoint in A. Now the answer to our question
is provided by Hall’s perfect matching theorem. Intuitively, it states that the
obviously necessary condition for a perfect matching to exist also turns out to
be sufficient.

Theorem 1. Let G = (V1 ∪ V2, E) be a bipartite graph. There exists a perfect
matching f : V2 → V1 if and only if for every subset A of V2, |∆A| ≥ |A|.
There exist low complexity polynomial time algorithms that find a perfect match-
ing in a bipartite graph. Most of these are variants of what is known as the
“Hungarian algorithm” and can be found in most standard books on graph al-
gorithms, see for instance [3].

4 Conclusion

We have written this paper for field engineers who are actually deploying RFID
reader networks and need simple algorithms to perform initial testing or even
final configuration. Thus the accent is on simplicity of the algorithms and the
preclusion of any extensive computation. The algorithms can be implemented
without the assistance of any sophisticated software, and in smaller networks
can even be implemented by hand.

5 Acknowledgment

We thank Devaraj Das, Christophe Gouguenheim, and Mehrban Jam for useful
discussions.

References

1. V. Deolalikar, M. Mesarina, J. Recker, D. Das, and S. Pradhan Perturbative time
and frequency allocations for RFID reader networks, preprint 2005.

2. V. Deolalikar, M. Mesarina, J. Recker, and S. Pradhan Optimal scheduling for
networks of RFID readers, preprint 2005.

7

3. J. Dossey, A. Otto, L. Spence, and C. Eynden, Discrete Mathematics, 3rd ed.
Reading, MA, Addison-Wesley, 1997.

4. D. Engels, The Reader Collision Problem, Technical Report, available at
http://www.autoidcenter.org/research/MIT-AUTOID-WH-007.pdf

5. F. Harary, Graph Theory, Addison-Wesley, 1969.

8

