

Automated Staging for Built-to-Order Application Systems

Galen S. Swint1, Gueyoung Jung1, Calton Pu1, Akhil Sahai
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2005-161
September 19, 2005*

automation, utility
computing,
staging, TPC-W,
benchmark,
e-commerce

The increasing complexity of enterprise and distributed systems
accompanying a move to grid and utility computing demands automated
design, testing, deployment and monitoring of applications. In this paper,
we present the Elba project and Mulini generator. The goal of Elba is
creating automated staging and testing of complex enterprise systems
before deployment to production. Automating the staging process lowers
the cost of testing applications. Feedback from staging, especially when
coupled with appropriate resource costs, can be used to ensure correct
functionality and provisioning for the application. The Elba project
extracts test parameters from production specifications, such as SLAs,
and deployment specifications, and via the Mulini generator, creates
staging plans for the application. We then demonstrate Mulini on an
example application, TPC-W, and show how information from automated
staging and monitoring allows us to refine application deployments easily
based on performance and cost.

* Internal Accession Date Only
 1Georgia Institute of Technology, Center for Experiment Research in Computer Systems, 801 Atlantic Ave.,
Atlanta, GA 30332, USA Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

Automated Staging for Built-to-Order
Application Systems

Galen S. Swint, Gueyoung Jung, Calton Pu

Georgia Institute of Technology,
Center for Experiment Research in Computer Systems

801 Atlantic Ave., Atlanta, GA 30332
swintgs@acm.org,

{helcyon1, calton}@cc.gatech.edu

 Akhil Sahai
Hewlett Packard Laboratories

Palo Alto, CA
akhil.sahai@hp.com

http://www.cc.gatech.edu/systems/projects/Elba

Abstract – The increasing complexity of enterprise and distrib-
uted systems accompanying a move to grid and utility computing
demands automated design, testing, deployment and monitoring
of applications. In this paper, we present the Elba project and
Mulini generator. The goal of Elba is creating automated staging
and testing of complex enterprise systems before deployment to
production. Automating the staging process lowers the cost of
testing applications. Feedback from staging, especially when cou-
pled with appropriate resource costs, can be used to ensure cor-
rect functionality and provisioning for the application. The Elba
project extracts test parameters from production specifications,
such as SLAs, and deployment specifications, and via the Mulini
generator, creates staging plans for the application. We then
demonstrate Mulini on an example application, TPC-W, and
show how information from automated staging and monitoring
allows us to refine application deployments easily based on per-
formance and cost.

I. INTRODUCTION

Managing the growing complexity of large distributed ap-
plication systems in enterprise data center environments is an
increasingly important and increasingly expensive technical
challenge. Design, staging, deployment, and in-production
activities such as application monitoring, evaluation, and evo-
lution are each complex tasks in themselves. Currently, devel-
opers and administrators perform these tasks manually, or they
use scripts to achieve limited ad hoc automation. In our previ-
ous work on automating application deployment, we have
demonstrated the advantages of using higher level abstraction
deployment languages such as SmartFrog (as compared to
scripts) to specify application deployment process [1]. We also
have built software tools that automate the deployment proc-
ess, starting from high level resource requirement specifica-
tions [2]. In this paper, we focus on the automation of per-
formance testing and validation (of an automatically generated
configuration) during the staging process; this offers a way to
anticipate, detect, and prevent serious problems that may arise
when new configurations are deployed directly to production.

Staging is a natural approach for data center environments
where sufficient resources are available for adequate evalua-
tion. It allows developers and administrators to tune new de-

ployment configuration and production parameters under
simulated conditions before the system goes “live”. However,
traditional staging is usually approached in a manual, complex,
and time consuming fashion. In fact, while the value of stag-
ing increases with application complexity, the limitations in-
herent to manual approaches tend to decrease the possibility
of effectively staging that same complex application.

Furthermore, increasing adoption of Service-Level Agree-
ments (SLAs) that define requirements and performance also
complicates staging for enterprise-critical, complex, and
evolving applications; again, the limitations of the manual
approach become a serious obstacle. SLAs provide quantita-
tive metrics to gauge adherence to business agreements. For
service providers, the staging process allows them to “debug”
any performance (or other SLA) problems before production
and thereby mitigate the risk of non-performance penalties or
lost business.

This paper describes the Elba project, the goal of which is
to provide a thorough, low-cost, and automated approach to
staging that overcomes the limitations of manual approaches
and recaptures the potential value of staging. Our main contri-
bution is the Mulini staging code generator which uses formal,
machine-readable information from SLAs, production de-
ployment specifications, and a test-plan specification to auto-
mate the staging phase of application development. We sum-
marize the design and implementation of Mulini and include
an early evaluation of Mulini generated staging code for stag-
ing a well-known application, TPC-W [3]. By varying the
specifications, we are able to generate and compare several
configurations and deployments of TPC-W of varying costs.
Note that TPC-W is used as an illustrative complex distributed
application for our automated staging tools and process, not
necessarily as a performance measure of our hard-
ware/software stack. For this reason, we will refer to TPC-W
as an “application” rather than its usual role as a “benchmark.”

The rest of the paper is organized as follows. Section II de-
scribes the challenges faced in the staging process. Section III
summarizes the Elba project and our automated approach to
application deployment and staging. Section IV describes the
Mulini staging code generator. Section V presents an evalua-
tion of Mulini code generation process and comparison of
generated code from the application point of view. Section VI This project is partially supported by Hewlett-Packard, NSF,

and DARPA.

outlines related work and Section VII concludes the paper.

II. CHALLENGES IN STAGING

A. Requirements in Staging

Staging is the pre-production testing of application configu-
ration with three major goals. First, it verifies functionality,
i.e., that the system does what it should. Second, it verifies the
satisfaction of performance and other quality of service speci-
fications, e.g., whether the allocated hardware resources are
adequate. Third, it should also uncover over-provisioned con-
figurations. Large enterprise applications and services are of-
ten priced on a resource usage basis. This question involves
some trade-off between scalability, unused resources, and cost
of evolution (discussed briefly in Section V). Other benefits of
staging, beyond the scope of this paper, include the unveiling
of other application properties such as its failure modes, rates
of failure, degree of administrative attention required, and
support for application development and testing in realistic
configurations.

These goals lead to some key requirements in the success-
ful staging of an application. First, to verify the correct func-
tionality of deployed software on hardware configuration, the
staging environment must reflect the reality of the production
environment. Second, to verify performance achievements the
workload used in staging must match the service level agree-
ment (SLA) specifications. Third, to uncover potentially
wasteful over-provisioning, staging must show the correlation
between workload increases and resource utilization level, so
an appropriate configuration may be chosen for production use.

These requirements explain the high costs of a manual ap-
proach to staging. It is non-trivial to translate application and
workload specifications accurately into actual configurations
(requirements 1 and 2). Consequently, it is expensive to ex-
plore a wide range of configurations and workloads to under-
stand their correlation (requirement 3). Due to cost limitations,
manual staging usually simplifies the application and work-
load and runs a small number of experiments. Unfortunately,
these simplifications also reduce the confidence and validity
of staging results.

Large mission-critical enterprise applications tend to be
highly customized “built-to-order” systems due to their so-
phistication and complexity. While the traditional manual ap-
proach may suffice for small-scale or slow-changing applica-
tions, built-to-order enterprise applications typically evolve
constantly and carry high penalties for any failures or errors.
Consequently, it is very important to achieve high confidence
during staging, so the production deployment can avoid the
many potential problems stemming from complex interactions
among the components and resources. To bypass the difficul-
ties of manual staging, we advocate an automatic approach for
creating and running the experiments to fulfill the above re-
quirements.

B. Staging Steps

In automating the staging process, we divide staging into
three steps: design, deployment, and the actual test execution.
We present short descriptions of our previous work on the first

two steps, design and deployment. The automation tools of the
first two steps produce automatically generated and deploy-
able application configurations for the staging environment.
The third step, execution, is to generate and run an appropriate
workload on the deployed configuration and verify the func-
tionality, performance, and appropriateness of the configura-
tion.

In the first step, design, the entire process starts with a ma-
chine-readable specification of detailed application design and
deployment. Concretely, this has been achieved by Cauldron
[4], an application design tool that generates system compo-
nent specifications and their relationships in the CIM/MOF
format (Common Information Model, Managed Object For-
mat). Cauldron uses a constraint satisfaction approach to com-
pute system designs and define a set of workflow dependen-
cies during the application deployment. Readers interested in
the design specification step are referred to Cauldron [4] and
other similar tools.

The second step in the automated staging process is the
translation of the CIM/MOF specification into a concrete con-
figuration. Concretely, this is achieved by ACCT [2] (Auto-
mated Composable Code Translator). In a multi-stage transla-
tion process, ACCT transforms the MOF specification through
several intermediate representations based on XML and then
finally into various Java classes and interfaces and SmartFrog
[5], a configuration specification language. The SmartFrog
compiler accepts a specification to generate the Java code for
actually deploying the application configuration in the staging
environment. Readers interested in the automated deployment
step are referred to papers on ACCT [2] and the evaluation of
SmartFrog [1] as a deployment tool.

Next, we discuss step three, the technical challenges of the
workload generation and execution process and the particular
focus of this paper and the Elba project.

C. Automated Staging Execution

The third step of staging is the automation of staging exe-
cution. Automated execution for staging is assembled from
three main components: (1) a description mapping the applica-
tion to the staging environment, (2) the input to the applica-
tion – the workload definition, and (3) a set of application
functionality and performance goals defined on the workload.

The application description (first component) can be bor-
rowed or computed from the input to the first and second steps
in which the application has been formally defined. However,
environment dependent parameters may make re-mapping the
execution parameters of an application from a deployment to
staging environment a non-trivial task. Location sensitive
changes include obvious location strings for application com-
ponents found in the design documents, but non-obvious
within the application are references to services the applica-
tion may require to execute successfully, such as ORB (Object
Request Broker) naming services, web URL’s, external ser-
vices, or database locations.

For the staging workload definition (the second compo-
nent), it is advantageous to reuse the workload of the produc-
tion environment if available. The use of a similar workload
increases the confidence in staging results. Also, by mapping

the deployment workload into the staging environment auto-
matically, the study of the correlation between workload
changes and resource utilization in different configurations is
facilitated because the low-cost, repeatable experiments en-
courage the testing of multiple system parameters in fine-grain
steps. The repeatability offered by an automated system pro-
vides confidence in the behavior of the application to a pre-
sented workload as the application evolves during develop-
ment and testing.

The third component is specification and translation of ap-
plication functionality and performance goals into a set of
performance policies for the application. This is a “manage-
ment task” and the main information source is the set of Ser-
vice Level Agreements (SLAs). Typically, SLAs explicitly
define performance goals such as “95% of transactions of
Type 1 will have response time under one second”. These
goals, or Service Level Objectives, can serve as sources for
deriving the monitoring and instrumentation code used in the
staging process to validate the configuration executing the
intended workload. Beyond SLAs, there may also be defined
performance requirements that derive not from the service
customer but from policies of the service provider.

The automated translation processes of each single compo-
nent and of all three components are significant research chal-
lenges. In addition to the typical difficulties of translating be-
tween different levels of abstraction, there is also the same
question of generality applicable to all application-focused

research projects: how to generalize our results and apply our
techniques to other applications. While we believe our ap-
proach to be general, as shown by this project as well as pre-
vious successful experiences [6][7][8][9], we consider the
work reported in this paper as an early experiment in auto-
mated staging that already reveals as many interesting re-
search questions as answers.

III. ELBA

A. Overall Approach and Requirements

As summarized in Section II.B, we process three major
components when automating staging: the application, the
workload, and performance requirements. One of the main
research challenges is the integrated processing of these dif-
ferent specifications through the automated staging steps. Our
approach (described in more detail in Section IV) is to create
and define an extensible specification language called TBL
(the testbed language) that captures the peculiarities of the
components as well as the eventual target staging environment.
The incremental development of TBL and associated tools
(enabled by the Clearwater architecture [9]) is the cornerstone
of the Elba project.

We mention some of the research goals (partially) ad-
dressed in this paper, as a motivation for the architecture
shown in Figure 1. Research goals for the specification of
applications and their execution environments include: auto-

Figure 1. The goal of the Elba is to automate the circular, repetitive process of staging by using data from deployment documents and bringing together automa-
tion tools (rounded boxes). The staging cycle for TPC-W is as follows (from the upper-left, counter-clockwise): 1) Developers provide design-level specifications
of model and policy documents (as input to Cauldron) and a test plan (XTBL). 2) Cauldron creates a provisioning and deployment plan for the application. 3)
Mulini generates staging plan from the input components referred to from XTBL (dashed arrows). 4) Deployment tools deploy the application, monitoring tools to
the staging environment. 5) The staging is executed. 6) Data from monitoring tools is gathered for analysis. 7) After analysis, developers adjust deployment speci-
fications or possibly even policies and repeat the process.

mated re-mapping of deployment locations to staging loca-
tions; creation of consistent staging results across different
trials; extensibility to many environments and applications.
Research goals on the evaluation of application quality of ser-
vice (QoS) include:
1. Appropriate QoS specifications and metrics that capture

SLAs as well as other specification methods.
2. Instrumentation for monitoring desired metrics. This auto-

mates the staging result analysis.
3. Matching metrics with configuration resource consumption.

An SLA defines the customer-observable behavior (e.g.,
response time of transactions), but typical system resources
(e.g., CPU usage of specific nodes) are not.

4. Maintaining a low run-time overhead (e.g., translation and
monitoring) during automated staging.

5. Generating reports that summarize staging results, auto-
matically identifying bottlenecks as appropriate.

B. Summary of Tools

Figure 1 shows the cyclical information and control flow in
Elba to support the automated staging process, using TPC-W
as an illustrative application. On the left upper corner is the
first step, implemented by the Cauldron design and provision-
ing tool, a constraint-based solver that interprets CIM applica-
tion descriptions scenarios to create application deployment
scenarios [1]. This allows application developers to leverage
the inherent parallelism of the distributed environment while
maintaining correctness guarantees for startup. For example,
the database data files are deployed before the database is
started and the image files are deployed before the application
server is started.

Future Cauldron development as part of Elba will extend it
to incorporate SLA information in the provisioning process.
This move will allow Cauldron’s formal constraint engines to
verify the SLAs themselves and incorporate SLA constraints
into the provisioning process. These SLAs can then be con-
verted into XML-based performance policy documents for
Mulini, as we have illustrated in Figure 1.

The second step and third steps have been merged into the
Mulini generator in Figure 1. The automated deployment gen-
erator tools such as ACCT generate the application configura-
tion from the CIM/MOF specification generated by Cauldron.
ACCT output (specifications for automated deployment) is
executed by deployment tools such as SmartFrog for actual
deployment. The new component described in this paper is the
Mulini code generator for staging process. Mulini provides the
implementation framework that realizes the creation of staging
deployments from the TBL language. Elba’s approach to the
entire staging phase of an application’s lifecycle iterates (the
circular arrows) as feedback from staging execution is re-
incorporated in the design phase, where a new design may be
generated and tested again in the staging environment.

IV. MULINI

A. Overview

Mulini maps a high-level TBL description of the staging
process to low-level tools that implement the staging process.

TBL is an in-progress language, and its current incarnation is
an XML format called XTBL. Eventually, one or more hu-
man-friendly, non-XML formats such as GUI tools or script-
like languages will be formulated, and subsequently XTBL
will be created automatically from those representations.

The use of XML as a syntax vehicle for the code generator
stems from our experiences building code generators around
the Clearwater code generation approach [9]. If using tradi-
tional code generation techniques that require grammar speci-
fication and parser creation, a domain specific language might
require a great deal of maintenance with each language change.
Our experience with Clearwater generators for problems in
distributed information flow [8] and in automatic, constrained
deployment of applications [2] has shown these generators to
be very flexible with respect to changing input languages and
very extensible in their support of new features at the specifi-
cation level and at the implementation level.

We describe the Clearwater approach to creating processors
for domain-specific languages, next, and follow that discus-
sion with the Clearwater-based Mulini in particular.

B. The Clearwater Code Generation Approach

The Clearwater approach to code generation is to use an
XML-based input and intermediate representation and then
perform code generation from XSLT templates. The use of
XML allows for flexible and extensible input formats since
defining a formal grammar may be deferred to later in the
language development process. During the generation process,
XML documents are used as the intermediate representations
of the domain language code and XML is used to contain gen-
erated code fragments; they are stored in-memory as DOM
(the Document Object Model) trees; the DOM interface is a
W3C standard for working with XML documents [10]. XSLT
allows template driven generation of the target code; invoca-
tions of XSLT templates can be one of two ways: either as
explicit calls to a specific XSLT templates or as a pattern
match triggered by the input specification. Since XSLT is
compiled at runtime, extending such generators to new targets
is easy – one simply adds a new XSLT template and inclusion
reference. Such extensions may take advantage of specific
features in the target platform, or extend the generator to en-
tirely different target platforms.

Adding support for new features found in the domain level
languages that serve as input is also straightforward. First,
new tags codifying the new domain-expertise are added to the
specification document; then, XSLT is written to pattern-
match against the new tags to generate code in the proper tar-
get language. Because XSLT makes use of XPath, it supports
structure-shy operations on the specification tree; importantly,
these additional tags do not break program generation (or only
require minimal changes) for the original template code. This
low barrier to change encourages and supports language evo-
lution which is particularly valuable when developing a new
domain specific language.

One of the biggest advantages of the Clearwater approach
is its ability to support multiple implementation (or target)
platforms and platforms that require heterogeneous language
output. As an example of heterogeneous target support, The

Infopipes Stub Generator supports simultaneous generation
and source-level weaving of C and C++. C and C++ each sup-
ported more than one communication library with, again, the
ability to generate to multiple communication layers during a
single invocation. The ACCT generator, which is re-used as a
component in Mulini, supports Java source code and Smart-
Frog specifications for SmartFrog deployment.

Furthermore, XSLT’s support for on-demand parsing of
XML documents allows auxiliary specifications to be con-
sulted very easily during the code generation process [6]. As
our staging generator evolves, this will allow conversion in-
formation to be stored as XML documents. For instance, one
document might describe how or which deployment machines
that host databases should be mapped onto machines available
for staging. In this instance, an IT department or facility might
define a single such document thus avoiding the need to in-
clude it with each Mulini invocation while also avoiding the
direct inclusion mutable data within the generator or generator
templates.

C. Code Generation in Mulini

As mentioned earlier, the staging phase for an application
requires three separate steps: design, deployment, and execu-
tion. Again, requirements for automated design are fulfilled by
Quartermaster/Cauldron and deployment is fulfilled by ACCT.
Mulini’s design wraps the third step, execution, with deploy-
ment to provide an automated approach to staging.

Mulini has four distinct phases of code generation: specifi-
cation integration, code generation, code weaving, and output.
In the current, early version, these stages are at varying levels
of feature-completeness. Because of this, we will describe all
features to be included in near term releases, and then at the
end of this section we will briefly describe our current imple-
mentation status. Figure 2 illustrates the generator and rela-
tionships between its components. The design of these com-
ponents will be described in the remainder of this section.

In specification integration, Mulini accepts as input an
XML document that contains the basic descriptors of the stag-
ing parameters. This document, the XTBL variant of TBL
introduced to earlier, contains three types of information: the
target staging environment deployment information should be
re-mapped to, a reference to a deployment document contain-
ing process dependencies, and references to performance pol-
icy documents containing performance goals.

Mulini automatically integrates these three documents into
a single XTBL+ document. The XTBL+ is organized with the
same structure as the XTBL, but leverages XML’s extensibil-
ity to include the deployment information and performance
requirements information as new elements. The process to
weave these documents:
1. Load, then perform XML parsing, and construct a DOM

tree of the XTBL document. This DOM tree is copied to
become the core for the new XTBL+ document.

2. Retrieve all references to deployment documents (XMOF
documents) from the XTBL document. There may be more
than one deployment document since deployment of re-
source monitors may be specified separately from deploy-
ment of.

3. Load any referenced deployment documents and incorpo-
rate their code onto the XTBL+ document. At this point,
the deployment directives are re-targeted to the staging
environment from the deployment environment, e.g., ma-
chine names and URLs must be remapped. In the XTBL
document, each deployable unit is described with an
XMOF fragment; each of the targeted deployment hard-
ware is also described with an XMOF fragment.

4. Load the performance requirements documents. Mulini
maps each performance requirement mapped onto its cor-
responding XMOF deployment component(s). This yields
an integrated XTBL+ specification.

Figure 12 of Appendix B illustrates the three source
documents and the woven XTBL+ result.

Following the specification weaving, Mulini generates
various types of source code from the XTBL+ specification.
To do so, it uses two sets of code generators. The first of these
code generators is the ACCT generator which has been used
to generate SmartFrog deployments of applications [2]. We
have extended ACCT to support script-based deployments and
so will refer to it here as ACCT+S. ACCT+S accepts the
XTBL+ document, extracts relevant deployment information,
generates the deployment scripts, and writes them into files.

The second code generator generates staging-phase appli-
cation code, which for TPC-W is Java servlet code, shell
scripts for executing monitoring tools, and Makefiles. The

Figure 2. The grey box outlines components of the Mulini code generator.
Initial input is an XTBL document, from which it retrieves references to the
performance requirements and the XMOF files and then loads and weaves
those three filetypes to create the XTBL+ document. XTBL+ is the document
from which information is directly retrieved during generation.

TPC-W code includes test clients that generate synthetic
workloads, application servlets, and any other server-side code
which may be instrumented. If source code is available, it can
be added to Mulini’s generation capabilities easily. We pro-
vide a description of the process to import a TPC-W servlet
into Mulini for instrumentation later in this section. Mulini, in
this phase, also generates a master script encapsulating the
entire staging execution step, compilation, deployment of bi-
naries and data files, and execution commands, which allows
the staging to be executed by a single command.

We mentioned that staging may require the generation of
instrumentation for the application and system being tested.
Mulini can generate this instrumentation: it can either generate
tools that are external to and monitor each process through at
the system level (e.g., through the Linux /proc file system),
or it may generate new source code in the application directly.

The source weaver stage of Mulini accomplishes the direct
instrumentation of source code by weaving in new Java code
that performs fine grain instrumentation on the base code. The
base code may be either generic staging code generated from
the specification inputs, or it may be application-specific code
that has been XSLT-encapsulated for Mulini weaving. To
achieve source weaving, we use an XML-weaving approach
similar to that of the AXpect weaver [8]. This weaving method
consists of three major parts: inserting XML semantic tags on
the template code, using XSLT to identify these tags and insert
new code, and adding instructions to the specification that
direct which aspects are to be woven into the generated code.

Practically, of course, this means that the application code
must be included in the generation stream. Fortunately, the use
of XML enables this to be done quite easily. Source code can
be directly dropped into XSLT documents and escaping can be
automatically added for XML characters with special meaning,
such as ampersand and ‘<’. Again, at aspect weaving time, this
code can be directed to be emitted, and semantic tags enable
the weaver to augment or parameterize the application code.

As mentioned earlier, the instrumentation code may derive
from SLAs that govern the service expectations of the de-
ployed application. These service level documents contain
several parts. First, they name the parties participating in the
SLA as well as its dates of enforcement. Then, they provide a
series of service level objectives (SLO’s). Each SLO defines a
metric to be monitored, location at which it is to be measured,
conditions for monitoring (start and stop), and any subcompo-
nents that comprise that metric. For instance, the “Respon-
seTime” metric comprises response time measurements for
each type of interaction in the TPC-W application.

At this time, most of the Mulini functionality has been im-
plemented. This includes generation of scripts, modification of
ACCT into ACCT+S, source-level weaving, and the creation
of instrumentation aspects for monitoring applications. Speci-
fication weaving of XTBL, a Web Service Management Lan-
guage (WSML) document of performance policies and an
XMOF document is currently partially implemented.

Near-term plans are to add to Mulini code to generate
scripts that collect data from monitoring tools. This data will
then be automatically placed in files and data analyzers gener-

ated. The analyzers will provide automatic assessment of
whether the performance policies (and by extension the SLAs)
have been met as well as how the system responds to chang-
ing workloads. Also, we will extend specification weaving to
allow multiple performance policy and deployment documents.

V. EVALUATION

A. Application Scenario: TPC-W

As an early experiment, we have chosen a well known ap-
plication, the TPC-W benchmark, a transactional web e-
commerce benchmark from the Transaction Processing Per-
formance Council – TPC, as an exemplar for our automated
staging approach. As mentioned before, we use TPC-W as an
illustrative mission-critical enterprise application, not for per-
formance comparison of different platforms. We include a
short summary of the application to make the paper self-
contained.

The TPC-W bookstore application was conceived by the
TPC to emulate the significant features present in e-commerce
applications [3][11]. TPC-W is intended to evaluate simulta-
neously a vendor’s packaged hardware and software solution
– a complete, e-commerce system. Normally, benchmarks
provide a preliminary estimate for vendors to compare system
performance, but the TPC-W application also suggests meas-
uring the resource utilization of subcomponents of the system
under test, a concept which matches our goals in staging to
uncover system behavior.

The TPC-W application comprises two halves: the work-
load, which is generated by emulating users, and the system-
under-test (SUT), which is the hardware and application soft-
ware being tested. Our system re-uses and extends the soft-
ware provided as part of the PHARM benchmark [12] and
studies of performance bottlenecks and tuning in e-commerce
systems [1][13]. For the system we test, we employ a com-
bined Java web/application server, using Apache Tomcat, and
a database server, in this case MySQL.

In the TPC-W scenario, customers’ navigation of the web
pages of an online bookstore is simulated by remote emulated
browsers (EB’s). Each emulated browser begins at the book-
store’s home page where it “thinks” for a random time interval
after which the EB randomly chooses a link to follow. These
link choices are from a transition table in which each entry

Figure 3. TPC-W application diagram. Emulated browsers (EB’s) communi-
cate via the network with the web server and application server tier. The ap-
plication servers in turn are backed up by a database system. This is a simpli-
fied diagram, and commercial implementations for benchmark reporting may
contain several machines in each tier of the system under test as well as com-
plex caching arrangements.

represents the probability p of following a link or going offline.
The specification provides three different models (that is, three
different transition tables) each of which emulates a different
prevailing customer behavior.

For the application, there are two primary metrics of con-
cern: requests served per second, which is application
throughput; and response time, which is the elapsed time from
just before submitting a URL GET request to the system until
after receiving the last byte of return data. The result of a
TPC-W run is a measure called WIPS – Web Interactions per
Second. There are several interaction types, each correspond-
ing to a type of web page. For instance, a “Best Seller” inter-
action is any one of several links from the home page that
leads to a best seller list such as best sellers overall, best sell-
ing biographies, or the best selling novels.

One test parameter is to select the number of concurrent cli-
ents (number of EB’s). Varying the number of concurrent cli-
ents is the primary way of adjusting the number of web inter-
actions per second submitted to the system. The most
influential parameter is the number of items in the electronic
bookstore offered for sale. This particular variation is also
called the scale of the experiment and may be 1000, 10,000, or
100,000 items. Since many of the web pages are generated
views of items from the database, normal browsing behavior
can, excluding caching, slow the performance of the site. As
an application parameter, scale level has the greatest impact
on the performance of the system under test [11].

B. TPC-W Implementation

We chose TPC-W v1.8 due to its widespread use in re-
search and the availability of a reference implementation over
the newer 2.0 benchmark which has even yet to be fully rati-
fied by TPC. Our evaluations utilized only the “shopping”
browsing model. This model represents the “middle ground”
in terms of interaction mix when compared to the “order” and
“browsing” models.

The implementation of the TPC-W bookstore is as Java
servlets using the Apache project’s Jakarta Tomcat 4.1 frame-
work, communicating with a backend MySQL 4.0 database
both running on Linux machines using a 2.4-series kernel. For
all of our evaluations, the database, servlets, and images are
hosted on local drives as opposed to an NFS or storage-server
approach. As in other TPC-W studies, to speed performance,
additional indexes are defined on data fields that participate in
multiple queries. Connection pooling is also utilized to re-use
database connections between the application server and the
database.

During our testing, we employ two classes of hardware.
Machines labeled “low-end,” or “L,” are dual-processor P-III
800 MHz with 512 MB of memory, and we assign them an
approximate value of $500 based on straight-line depreciation
from a “new” price of $2000 four years ago. “High-end” or
“H” machines are dual 2.8GHz Xeon blade servers with hy-
perthreading enabled and 4GB of RAM, and we have assigned
them an approximate value of $3500 each based on current
replacement cost. Assigning cost values to each server is a
convenient proxy for the cost of a deployment configuration.
For instance, we can assign a “2H/L” configuration of two

high-end servers and one low-end server an approximate value
of 2 × $3500 + $500 or $7500.

C. Automatic Staging for TPC-W

The first step in preparing TPC-W for automatic staging is
to create the clients and select service-side tools for monitor-
ing resource usage. We wrote new clients and then encapsu-
lated them in XSLT templates to support generation of them
by Mulini and therefore parameterization through TBL. We
then created the deployment documents and TBL specification
that describe TPC-W staging.

We created a MOF file containing the CIM description of
the hardware and software needed to support the TPC-W ap-
plication. Once given the MOF description, Cauldron uses the
MOF to map the software onto hardware and produce a work-
flow for deployment of the applications. This MOF file is
translated into an XML document using a MOF-to-XML
compiler resulting in XMOF as described in [2].

Next, we created the SLAs for the TPC-W performance re-
quirements. While future incarnations of Mulini will rely on
documents derived from the SLAs, we currently re-use the
SLAs as a convenient specification format, WSML, for encod-
ing performance requirements pertaining both to customer
performance data and to prescribe metrics for monitoring as
performance policies pertaining only to the system under test.
There are 14 types of customer interaction in the TPC-W ap-
plication. Each of these interactions has its own performance
goal to be met which as detailed in Table 2 of Appendix A.
For instance, to meet the SLA for search performance, 90% of
search requests must complete the downloading of search re-
sults and associated images in 3 seconds.

Finally, the third specification document is the TBL speci-
fication of the staging process. TBL is directly convertible by
hand to XTBL, an XML based format, suited as input for Mu-
lini. TBL includes information that relates the staging test to
performance guarantees and the specific deployment work-
flow. Example excerpts from each of the three specifications
documents can be seen in Figure 12 of Appendix B.

D. Overhead Evaluation

Our first evaluation is designed to show that there is rea-
sonable overhead when executing staging tests that are gener-
ated. This is important because too high overhead could re-
duce the relevance of staging results. To evaluate the
generated benchmark, we run the original reference imple-
mentation (non-Mulini generated) first to provide a baseline
for performance. Since we can not glean an accurate under-
standing of overhead when the system runs at capacity, we use
much lower numbers of concurrent users. These two tests,
shown in Figure 4 and Figure 5, are executed first on low-end
hardware with 40 concurrent users and then on the high-end
hardware with 100 concurrent users. We use sar and top to
gather performance data during the execution of the applica-
tion of both the Mulini generated variant and the reference
implementation. From this evaluative test, we see that the Mu-
lini generated code imposes very little performance overhead
in terms of resource usage or response time on application
servers or database servers in both the L/L and H/H cases.

However, our target performance level for the TPC-W ap-
plication is 150 concurrent users. Since we have now estab-
lished that the generative techniques employed impose little
overhead (<5%), we proceed to measurements based on the
application’s formal design parameters.

E. Tuning TPC-W: Mulini in Use

We generate Mulini variants of TPC-W to illustrate the util-
ity of generated staging as compared to an “out-of-the-box”

TPC-W. In fact, we wrap the performance monitoring tools of
the primary experiment for re-use in our generated scenarios.
This way, they can become part of the automatic deployment
of the TPC-W staging test. We also begin recording “average
query times” for the best seller query. Being one of the more
complex queries, it was shown in our initial test also to be
longer running than most of the other queries.

Wrapping the performance tools we use for monitoring per-
formance is reasonably straightforward for a Clearwater-style
generator. First, we construct command-line scripts that exe-
cute the tools and then wrap these scripts in XSLT. This proc-
ess that consists of adding file naming information and escap-
ing special characters; we add these XSLT templates to the
main body of generator code. Once this is completed, we can
easily parameterize the templates by replacing text in the
scripts with XSLT statements that retrieve the relevant infor-
mation from the XTBL+ document.

We perform this same technique to escalate database serv-
let code into the generator templates for direct instrumentation
of their source. This is followed by adding an XML marker to
denote a joinpoint in the code around the database query exe-
cution that we wish to monitor. We write an XSLT aspect
template with XPath that selects the marker and inserts timing
code that implements measurement of the query.

Once aspect writing and template extension is complete, we
can begin executing our application staging and tuning ex-
periments. Figure 6 shows the level of QoS satisfaction as
specified by SLAs. Most of the high-end configurations per-
form well, while the low-end configurations have some prob-
lems. The raw data for this graph is available in Table 2 and
Table 3 in Appendix A.

We focus on the BestSeller transaction to illustrate the dif-
ferences among the configurations. Figure 7 zooms into
Figure 6’s third column from the left, showing very poor per-
formance of the L/L configuration, very good performance of
2H/L and 2H/H (more than 90% satisfaction), with the H/L
and H/H configurations in between (above 60% satisfaction)
but still failing to meet the SLA.

To explain the differences in performance shown in Figure
7, we studied the response time and throughput of the configu-
rations via the direct instrumentation of the database servlet.
The average response time is shown in Figure 8, where we see

0

0.5

1

1.5

2

2.5

3

Adm
inC

on
f

Adm
inR

eq

Bes
tS

ell

Buy
Con

f

Buy
Req

Cus
tR

eg

Hom
e

New
Pro

d

Ord
er

Disp

Ord
er

In
q

Pro
dD

et

Sea
rc

hR
eq

Sea
rc

hR
es

ult

Sho
pC

ar
t

R
es

po
ns

e
T

im
e

(s
ec

)

Ref.
Gen.

Figure 4. L/L reference comparison to gauge overhead imposed by
Mulini with 40 concurrent users. In all interactions, the generated
version imposes less than 5% overhead.

0

5

10

15

20

25

30

Adm
inC

on
f

Adm
inR

eq

Bes
tS

ell

Buy
Con

f

Buy
Req

Cus
tR

eg

Hom
e

New
Pro

d

Ord
er

Disp

Ord
er

In
q

Pro
dD

et

Sea
rc

hR
eq

Sea
rc

hR
es

ult

Sho
pC

ar
t

R
es

po
ns

e
T

im
e

(s
ec

)

Ref.
Gen.

Figure 5. H/H reference comparison to gauge overhead imposed by
Mulini with 100 concurrent users. For all interactions, the generated
version imposes less than 5% overhead.

Figure 6. Summary of SLA satisfaction.

a clear bottleneck for L/L configuration. In addition, we meas-
ured the response time of a critical component of BestSeller
interaction, the BestSeller database query. Figure 8 shows that
the response time of the BestSeller transaction is almost en-
tirely due to the BestSeller Database Query, demonstrating the
database to be the bottleneck. This finding is confirmed by
Figure 9, which shows a marked increase in WIPS throughput
when the database is moved to more powerful (and more ex-
pensive) hardware.

To migrate to more powerful hardware, we simply re-

mapped the deployment to a high-end machine and re-
deployed the staging and monitoring code automatically.

From this data, we can observe that average response time
of the query from the servlet to the database remains fairly
long, indicating that even though the application server on
low-end hardware is strained in terms of memory usage, the
database remains the bottleneck even in cases of high-end
hardware. Fortunately, MySQL allows database replication
out-of-the-box. While this does not allow all database interac-
tions to be distributed, it does allow “select” queries to be dis-
tributed between two machines, and these queries constitute
the bulk of the TPC-W application. A straightforward re-write
of the database connection code expands TPC-W to take into
account multiple databases in the application servlet; this is
followed by adding and modifying deployment to recognize
the replicated database server. Using this method to allow the
2H/L and 2H/H cases, we were able to create a system within
our performance specification. To understand the operating
differences between deployments, it is instructive to examine
the resource utilization reported by our monitoring tools.

First, for the database server we note that while it uses only
about 60% of the CPU, the system memory utilization consis-
tently gets close to 100% due to filesystem caching as shown
in Figure 10. This was ascertained by generating a script that
measured actual process memory usage and comparing this
data with the overall system memory usage reported by the
kernel. As the daemon process for the servlets remained con-
stant in size, it was apparent that application activity was ex-
erting pressure through the operating system’s management of
memory. The memory and CPU utilization of the database
server is plotted below in, showing the memory bottleneck in
addition to the CPU bottleneck of the database server in the
L/L configuration. Note that we have included the approxi-
mate asset cost for each deployment

We record resource usage for the application server, too, in
Figure 11 again including approximate asset cost for the de-
ployments. The figure shows consistent CPU and memory
utilizations for high-end and low-end configurations. At
around 20% CPU utilization and 15% memory utilization, our
results indicate the low-end hardware is a viable application
server choice for the target workload of 150 concurrent users,
since the high-end configuration uses less than 5% of CPU
resources with very little memory pressure (evidenced by sys-
tem memory utilization being below 80%, a number which in
our experience is not atypical for a Linux system under only
light load).

At this point, our automated generation has allowed rapid
testing that begins to provide enough information on which
system administrators may base deployment decisions. Refer-
ring back to the previous two figures, the TPC-W “application
provider” now has a clearer picture of the cost of deploying
his service; while technically two configurations do meet the
SLAs, we note that there is a choice for the final configuration.
The administrator can either choose between a deployment at
lower cost (2H/L) with less growth possibility, higher cost
with ample resource overhead (2H/H), or request another
round of staging (automatically) to find a better mix of the

0

10

20

30

40

50

60

70

80

90

100

L/L H/L H/H 2H/L 2H/H

N
on

-V
io

la
te

d
R

es
po

ns
e

T
im

e
(%

)

Figure 7. SLA Satisfaction of BestSeller

0

5

10

15

20

25

30

35

40

45

50

L/L H/L H/H 2H/L 2H/H

R
es

po
ns

e
T

im
e

(s
ec

)

Overall AVG
BestSell AVG
BestSell DB Query AVG

Figure 8. BestSeller average response time.

0

5

10

15

20

25

L/L H/L H/H 2H/L 2H/H

W
IP

S

Figure 9. System throughput (WIPS). Lines above and below the
curve demarcate bounds on the range of acceptable operating
throughput based on ideal TPC-W performance as a function of the
number of EB’s.

three machines that fulfill the SLAs.

VI. RELATED WORK

Other projects address the monitoring of running applica-
tions. For instance, Dubusman, Schmid, and Kroeger instru-
ment CIM-specified enterprise Java beans using the JMX
framework [16]. Their instrumentation then provides feedback
during the execution of the application for comparing run-time
application performance to the SLA guarantees. In the Elba
project, our primary concern is the process, staging, and fol-
low-on data analysis that allows the application provider to
confirm before deployment that the application will fulfill
SLAs. Furthermore, this automated staging process allows the
application provider to explore the performance space and
resource usage of the application on available hardware.

Several other papers have examined the performance char-
acteristics and attempted to characterize the bottlenecks of the
TPC-W application. These studies generally focused on the

effects of tuning various TPC-W parameters [11], or on the
bottleneck detection process itself [13][15]. The paper takes
TPC-W, not as the benchmark, however, but as a representa-
tive application that allows us to illustrate the advantages of
tuning applications through an automated process with feed-
back.

The ActiveHarmony project also addressed the automated
tuning of TPC-W as an example cluster-based web application
[14]. While tuning is an important part of Elba, the Elba pro-
ject stresses automation including design and deployment to
the staging area by reusing top-level design documents.

Finally, there are also projects such as SoftArch/MTE and
Argo/MTE that automatically benchmark various pieces of
software [17][18]. Our emphasis, however, is that this bench-
marking information can be derived from deployment docu-
ments, specifically the SLAs, and then other deployment
documents can be used to automate the test and staging proc-
ess to reduce the overhead of staging applications.

VII. CONCLUSION AND FUTURE WORK

The Elba project is our vision for automating the staging
and testing process for enterprise application deployment.
This paper presents the initial efforts of the Elba project in
developing the Mulini code generation tool for staging. These
efforts concentrate on mapping high-level staging descriptions
to low-level staging experiments, dependency analysis to en-
sure proper component composition, and creating robust,
adaptable designs for applications. Ultimately, long term ef-
forts in Elba will be directed at closing the feedback loop from
design to staging where knowledge from staging results can
be utilized at the design level to create successively better
designs.

The early results for Mulini reported here have shown
promise in several areas. First, they show that Mulini’s gen-
erative and language-based technique can successfully build
on existing design (Cauldron) and deployment (ACCT) tools
for staging. Second, our experiences show that automatic de-
ployment during the staging process is feasible, and further-
more, that instrumentation of application code is feasible
when using a Clearwater-based generator.

Ongoing research is addressing questions raised by our ex-
periences and the limitations of the initial efforts. For example,
we are exploring the translation of SLAs into performance
policies, which are translated into monitoring parameters to
validate staging results. Another important question is the
extension of TBL to support new applications. A related issue
is the separation of application-dependent knowledge from
application-independent abstractions in TBL and Mulini. A
third question is the migration of staging tools and parameter
settings (e.g., monitoring) to production use, so problems can
be detected and adaptation actions triggered automatically
during application execution.

ACKNOWLEDGMENT

We would like to thank Sharad Singhal of HP Labs for his
valuable insight and comments during the development of this
paper.

0

10

20

30

40

50

60

70

80

90

100

L/L
$1000

H/L
$4000

H/H
$7000

2H/L
$7500

2H/H
$10500

Configuration

U
til

iz
at

io
n

(%
).

CPU Memory (system) Memory (process)

Figure 10. Database server resource utilization. The kernel’s file
system caching creates the spread between system memory utiliza-
tion and the database process’s memory utilization.

0

10

20

30

40

50

60

70

80

90

100

L/L
$1000

H/L
$4000

H/H
$7000

2H/L
$7500

2H/H
$10500

Configuration

U
til

iz
at

io
n

(%
)

CPU Memory (system) Memory (process)

Figure 11. Application server resource utilization.

REFERENCES
[1] Talwar, Vanish, Dejan Milojicic, Qinyi Wu, Calton Pu, Wenchang Yan,

and Gueyoung Jung. “Comparison of Approaches to Service Deploy-
ment.” ICDCS 2005.

[2] Sahai, Akhil, Calton Pu, Gueyoung Jung, Qinyi Wu, Wenchang Yan,
Galen Swint. “Towards Automated Deployment of Built-to-Order Sys-
tems.” 16th IFIP/IEEE Distributed Systems: Operations and Management
(DSOM). 2005.

[3] Menascé, Daniel A. “TPC-W: A Benchmark for E-Commerce.” IEEE
Internet Computing. May-June 2002.

[4] Sahai, Akhil, Sharad Singhal, Rajeev Joshi, Vijay Machiraju. “Auto-
mated Generation of Resource Configurations through Policies.” IEEE
Policy, 2004.

[5] Goldsack, Patrick, Julio Guijarro, Antonio Lain, Guillaume Mecheneau,
Paul Murray, Peter Toft.: SmartFrog: Configuration and Automatic Igni-
tion of Distributed Applications. HP Openview University Association
conference, 2003.

[6] Pu, Calton, Galen Swint. "DSL Weaving for Distributed Information
Flow Systems." (Invited Keynote.) Proceedings of the 2005 Asia Pacific
Web Conference. (APWeb05). Springer-Verlag LNCS. March 29 - April
1, 2005. Shanghai, China.

[7] Galen S. Swint, Gueyoung Jung, Calton Pu. “Event-based QoS for Dis-
tributed Continual Query Systems.” IEEE 2005 International Conference
on Information Reuse and Integration (IRI-2005), August 2005.

[8] Swint, Galen S., Calton Pu. "Code Generation for WSLAs Using AX-
pect." Proceedings of 2004 IEEE International Conference on Web Ser-
vices (ICWS 2004). July 6-9, 2004. San Diego, California.

[9] Galen Swint, Calton Pu, Charles Consel, Gueyoung Jung, Akhil Sahai,
Wenchang Yan, Younggyun Koh, Qinyi Wu. "Clearwater - Extensible,
Flexible, Modular Code Generation." To appear in the Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2005). November 7-11, 2005. Long Beach, California.

[10] W3C Document Object Model. http://www.w3.org/DOM/

[11] García, Daniel, Javier García. “TPC-W E-Commerce Benchmark
Evaluation.” IEEE Computer, February 2003.

[12] PHARM benchmark http://www.ece.wisc.edu/~pharm/tpcw.shtml

[13] Cristiana Amza, Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety,
Alan Cox, Romer Gil, Julie Marguerite, Karthick Rajamani and Willy
Zwaenepoel. “Bottleneck Characterization of Dynamic Web Site
Benchmarks.” Rice University Technical Report TR02-388.

[14] Chung, I-Hsin, Jeffrey K. Hollingsworth. “Automated Cluster Based
Web Service Performance Tuning.” HPDC 2004. Honolulu, Hawaii.

[15] Zhang, Qi, Alma Riska, Erik Riedel, and Evgenia Smirni. “Bottlenecks
and Their Performance Implications in E-commerce Systems.” WCW
2004. pp. 273-282. 2004

[16] Debusman, M., M. Schmid, and R. Kroeger. “Generic Performance
Instrumentation of EJB Applications for Service-level Management.”
NOMS 2002.

[17] Grundy, J., Cai, Y., Liu, A. SoftArch/MTE: Generating Distributed
System Test-beds from High-level Software Architecture Descriptions.
Automated Software Engineering, 12, 1.

[18] Cai, Y., Grundy, J., and Hosking, J. Experiences Integrating and Scaling
a Performance Test Bed Generator with an Open Source CASE Tool.
ASE 2004.

APPENDIX A: EVALUATION DATA

Table 1. Resource utilization. “L” is a low end, “H” a high-end machine (see text for description). Percentages are for the system. “M/S” is
“Master/Slave” replicated database

 DB host APP server host
 cpu(%) mem (%) cpu(%) mem (%)
L/L 99.8 96.9 11.3 78.3
H/L 66.3 98.4 22.2 98.5
H/H 66.0 98.72 5.48 79.7
2H(M/S)/L 36.6/46.9 96.2/89.5 21.9 98.2
2H(M/S)/H 47.3/38.0 96.6/90.0 5.2 79.5

Table 2. Average response times. 90% WIRT is the web interaction response time within which 90% of all requests for that interaction type
must be completed (including downloading of ancillary documents such as pictures). Each number is the average over three test runs. As we can
see, even though some entries have an average response time that may be less than that in the SLA, the deployment may still not meet the SLAs
90% stipulation (e.g. “H/H” case for “Best Seller”)

Interaction
Type

Hardware
Provision A

d
m

in

C
o

n
irm

A
d

m
in

R

eq
u

es
t

B
es

t
S

el
le

r

B
u

y

C
o

n
fir

m

B
u

y
R

eq
u

es
t

C
u

st
o

rm
er

R

eg
is

te
ra

tio
n

H
o

m
ep

ag
e

N
ew

P

ro
d

u
ct

O
rd

er

D
is

p
la

y

O
rd

er

In
q

u
iry

P
ro

d
u

ct

D
et

ai
l

S
ea

rc
h

R

eq
u

es
t

S
ea

rc
h

R

es
u

lt

S
h

o
p

p
in

g

C
ar

t

90% WIRT 20 3 5 5 3 3 3 5 3 3 3 3 10 3
L/L 54.6 9.3 44.1 18.9 11.1 6.9 9.0 12.6 11.6 3.10 8.04 8.6 12.6 14.6
H/L 7.2 0.4 4.5 0.7 0.3 0.2 0.3 0.4 0.2 0.04 0.2 0.3 0.42 0.39
H/H 7.8 0.2 4.8 0.7 0.4 0.2 0.2 0.4 0.3 0.01 0.2 0.2 0.39 0.4
2H/L 2.9 0.04 2.6 0.7 0.1 0.1 0.1 0.1 0.1 0.03 0.1 0.1 0.2 0.1
2H/H 2.8 0.04 2.7 0.4 0.1 0.1 0.1 0.1 0.1 0.02 0.1 0.1 0.1 0.1
Table 3. Percentage of requests that meet response time requirements. 90% must meet response time requirements to fulfill the SLA
L/L 0 36.8 0 17.5 24.6 47.1 33.7 27.3 19.3 73.4 36.9 33.7 46.6 15.5
H/L 97.8 95.7 68.8 97.1 97.7 99.5 99 99.3 99.1 100 99.2 99 99.9 97.2
H/H 100 100 63.6 97.2 97.2 99.6 99.4 99.4 96.9 100 99.3 99.3 99.9 97
2H/L 100 100 96.9 99.1 99.7 100 99.6 100 100 99.8 99.7 99.5 100 99.5
2H/H 100 100 94.5 99.7 99.8 100 100 100 100 100 100 99.9 100 100

APPENDIX B: XTBL, XMOF AND PERFORMANCE POLICY WEAVING

a) XTBL
<xtbl version="0.1">
 <DeploymentInfo>
 <input name="TPCW-XMOF" type="meta-model">
 <version>0.1</version>
 <description>XML based CIMMOF meta-model describing
 resources...</description>
 <location>./meta-model/TPCW-XMOF.xml</location>
 </input>
 <input name="TPCW-WSML" type="sla">
 <version>0.1</version>
 <description>XML based SLA describing performance
 metrics...</description>
 <location>./sla/TPCW-WSML.xml</location>
 </input>
 <input name="TPCWShopping" type="flow-model">
 <version>0.1</version>
 <description>TPCW benchmark shopping
 model</description>
 <location>./flow-model/TPCWShopping.xml</location>
 </input>
 </DeploymentInfo>

 <AppUnits>
 ...
 <AppUnit name="EmulatedBrowser" dependency="ClientWorkloadGenerator">
 <params>
 <param name="target"/>
 <param name="maxInteractions"/>
 </params>
 </AppUnit>
 ...
</xtbl>

b) XMOF
<CIM CIMVERSION="2.0" DTDVERSION="2.0">
...
<INSTANCE CLASSNAME="QM_ComputeServer">
 <PROPERTY PROPAGATED="true" NAME="Id" TYPE="string">
 <VALUE>awing14</VALUE></PROPERTY>
 <PROPERTY PROPAGATED="true" NAME="ProcessorsSpeed" TYPE="uint64">
 <VALUE>2.8GHz</VALUE></PROPERTY>
 ...
</INSTANCE>
...
<INSTANCE CLASSNAME="QM_LogicalServer">
 <PROPERTY PROPAGATED="true" NAME="Id" TYPE="string">
 <VALUE>WorkloadGenerator_LS1</VALUE></PROPERTY>
 ...
</INSTANCE>
...
<INSTANCE CLASSNAME="QM_Activity">
 <PROPERTY PROPAGATED="true" NAME="Id" TYPE="string">
 <VALUE>WorkloadGenerator-1_Install</VALUE></PROPERTY>
</INSTANCE>
<INSTANCE CLASSNAME="QM_Activity">
 <PROPERTY PROPAGATED="true" NAME="Id" TYPE="string">
 <VALUE>WorkloadGenerator-1_Ignition</VALUE></PROPERTY>
 <PROPERTY PROPAGATED="true" NAME="ActivityHandler" TYPE="string">
 <VALUE>awing14.cc.gatech.edu//start_client</VALUE>
 </PROPERTY>
</INSTANCE>
...
<INSTANCE CLASSNAME="QM_ActivityPredecessorActivity">
 <PROPERTY PROPAGATED="true" NAME="DependencyType" TYPE="string">
 <VALUE>Finish-Start</VALUE></PROPERTY>
 <PROPERTY PROPAGATED="true" NAME="AntecedentActivity" TYPE="string">
 <VALUE>QM_Activity.Id=WorkloadGenerator-1_Install</VALUE></PROPERTY>
 <PROPERTY PROPAGATED="true" NAME="DependentActivity" TYPE="string">
 <VALUE>QM_Activity.Id=WorkloadGenerator-1_Configuration</VALUE></PROPERTY>
</INSTANCE>
...

c) Performance Requirements (as WSML)
<SLA>
...
<provider>http://hera.cc.gatech.edu:8000/tpcw</provider>
<consumer>WorkloadGenerator</consumer>
<SLO id="TPCWCommon">
 <clause>
 <evalOn id="TPCWConcurrentUsers" recordtype="input">
 <expression>
 <container name="numBrowsers" type="integer">
 <value>100</value></container>
 </expression>
 </evalOn>
 <evalOn id="TPCWMaxInteractions" recordtype="input">
 <expression>
 <container name="maxInteractions" type="integer">
 <value>100000</value></container>
 </expression>
 </evalOn>
 <evalOn id="TPCWMaxErrors" recordtype="input">
 <expression>
 <container name="maxErrors" type="integer">
 <value>30</value></container>
 </expression>
 </evalOn>
 </clause>
</SLO>
<SLO id="TPCWThroughput">
 <metric id="Throughput"></metric>
 <clause>
 <measuredAt id="TPCWClient">WorkloadGenerator</measuredAt>
 ...
 </evalOn>
 <evalFunc id="TPCWThroughputGT12" recordtype="static">
 ...
</SLA>

 d) XTBL+
<xtbl name="TPCWBenchmark" version="0.1">
 <AppUnits>
 <AppUnit name="WorkloadGenerator" template="WorkloadGenerator.xsl" lang="JAVA">
 <params>
 <param name="numThreads" type="integer" value=100/>
 <param name="thread" type="Object" value="EmulatedBrowser"/>
 ...
 <param name="target" type="string"
 value="http://hera.cc.gatech.edu:8000/tpcw"/>
 <param name="maxInteractions" type="integer" value=100000/>
 </params>
 ...
 <aspect name="Stat" template="Stat.xsl>
 <params>
 <param name="numThreads" type="integer" value=100/>
 <param name="maxErrors" type="integer" value=30/>
 </params>
 <docs>
 ...
 <aspect name="Throughput" template="Throughput.xsl">
 <docs>
 <doc name="TPCW-WSML" type="xml"/>
 ...
 </AppUnit>
 ...
 <instances>
 ...
 <instance type="install">
 <src>WorkloadGenerator/*.class</src>
 <target>awing14.cc.gatech.edu//tmp/tpcw/genCode</target>
 </instance>
 <instance type="ignition">
 <src>awing13.cc.gatech.edu//tmp/tpcw/mysql/mysql-standard-4.0.18-pc-linux-i686/start_mysql</src>
 </instance>
 ...
 </instances>
 ...
</xtbl>

Figure 12. Example XTBL, XMOF, Performance requirements, and XTBL+. XTBL+ is computed from developer-provided specifications. XTBL is the primary source document and the primary input to
Mulini. In the input tag, the XTBL contains references to deployment information, the XMOF, shown in b) in reverse-print. It also refers to a WSML document, c) with underlined text. The WSML encap-
sulates performance policy information applicable to staging. Mulini’s first stage then incorporates the three documents into a single, interwoven XTBL+ document in d). Reverse-print and underlining corre-
spond to the data retrieved from the XMOF and WSML, respectively.

