[

invent

Automated Staging for Built-to-Order Application Systems

Galen S. Swint*, Gueyoung Jung*, Calton Pu', Akhil Sahai
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto

HPL-2005-161
September 19, 2005*

automation, utility
computing,
staging, TPC-W,
benchmark,
e-commerce

The increasing complexity of enterprise and distributed systems
accompanying a move to grid and utility computing demands automated
design, testing, deployment and monitoring of applications. In this paper,
we present the Elba project and Mulini generator. The goal of Elba is
creating automated staging and testing of complex enterprise systems
before deployment to production. Automating the staging process lowers
the cost of testing applications. Feedback from staging, especially when
coupled with appropriate resource costs, can be used to ensure correct
functionality and provisioning for the application. The Elba project
extracts test parameters from production specifications, such as SLAs,
and deployment specifications, and via the Mulini generator, creates
staging plans for the application. We then demonstrate Mulini on an
example application, TPC-W, and show how information from automated
staging and monitoring allows us to refine application deployments easily
based on performance and cost.

* Internal Accession Date Only
'Georgia Institute of Technology, Center for Experiment Research in Computer Systems, 801 Atlantic Ave.,

Atlanta, GA 30332, USA

Approved for External Publication

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Automated Staging for Built-to-Order
Application Systems

Galen S. Swint, Gueyoung Ju@glton Pu
Georgia Institute of Technology,
Center for Experiment Research in Computer Systems
801 Atlantic Ave., Atlanta, GA 30332
SWi nt gs@cm or g,
{hel cyonl, calton}@c.gatech. edu

Akhil Sahai
Hewlett Packard Laboratories
Palo Alto, CA
akhi | . sahai @p. com

http: //ww. cc. gat ech. edu/ syst ens/ pr oj ect s/ El ba

Abstract — The increasing complexity of enterprise and disib-

uted systems accompanying a move to grid and utijitcomputing
demands automated design, testing, deployment andamitoring

of applications. In this paper, we present the Elbgroject and
Mulini generator. The goal of Elba is creating autonated staging
and testing of complex enterprise systems before pleyment to
production. Automating the staging process lowershie cost of
testing applications. Feedback from staging, espetdiy when cou-
pled with appropriate resource costs, can be use@ tensure cor-
rect functionality and provisioning for the application. The Elba
project extracts test parameters from production spcifications,
such as SLAs, and deployment specifications, andavthe Mulini

generator, creates staging plans for the applicate We then
demonstrate Mulini on an example application, TPC-W and
show how information from automated staging and moitoring

allows us to refine application deployments easilpased on per-
formance and cost.

l. INTRODUCTION

ployment configuration and production parameters under
simulated conditions before the system goes “live”. However,
traditional staging is usually approached in a manual, mp
and time consuming fashion. In fact, while the value of-stag
ing increases with application complexity, the limitations in
herent to manual approaches tend to decrease the possibilit
of effectively staging that same complex application.

Furthermore, increasing adoption of Service-Level Agree-
ments (SLAs) that define requirements and performance also
complicates staging for enterprise-critical, complex, and
evolving applications; again, the limitations of the manual
approach become a serious obstacle. SLAs provide quantita-
tive metrics to gauge adherence to business agreements. For
service providers, the staging process allows them to “debug”
any performance (or other SLA) probletosfore production
and thereby mitigate the risk of non-performance penalties or
lost business.

This paper describes the Elba project, the goal of which is

‘Managing the growing complexity of large distributed ap-i5 provide a thorough, low-cost, and automated approach to
plication systems in enterprise data center environmets iS giaging that overcomes the limitations of manual approaches
increasingly important and increasingly expensive technicalyq recaptures the potential value of staging. Our mainicontr
challenge. Design, staging, deployment, and in-productiogygjon s the Mulini staging code generator which usesia!,

activities such as application monitoring, evaluation, evat

machine-readable information from SLAs, production de-

lution are each complex tasks in themselves. Currently, develioyment specifications, and a test-plan specification to-aut
opers and administrators perform these tasks manuallyepr mate the staging phase of application development. We sum-
use scripts to achieve limitel hoc automation. In our previ- - marize the design and implementation of Mulini and include
ous work on automating application deployment, we havey early evaluation of Mulini generated staging code far-sta
demonstrated the advantages of using higher level abstractl% a well-known application, TPC-W [3]. By varyingeth
deployment languages such as SmartFrog (as compared d@aifications, we are able to generate and compare several
scripts) to specify application deployment process [1]. We alSconfigurations and deployments of TPC-W of varying costs.
have built software tools that automate the deployment progygie that TPC-W is used as an illustrative complexibisted

ess, starting from high level resource requirement SpeCiﬁcadpplication for our automated staging tools and process, not
tions [2]. In this paper, we focus on the automatibp@- npecessarily as a performance measure of our hard-

formance testing and validation (of an automatically generatégare/software stack. For this reason, we will refer to TPC-W
configuration) during the staging process; this offevéag ©0 a5 an “application” rather than its usual role as a “benchiark.
anticipate, detect, and prevent serious problems that may arisethe rest of the paper is organized as follows. Sectioa-Il d
when new configurations are deployed directly to pradoct s¢ribes the challenges faced in the staging process. Settion Ii
Staging is a natural approach for data center environmentgmmarizes the Elba project and our automated approach to
where sufficient resources are available for adequate evaluépplication deployment and staging. Section IV describes the
tion. It allows developers and administrators to tune dew \uiini staging code generator. Section V presents an evalua-

tion of Mulini code generation process and comparison of

This project is partially supported by Hewlett-Packard, NSFgenerated code from the application point of view. Sedafion
and DARPA.

outlines related work and Section VIl concludes the paper. two steps, design and deployment. The automation todteof
first two steps produce automatically generated and deploy-
able application configurations for the staging environment.
A. Requirementsin Staging The third step, execution, is to generate and run an ajgueop
workload on the deployed configuration and verify tbhecf
tionality, performance, and appropriateness of the configura-
tion.

In the first step, design, the entire process starts awitta-
hine-readable specification of detailed application design and
eployment. Concretely, this has been achieved by Cauldron
[4], an application design tool that generates system compo-
ngnt specifications and their relationships in the CIM/MOF
%rmat (Common Information Model, Managed Object For-
mat). Cauldron uses a constraint satisfaction approach to com
pute system designs and define a set of workflow dependen
cies during the application deployment. Readers interested in
the design specification step are referred to Cauldron [4] and
other similar tools.

The second step in the automated staging process is the
%r&nslation of the CIM/MOF specification into a concrete con-

Iguration. Concretely, this is achieved by ACCT [2] (&ut

mated Composable Code Translator). In a multi-stage &ansl

Il. CHALLENGES IN STAGING

Staging is the pre-production testing of applicationfigon
ration with three major goals. First, it verifies functiatyal
i.e., that the system does what it should. Second, ifiegthe
satisfaction of performance and other quality of service speci-
fications, e.g., whether the allocated hardware resources ar
adequate. Third, it should also uncoweeer-provisioned con-
figurations. Large enterprise applications and servicesfare
ten priced on a resource usage basis. This question involv
some trade-off between scalability, unused resources, ahd ¢
of evolution (discussed briefly in Section V). Other Hgaef
staging, beyond the scope of this paper, include the linyei
of other application properties such as its failure modess
of failure, degree of administrative attention required] an
support for application development and testing in réalist
configurations.

These goals lead to some key requirements in the succe
ful staging of an application. First, to verify the @atr func-

tionality of deployed software on hardware configuratithre rtlion process, ACCT transforms the MOF specificationtigh

staging environment must reflect the reality of the productio :) :
environment. Second, to verify performance achievements trfee veral intermediate representations based on XML and then

: : : hally into various Java classes and interfaces and SrogrtFr
workload used in staging must r_natch the service level Qgre%] ;/ configuration specification language. The SmagFro
ment (SLA) specifications. Third, to uncover potentially =" '

wasteful over-provisioning, staging must show the elation compiler accepts a specmc_atpn to generate th? Java_code for
S%ctually deploying the application configuration in thegatg

between workload increases and resource utilization level, vironment. Readers interested in the automated deployment
an appropriate configuration may be chosen for productien us tep are referred to papers on ACCT [2] and the evaiuafio

Thise requirements explain tr}e high c?sts of e} mam:jal a martFrog [1] as a deployment tool
proach to staging. It is non-trivial to translate applicatm . ' .

workload specifications accurately into actual configuration%v ol;lk?c))(; dweeﬂgfaﬁisnséi% tg;gihttigi tercohcr:elgzl;:;I:ﬁggssrt?the
(requirements 1 and 2). Consequently, it is expensivexio ; fthg d the Elb P {

plore a wide range of configurations and workloadartder- ocus ot this paper and the £iba project.

stand their correlation (requirement 3). Due to costéditiihs, C. Automated Saging Execution

manual staging usually simplifies the qpplication andkwor The third step of staging is the automation of stagie e
load and runs a small number of experiments. Unfortunately,tion. Automated execution for staging is assembled from
these §|mpl|f|cat|ons also reduce the confidence and validity,ree main components: (1) a description mapping thecappli

of staging results. _ o tion to the staging environment, (2) the input to thpliap-

_ Large mlss!on—crltlcgl enterprise applications tend to b&ion — the workload definition, and (3) a set of applidatio
highly customized “built-to-order” systems due to the¥ s fynctionality and performance goals defined on the workload.
phistication and complexity. While the traditional manual ap e application description (first component) can be bor-
proach may suffice for small-scale or slow-changing applicasowed or computed from the input to the first and secteps
tions, built-to-order enterprise applications typically Ig€0 i yhich the application has been formally defined. However,
constantly and carry high penalties for any failures or rror oyvironment dependent parameters may make re-mapping the

Consequently, it is very important to achieve high comitée eyecution parameters of an application from a deployment to
during staging, so the production deployment can avwd t gaging environment a non-trivial task. Location sersitiv

many potential problems stemming from complex interastion changes include obvious location strings for application com-
among the components and resources. To bypass the difficysnents found in the design documents, but non-obviou
ties of manual staging, we advocate an automatic approach i@finin the application are references to services the applica-
cre_atmg and running the experiments to fulfill the above regg, may require to execute successfully, such as ORB (Object
quirements. Request Broker) naming services, web URL's, external ser-
B. Saging Steps vices, or database locations.

In automating the staging process, we divide staging intﬂerftc))r itﬂ;s aséiglr?tg ve\;lglrjlg(:gdreiifemtlﬂgnwgrkelochgfnfmiogpO-
three steps: design, deployment, and the actual test executi ' 9 P

We present short descriptions of our previous workherfitst tion environment 'f. avallaple. Th? use of a similar woski .
increases the confidence in staging results. Also, by mapping

the deployment workload into the staging environment autaresearch projects: how to generalize our results and apply our
matically, the study of the correlation between workloadechniques to other applications. While we believe our ap-
changes and resource utilization in different configuratiens proach to be general, as shown by this project as well as pre
facilitated because the low-cost, repeatable experiments ewious successful experiences [6][7][8][9], we consider the
courage the testing of multiple system parameters ingfiag+ work reported in this paper as an early experiment in auto-
steps. The repeatability offered by an automated system proxated staging that already reveals as many interesting re-
vides confidence in the behavior of the application to a presearch questions as answers.
sented workload as the application evolves during develop-
ment and testing.

The third component is specification and translation of apa, Overall Approach and Requirements
plication functionality and performance goals into a set of

erformance policies for the application. This is a “manage- As summarized in Section |I.B, we process three major
P " P . Ppi) . g components when automating staging: the application, the
ment task” and the main information source is the set Bf Se

vice Level Agreements (SLAs). Typically, SLAs explicitly workload, and performance requirements. One of the main

define performance goals such as “95% of transactions égsearch challenges is the integrated processing of these dif
Type 1 will have response time under one second”. Theserent specifications through the automated staging staps.

goals, or Service Level Objectives, can serve as sources 5 Pproac.h (described in more d(.et_ail i_n Section V) is to create
derivi,ng the monitoring and instrum’entation code ugethe 8hd define an extensible specification language called TBL

; the estked lnguage) that captures the peculiarities of the
staging process to validate the configuration executing th

. , mponents as well as the eventual target staging envirenmen
intended Workload.. Beyond SLAs, there may also be defm_e he incremental development of TBL and associated tools
performance requirements that derive not from the servic

customer but from policies of the service provider. Fenabled by the Clearwater architecture [9]) is the cormegsto

. . of the Elba project.
The automated translation processes of each single COMPO-y .~ ontion some of the research goals (partially) ad-
nent and of all three components are significant research ch%l-

") PP) ressed in this paper, as a motivation for the architectu
lenges. I_n addition to the typical d_|ff|cult|es O.f treatélg be- shown in Figure 1. Research goals for the specification of
tween different levels of abstraction, there is also thmeesa

question of generality applicable to all application-focusec?ppl'Catlons and their execution environments include: auto-

/ Analvsis, \

Ill. ELBA

[\

D

L Reconfiguration, | Monitoring
Mode!l§ &POI‘M 2 Adantation , Taanle

T

[

"'>"“§iii;;

[Cauldron] y \

VAR

) {Deploymen

A
S
-

Performance Instrumented Application
Policies

”)
Q,/

Figure 1. The goal of the Elba is to automate the circulepgtitive process of staging by using data fromalepent documents and bringing together automa-
tion tools (rounded boxes). The staging cycle fBCIW is as follows (from the upper-left, countevaitwise): 1) Developers provide design-level spedtifns

of model and policy documents (as input to Cauljliaomd a test plan (XTBL). 2) Cauldron creates a mioving and deployment plan for the applicatior
Mulini generates staging plan from the input congrus referred to from XTBL (dashed arrows). 4) Dgpient tools deploy the application, monitoringl$otn

the staging environment. 5) The staging is execuig®ata from monitoring tools is gathered forlgs. 7) After analysis, developers adjust deplegtrspeci-
fications or possibly even policies and repeattfoeess.

mated re-mapping of deployment locations to staging locafBL is an in-progress language, and its current incamnasi
tions; creation of consistent staging results acrossreliffe an XML format called XTBL. Eventually, one or more hu-
trials; extensibility to many environments and applicationsman-friendly, non-XML formats such as GUI tools or seript
Research goals on the evaluation of application quality ef selike languages will be formulated, and subsequently XTBL

vice (QoS) include: will be created automatically from those representations.

1. Appropriate QoS specifications and metrics that capture The use of XML as a syntax vehicle for the code generator
SLAs as well as other specification methods. stems from our experiences building code generators around

2. Instrumentation for monitoring desired metrics. This autothe Clearwater code generation approach [9]. If using tradi-
mates the staging result analysis. tional code generation techniques that require grammar speci-

3. Matching metrics with configuration resource consumptiorfication and parser creation, a domain specific language might
An SLA defines the customer-observable behaviny.,(require a great deal of maintenance with each language change.
response time of transactions), but typical system resourc€@ur experience with Clearwater generators for problems in

(e.g., CPU usage of specific nodes) are not. distributed information flow [8] and in automatic, coasted

4. Maintaining a low run-time overhead.d., translation and deployment of applications [2] has shown these generators to
monitoring) during automated staging. be very flexible with respect to changing input languagyas

5. Generating reports that summarize staging results, auteery extensible in their support of new features at tleeifip
matically identifying bottlenecks as appropriate. cation level and at the implementation level.

B Summary of Tools We describe the Clearwater approach to creating processors
' y for domain-specific languages, next, and follow that discus-

Figure 1 shows the cyclical information and control flow sjon with the Clearwater-based Mulini in particular.
Elba to support the automated staging process, usinglWPC

as an illustrative application. On the left upper cormehés t B- The Clearwater Code Generation Approach
first step, implemented by the Cauldron design and pgomsis The Clearwater approach to code generation is to use an
ing tool, a constraint-based solver that interprets CIMiegp XML-based input and intermediate representation and then
tion descriptions scenarios to create application deploymempierform code generation from XSLT templates. The use of
scenarios [1]. This allows application developers to leveragXML allows for flexible and extensible input formats since
the inherent parallelism of the distributed environmentlavh defining a formal grammar may be deferred to later in the
maintaining correctness guarantees for startup. For examplanguage development process. During the generation process,
the database data files are deployed before the databaseXML documents are used as the intermediate representations
started and the image files are deployed before the applicatiof the domain language code and XML is used to contain gen-
server is started. erated code fragments; they are stored in-memory as DOM
Future Cauldron development as part of Elba will exténd i(the Document Object Model) trees; the DOM interface is a
to incorporate SLA information in the provisioningopess. W3C standard for working with XML documents [10]. XSLT
This move will allow Cauldron’s formal constraint engirtes allows template driven generation of the target code;ciavo
verify the SLAs themselves and incorporate SLA constraintions of XSLT templates can be one of two ways: either as
into the provisioning process. These SLAs can then be coexplicit calls to a specific XSLT templates or as a pattern
verted into XML-based performance policy documents formatch triggered by the input specification. Since XSLT is
Mulini, as we have illustrated in Figure 1. compiled at runtime, extending such generators to newttarg
The second step and third steps have been merged into ikeeasy — one simply adds a new XSLT template and inclusion
Mulini generator in Figure 1. The automated deployment ge reference. Such extensions may take advantage of specific
erator tools such as ACCT generate the application configuréeatures in the target platform, or extend the generatenio
tion from the CIM/MOF specification generated by Cauldrontirely different target platforms.
ACCT output (specifications for automated deployment) is Adding support for new features found in the domain level
executed by deployment tools such as SmartFrog for actulinguages that serve as input is also straightforwardt, Fi
deployment. The new component described in this papleeis new tags codifying the new domain-expertise are adddteto t
Mulini code generator for staging process. Mulini pdeg the specification document; then, XSLT is written to pattern-
implementation framework that realizes the creation of staginmatch against the new tags to generate code in the proper tar-
deployments from the TBL language. Elba’s approach to thget language. Because XSLT makes use of XPath, it supports
entire staging phase of an application’s lifecycle iterates (structure-shy operations on the specification tree; impdytant
circular arrows) as feedback from staging execution is rethese additional tags do not break program generation or on
incorporated in the design phase, where a new design may keguire minimal changes) for the original template codés Th

generated and tested again in the staging environment. low barrier to change encourages and supports language evo-
lution which is particularly valuable when developing a new
V. MuLiNI domain specific language.
A Overview One of the biggest advantages of the Clearwater approach

is its ability to support multiple implementation (target)
platforms and platforms that require heterogeneous language
output. As an example of heterogeneous target suppcet, Th

Mulini maps a high-level TBL description of the staging
process to low-level tools that implement the staginggs®.c

Infopipes Stub Generator supports simultaneous generatio Mulini has four distinct phases of code generation: specifi-

and source-level weaving of C and C++. C and C++ each su

pation integration, code generation, code weaving, and outpu

ported more than one communication library with, again, thén the current, early version, these stages are at valgmeds

ability to generate to multiple communication layers dugng
single invocation. The ACCT generator, which is re-used a

of feature-completeness. Because of this, we will describe all
features to be included in near term releases, and then at the

component in Mulini, supports Java source code and Smamtnd of this section we will briefly describe our cutranple-

Frog specifications for SmartFrog deployment.

mentation status. Figure 2 illustrates the generator and rela-

Furthermore, XSLT's support for on-demand parsing oftionships between its components. The design of these com-

XML documents allows auxiliary specifications to be con-

sulted very easily during the code generation proces?f].
our staging generator evolves, this will allow conwarsin-

ponents will be described in the remainder of this section
In specification integration, Mulini accepts as input an
XML document that contains the basic descriptors of thge sta

formation to be stored as XML documents. For instance, oneg parameters. This document, the XTBL variant of TBL
document might describe how or which deployment machinestroduced to earlier, contains three types of informatibae:
that host databases should be mapped onto machines availdialget staging environment deployment information shoald b

for staging. In this instance, an IT department or fgaititght
define a single such document thus avoiding the neeéd- to
clude it with each Mulini invocation while also avoidirtuet

re-mapped to, a reference to a deployment document contain-
ing process dependencies, and references to performance pol-
icy documents containing performance goals.

direct inclusion mutable data within the generator or generator Mulini automatically integrates these three documents into

templates.

C. Code Generation in Mulini

a single XTBL+ document. The XTBL+ is organized with the
same structure as the XTBL, but leverages XML's extensibil
ity to include the deployment information and performance

As mentioned earlier, the staging phase for an applicatiofequirements information as new elements. The process to
requires three separate steps: design, deployment, and exegidmve these documents:

tion. Again, requirements for automated design are fulflted
Quartermaster/Cauldron and deployment is fulfilled by ACCT
Mulini’s design wraps the third step, execution, wdgploy-
ment to provide an automated approach to staging.

| ACCT+S

[Gene@

—

Source
Weaver

Mulini

Service
Monitorin
Cod

Test-harnegs

Code

eployment

Figure 2. The grey box outlines components of the Mulini cagmerator.
Initial input is an XTBL document, from which ittreeves references to the
performance requirements and the XMOF files anadh tleads and weaves
those three filetypes to create the XTBL+ docum&MBL+ is the document
from which information is directly retrieved durimgneration.

1. Load, then perform XML parsing, and construct a DOM
tree of the XTBL document. This DOM tree is copied to
become the core for the new XTBL+ document.

Retrieve all references to deployment documents (XMOF
documents) from the XTBL document. There may be more
than one deployment document since deployment of re-
source monitors may be specified separately from deploy-
ment of.

Load any referenced deployment documents and incorpo-
rate their code onto the XTBL+ document. At this point,
the deployment directives are re-targeted to the staging
environment from the deployment environmesnt., ma-
chine names and URLs must be remapped. In the XTBL
document, each deployable unit is described with an
XMOF fragment; each of the targeted deployment hard-
ware is also described with an XMOF fragment.

Load the performance requirements documents. Mulini
maps each performance requirement mapped onto its cor-
responding XMOF deployment component(s). This yields
an integrated XTBL+ specification.

Figure 12 of Appendix B illustrates the three source
documents and the woven XTBL+ result.

Following the specification weaving, Mulini generates
various types of source code from the XTBL+ specification.
To do so, it uses two sets of code generators. Thefitkese
code generators is the ACCT generator which has been used
to generate SmartFrog deployments of applications [2]. We
have extended ACCT to support script-based deploymedts an
so will refer to it here as ACCT+S. ACCT+S accepts the
XTBL+ document, extracts relevant deployment information,
generates the deployment scripts, and writes them into files.

The second code generator generates staging-phase appli-
cation code, which for TPC-W is Java servlet code, shell
scripts for executing monitoring tools, and MakefileheT

TPC-W code includes test clients that generate synthetamted. The analyzers will provide automatic assessment of
workloads, application servlets, and any other serder-sdbde whether the performance policies (and by extension the SLAS)
which may be instrumented. If source code is available, it cahmave been met as well as how the system responds to chang-
be added to Mulini's generation capabilities easily. We proing workloads. Also, we will extend specification weaving to
vide a description of the process to import a TPC-W servlallow multiple performance policy and deployment documents.
into Mulini for instrumentation later in this section. M, in

this phase, also generates a master script encapsulating the V. EVALUATION

entire staging execution step, compilation, deployment of bia. Application Scenario: TPC-W

naries and data files, and execution commands, which allows

the staging to be executed by a single command. As an early experiment, we have chosen a well known ap-

We mentioned that staging may require the generation &Ilcanon, the TPC-W benchmark, a transactlonal \{veb e

. . o . ommerce benchmark from the Transaction Processing Per-
instrumentation for the application and system being teste fsrmance Council — TPC, as an exemplar for our automated
Mulini can generate this instrumentation: it can either geaﬂeratstaging approach. As meﬁtioned before. we use TPC-W as an
tools that are external to and monitor each process thmghillustrative mission-critical enterprise application, not per-

the system levele(g., through the Linux pr oc file system), formance comparison of different platforms. We include a

or it may generate new source codg ‘T‘ the appI?cation dire‘.:tlyshort summary of the application to make the paper self-
The source weaver stage of Mulini accomplishes the d'rej:tontained

instrumentatior] of source code by vyeaving in new Java co The TPC-W bookstore application was conceived by the
Lhat perfgrms f'n‘; gra}g\] mstrumenta;uon on thg base Cd?ed -][TPC to emulate the significant features present in e-commerce
thase co .]f n?[_ay e elt er g_?nerlcbs agmglg_ C?{. e gene_r[;:de r‘gﬁfﬂﬂications [3][11]. TPC-W is intended to evaluate simulta-
€ specinication Inputs, or it may bé application-Specmie neously a vendor’'s packaged hardware and software solution
that. has been XSLT.-encapsuIated for Mulini weaving. To_ a complete, e-commerce system. Normally, benchmarks
a.ch_llevi stcr)]urtcef mea,xl)?g' V:e use an8 X_l\r/lhl_.—weavmg ar%gﬁacﬁrovide a preliminary estimate for vendors to compare system
simriar to that ot thé Axpec vygaver_[]. This weaving erformance, but the TPC-W application also suggests meas-
consists of three major parts: mseytmg_XML semantic tags 0 ring the resource utilization of subcomponents of trstesy
the template code, uslng_XSLT t_o identify these ta.g.s agetin under test, a concept which matches our goals in staging t
new code, and adding instructions to the specificatiat t uncover system behavior
direct which aspects are to be woven into the generatid co The TPC-W application comprises two halves: the work-

Practi(;ally, of course, this means that the application COdI%ad, which is generated by emulating users, and thensyste
must be included in the generation stream. Fortunately séhe Uunder-test (SUT), which is the hardware and applicatidt s

of XML enables this to be done quite easily. Source code Care being tested. Our system re-uses and extends the soft-

be directly dropped into XSLT documents and escaping can tWare provided as part of the PHARM benchmark [12] and

automatically added for XML characters with special meani”%’tudies of performance bottlenecks and tuning in e-commerce

such as ampersand and ‘<’. Again, at aspect weaving time, t% stems [1][13]. For the system we test, we employ a com-

Cr?de can be directed to be emltted,_ andh semalr_1t|c_tags ((ejna fied Java web/application server, using Apache Tomcat, and
the weaver to augment or parameterize the application code. ; y5iapase server, in this case MySQL.

As mentioned earlier, the instrumentation code may derive | o Tpc-w scenario, customers’ navigation of the web

frlom g’LAS thatt. gov%rqn the serylcel explecc:jtanons ?f the S_'ages of an online bookstore is simulated by remote emulated
ploye Iapp |caF|'0n. h ese serwtc]:e evel documents contaiyq ysers (EB’s). Each emulated browser begins at the book-
several parts. First, they name the parties participatingein .o home page where it “thinks” for a random time iratlerv

SL’.A‘ as well as its dates .Of anorcement. Then, they proyide &tter which the EB randomly chooses a link to follow. Ehes
series of service level objectives (SLO’s). Each SLO defines fhk choices are from a transition table in which each entry
metric to be monitored, location at which it is to be meadur

conditions for monitoring (start and stop), and anyceuofpo-
nents that comprise that metric. For instance, the “Respo / —
seTime” metric comprises response time measurements | /)ij
each type of interaction in the TPC-W application. (DB =
At this time, most of the Mulini functionality has beien- ‘\\¥\. Web/App /'

plemented. This includes generation of scripts, moditicabif I EB's «k’—),’ Server \ B

ACCT into ACCT+S, source-level weaving, and the creatiol J

of instrumentation aspects for monitoring applicationmect / DB

fication weaving of XTBL, a Web Service Management Lan

guage (WSML) document of performance policies and a =iz Uil Teet

XMOF document is currently partially implemented. Figure 3. TPC-W application diagram. Emulated browsers (EB&nmuni-

Near-term plans are to add to Mulini code to generatéate via the network with the web server and appba server tier. The ap-

. o . . plication servers in turn are backed up by a damlsgstem. This is a simpli-
scripts that collect data from monitoring tools. This daita fied diagram, and commercial implementations fandienark reporting may

then be automatically placed in files and data analyzers gen&bntain several machines in each tier of the systeder test as well as com-
plex caching arrangements.

represents the probabilipyof following a link or going offline. high-end servers and one low-end server an approximate val
The specification provides three different models (thahiset of 2 x $3500 + $500 or $7500.
different transition tables) each of which emulates tewifnt . :
prevailing customer behavior. <. Au.tomat|c SFagmg for _TPC'W . B
For the application, there are two primary metrics of con- The first step in preparing TPC-W for automatic staging
cern: requests served per second, which is applicatid® create the clients and select service-side tools for monitor-
throughput; and response time, which is the elapsedftone ing resource usage. We wrote new clients and then encapsu-
just before submitting a URL GET request to the systatit lated them in XSLT templates to support generation of them
after receiving the last byte of return data. The result of & Mulini and therefore parameterization through TBL. We
TPC-W run iS a measure Ca”ed WIPS — Web |nteractions pélflen created the deployment documents and TBL SpeCification
Second. There are several interaction types, each correspofiéat describe TPC-W staging. o
ing to a type of web page. For instance, a “Best Seller” inter- We created a MOF file Conta|n|ng the CIM descr|pt|0n of
action is any one of several links from the home page thabe hardware and software needed to support the TPC-W ap-
leads to a best seller list such as best sellers overall, Hest s@fication. Once given the MOF description, Cauldron uses t
ing biographies, or the best selling novels. MOF to map the software onto hardware and produce a work-
One test parameter is to select the number of concurrent cflow for deployment of the applications. This MOF file is
ents (number of EB's). Varying the number of concuratint ~ translated into an XML document using a MOF-to-XML
ents is the primary way of adjusting the number of wedrint compiler resulting in XMOF as described in [2].
actions per second submitted to the system. The most Next, we created the SLAs for the TPC-W performance re-
influential parameter is the number of items in the elearo quirements. While future incarnations of Mulini will repn
bookstore offered for sale. This particular variation isoal documentsderived from the SLAs, we currently re-use the
called thescale of the experiment and may be 1000, 10’000, O|SLAS as a convenient SpeC|f|Cat|0n format, WSML, for encod-
100,000 items. Since many of the web pages are generaté Performance requirements pertaining both to customer
views of items from the database, normal browsing behaviderformance data and to prescribe metrics for monitoring as
can, excluding caching, slow the performance of the site. ABerformance policies pertaining only to the system under test
an application parameter, scale level has the greatest impddiere are 14 types of customer interaction in the TPC-W ap-

on the performance of the system under test [11]. plication. Each of these interactions has its own performance
_ goal to be met which as detailed in Table 2 of Appendix A.
B. TPC-WImplementation For instance, to meet the SLA for search performance, 90% of

We chose TPC-W v1.8 due to its widespread use in research requests must complete the downloading of search re-
search and the availability of a reference implementation ovesults and associated images in 3 seconds.
the newer 2.0 benchmark which has even yet to be fully rati- Finally, the third specification document is the TBL speci-
fied by TPC. Our evaluations utilized only the “shopping”fication of the staging process. TBL is directly convertije
browsing model. This model represents the “middle groundhand to XTBL, an XML based format, suited as input far-M
in terms of interaction mix when compared to the “order” andini. TBL includes information that relates the stagingt t®
“browsing” models. performance guarantees and the specific deployment work-
The implementation of the TPC-W bookstore is as Javllow. Example excerpts from each of the three specifications
servlets using the Apache project’s Jakarta Tomcat 4.1 framdocuments can be seen in Figure 12 of Appendix B.
work, communicating with a backend MySQL 4.0 databaseD Overhead Evaluation
both running on Linux machines using a 2.4-series keroel. F ~
all of our evaluations, the database, servlets, and images areOur first evaluation is designed to show that there is rea
hosted on local drives as opposed to an NFS or stseger ~Sonable pvgrhead when executing staging tests that are gener
approach_ As in other TPC-W Studies1 to Speed performancé‘ied. This is |mp0rtant becaus-e too h|gh overhead could re-
additional indexes are defined on data fields that participate #uce the relevance of staging results. To evaluate the
multiple queries. Connection pooling is also utilizedgaise ~ 9generated benchmark, we run the original reference imple-
database connections between the application server and fhentation (non-Mulini generated) first to provide a basel
database. for performance. Since we can not glean an accurate under-

During our testing, we employ two classes of hardwareStanding of overhead when the system runs at capacity, we use
Machines labeled “|Ow_end”' or “L," are dua'_processor P_|||mUCh lower numbers of concurrent users. These two '[estS,
800 MHz with 512 MB of memory, and we assign them anShOWn in Figure 4 and Figure 5, are executed fII’QDWHend
approximate value of $500 based on straight-line depreciatigigrdware with 40 concurrent users and then on thedngh
from a “new” price of $2000 four years ago. “High-end” or hardware with 100 concurrent users. We siae andt op to
“H” machines are dual 2.8GHz Xeon blade servers with hygather performance data during the execution of the applica-
perthreading enabled and 4GB of RAM, and we have assigné@n of both the Mulini generated variant and the reference
them an approximate value of $3500 each based on currdfiplementation. From this evaluative test, we see that the Mu-
replacement cost. Assigning cost values to each server islii generated code imposes very little performance overhead

convenient proxy for the cost of a deployment configarati in terms of resource usage or response time on application
For instance, we can assign a “2H/L” configuration of twoServers or database servers in both the L/L and H/H cases.

However, our target performance level for the TPC-W apTPC-W. In fact, we wrap the performance monitoring tobls o
plication is 150 concurrent users. Since we have now estatie primary experiment for re-use in our generated scenario
lished that the generative techniques employed impose littléhis way, they can become part of the automatic deployment
overhead (<5%), we proceed to measurements based on thfethe TPC-W staging test. We also begin recording “@eera
application’s formal design parameters. query times” for the best seller query. Being one of theemo

. i o complex queries, it was shown in our initial test also o b
E. Tuning TPC-W. Mulini in Use longer running than most of the other queries.

We generate Mulini variants of TPC-W to illustrate thi& u Wrapping the performance tools we use for monitoring per-

ity of generated staging as compared to an “out-of-th&-bo formance is reasonably straightforward for a Clearwater-style
generator. First, we construct command-line scripts that exe-
31 cute the tools and then wrap these scripts in XSLT. ptus-

BGen ess that consists of adding file naming information andpesca
ing special characters; we add these XSLT templates to the
main body of generator code. Once this is completed, we can
easily parameterize the templates by replacing text in the
scripts with XSLT statements that retrieve the relevamrinf
mation from the XTBL+ document.

We perform this same technique to escalate database serv-
let code into the generator templates for direct instrumentati
of their source. This is followed by adding an XML merko
denote a joinpoint in the code around the database query exe-
cution that we wish to monitor. We write an XSLT aspect
template with XPath that selects the marker and insertsgiimin
Figure 4. L/L reference comparison to gauge overhead imptsed code that implements measurement of the query.

Mulini with 40 concurrent users. In all interactinthe generated Once aspect writing and template extension is complete, we
version imposes less than 5% overhead. can begin executing our application staging and tuning ex-
30 periments. Figure 6 shows the level of QoS satisfaction as
' specified by SLAs. Most of the high-end configuratioes-p
form well, while the low-end configurations have somebpr

Response Time (sec)

25+

2] lems. The raw data for this graph is available in Table 2 and
Table 3 in Appendix A.
sr--—--—- @10 1 : We focus on the BestSeller transaction to illustrate the dif-

ferences among the configurations. Figure 7 zooms into
Figure 6’s third column from the left, showing veryap per-

Response Time (sec)

5 B} DU B] . formance of the L/L configuration, very good performance of

l 2H/L and 2H/H (more than 90% satisfaction), with the H/L
O’é s b e e e s s e e e s e and H/H configurations in between (above 60% satisfaction)
FEFF I 5 T T but still failing to meet the SLA.

v < To explain the differences in performance shown in Figure

Figure 5. H/H reference comparison to gauge overhead impbged 7, We studied the response time and throughput of thegoenf
Mulini with 100 concurrent users. For all interacts, the generated rations via the direct instrumentation of the database servlet

version imposes less than 5% overhead. The average response time is shown in Figure 8, whese&ve

100 - e T N W N 2R

¥ 80 R 2R - -
= N . NN N \ 1N
= N N W N W N 8 7y
S N AN N N N N N
© N N B N W N § N
@ 7 \ ZhE z]] 8 |/ /\
= R 20NN 3 7 A § 7N

w40 - " :' z " % By " :"
@ N N N W N N N
R 1K B § | R § i
5 i N N 7 § 7 N 8 N

n T N N N N
o ZEg ZE8 ZE § ZHR a8 A ZES

LY & X LN o) & ™ O i O NS &
L L .)
. ,\\GO o2 .5,8’0 P ~$P \@.29 \2\0@ Q\D 9\"-’ é\\‘\\ < V\\Q-B e:"? Qo'b
g{& & P Q}&\ & G\{J \;@‘x\ O\t’e & Q- & @‘g‘ o
v & P
WL BHL BHH B2HL B2HH &

Figure 6. Summary of SLA satisfaction.

100 mapped the deployment to a high-end machine and re-
w0 o deployed the staging and monitoring code automatically.

From this data, we can observe that average response time
of the query from the servlet to the database remains fairly
— long, indicating that even though the application server o
) low-end hardware is strained in terms of memory usage, the

Non-Violated Response Time (%)

8 Eai . i - database remains the bottleneck even in cases of high-end
40 hardware. Fortunately, MySQL allows database replication
%0 out-of-the-box. While this does not allow all databaserat-

2] tions to be distributed, it does allow “select” queriebeais-

tributed between two machines, and these queries coestitut
the bulk of the TPC-W application. A straightforwarewete
wo oW we oz M of the database connection code expands TPC-W to take into
account multiple databases in the application servlet; this is
followed by adding and modifying deployment to recagni
= Overall AVG the replicated database server. Using this method to allw th
L il ool b ey VG 2H/L and 2H/H cases, we were able to create a system within
e e i our performance specification. To understand the operating
differences between deployments, it is instructive to examin
the resource utilization reported by our monitoring tools

First, for the database server we note that while it uses only
about 60% of the CPU, thleystem memory utilization consis-
T tently gets close to 100% due to filesystem caching asrshow
in Figure 10. This was ascertained by generating a scept th
measured actual process memory usage and comparing this
data with the overall system memory usage reported by the
kernel. As the daemon process for the servlets remained con-
stant in size, it was apparent that application activity was ex

Figure 7. SLA Satisfaction of BestSeller

Response Time (sec)

LiL HIL HIH 2H/IL 2HH

_) erting pressure through the operating system’s manageiinent o
Figure 8.BestSeller average response time. memory. The memory and CPU utilization of the database
27 server is plotted below in, showing the memory boétdnin

addition to the CPU bottleneck of the database serverein th
L/L configuration. Note that we have included the approxi-
mate asset cost for each deployment
We record resource usage for the application server, too, in
Figure 11 again including approximate asset cost for the de
ployments. The figure shows consistent CPU and memory
T8 g utilizations for high-end and low-end configurations. At
/ around 20% CPU utilization and 15% memory utilizatior, ou
results indicate the low-end hardware is a viable application
server choice for the target workload of 150 concurreetsiis
since the high-end configuration uses less than 5% of CPU
0 n ‘ P resources with very little memory pressure (evidenced by sys-
tem memory utilization being below 80%, a number which i

Figure 9. System throughput (WIPS). Lines above and below theyyr experience is not atypical for a Linux system unddy o
curve demarcate bounds on the range of acceptapdzating light load).

throughput based on ideal TPC-W performance asetioin of the
number of EB'’s.

R e ——————,——S—————

WIPS

At this point, our automated generation has alloweddrapi
testing that begins to provide enough information onctvhi
a clear bottleneck for L/L configuration. In addition, we meassystem administrators may base deployment decisions. Refer-
ured the response time of a critical component of BestSell@fng pack to the previous two figures, the TPC-W “agation
interaction, the_BestSeIIer database query. Figure_ 8 shavs thprovider” now has a clearer picture of the cost of deploying
the response time of the BestSeller transaction is almost efys service; while technically two configurations do meet the
tirely due to the BestSeller Database Query, demonstrating thg As, we note that there is a choice for the final configumat
database to be the bottleneck. This finding is confiriaed The administrator can either choose between a deployment at
Figure 9, which shov_vs a marked increase in WIPS throughpihwer cost (2H/L) with less growth possibility, high cost
when the database is moved to more powerful (and more eyjth ample resource overhead (2H/H), or request another

pensive) hardware. _ round of staging (automatically) to find a better mixtoé
To migrate to more powerful hardware, we simply re-

100 - effects of tuning various TPC-W parameters [11], or on the
0 | bottleneck detection process itself [13][15]. The paper takes
TPC-W, not as the benchmark, however, but as a representa-
80 1 tive application that allows us to illustrate the advaesagf
< 97 tuning applications through an automated process with- feed
Q;/ 60 1 back.
S 50 The ActiveHarmony project also addressed the automated
ﬁ 40 1 tuning of TPC-W as an example cluster-based web application
5 394 [14]. While tuning is an important part of Elba, théd&lpro-
20 | ject stresses automation including design and deploytoent
10 4 the staging area by reusing top-level design documents.
- _ Finally, there are also projects such as SoftArch/MTE and
0 AT e * Argo/MTE that automatically benchmark various pieces of
L/L H/L H/H 2H/L — 2H/H software [17][18]. Our emphasis, however, is that tieisch-
$1000 $4000 Co n?g?gti on $7500 $10500 marking information can be derived from deployment docu-
— Memory(systei) s~ Memory (process) ments, specifically the SLAs, and then other deployment

documents can be used to automate the test and staging proc-

Figure 10. Database server resource utilization. The kernidles ess to reduce the overhead of staging applications.
system caching creates the spread between systenomneitiliza-

tion and the database process’s memory utilization. VIl. CONCLUSION AND FUTURE WORK
The Elba project is our vision for automating the staging

1007 and testing process for enterprise application deployment.

90 + This paper presents the initial efforts of the Elba project

80 developing the Mulini code generation tool for stagingeseh
=70 efforts concentrate on mapping high-level staging desaniptio
S 60 . to low-level staging experiments, dependency analysis-o en
5 sure proper component composition, and creating stpbu
& 501 adaptable designs for applications. Ultimately, long tefm e
BA - forts in Elba will be directed at closing the feedback lfsom

30 4 design to staging where knowledge from staging resalts

20 | be utilized at the design level to create successively better

designs.
10 1 The early results for Mulini reported here have shown
0

promise in several areas. First, they show that Mulini's gen
UL HIL H/H 2H/L 2H/H erative and language-based technique can successfully build
$1000 $4000 $7000 $7500 $10500 on existing design (Cauldron) and deployment (ACCH)sto
oL " CO”ﬁ?“rat'O” " for staging. Second, our experiences show that automatic de-
’ =—Memory (system) - -a--Memory (process) 1oument during the staging process is feasible, antiefrt
Figure 11.Application server resource utilization. more, that instrumentation of application code is feasible
. ' when using a Clearwater-based generator.
three machines that fulfill the SLAs. Ongoing research is addressing questions raised by our ex-
VI. RELATED WORK periences and the limitations of the initial efforts. Erample,

oth . dd h o f . i we are exploring the translation of SLAs into perforoen
ther projects address the monitoring of running applica,,icies which are translated into monitoring parameters to

tions. For instance, Dubusman, Schmid, and Kroeger instry jjiqate staging results. Another important questionhis t

ment CIM-specified enterprise Java beans using the JMX,ionqion of TBL to support new applications. A relatedess
framework [16]. Their instrumentation then provides feedbacllg the separation of application-dependent knowledge from

during the execution of the application for comparingite o sjication-independent abstractions in TBL and Mulini. A

application performance to the SLA guarantees..ln the El ird question is the migration of staging tools and patam
project, our primary concern is the process, staging, and fo, ettings (e.g., monitoring) to production use, so isl can

IOW_Q” data analysis that allows the applic_ation _provi@er 'be detected and adaptation actions triggered automatically
confirm before deployment that the application will fulfill during application execution

SLAs. Furthermore, this automated staging process allows the
application provider to explore the performance space and ACKNOWLEDGMENT
resource usage of the application on available hardware.
Several other papers have examined the performance ch
acteristics and attempted to characterize the bottlenecks of t
TPC-W application. These studies generally focused en t

We would like to thank Sharad Singhal of HP Labs for his
Sluable insight and comments during the development®f th
per.

REFERENCES

Talwar, Vanish, Dejan Milojicic, Qinyi Wu, CaltonuPWenchang Yan,
and Gueyoung Jung. “Comparison of Approaches tei&eDeploy-
ment.” ICDCS 2005.

(1

9]

Galen Swint, Calton Pu, Charles Consel, Gueyoumgy,Jakhil Sahai,
Wenchang Yan, Younggyun Koh, Qinyi Wu. "Clearwatdfxtensible,
Flexible, Modular Code Generation." To appear ia Broceedings of
the 20th IEEE/ACM International Conference on Auated Software
Engineering (ASE 2005). November 7-11, 2005. Loegdh, California.

[2] Sahai, Akhil, Calton Pu, Gueyoung Jung, Qinyi Wuenshang Yan, 110] w3C Document Object Model. http:/Aww.w3.0rg/DOM/
Galen Swint. “Towards Automated Deployment of BtolOrder Sys-
tems.” 18" IFIP/IEEE Distributed Systems: Operations and Myemaent [11] Garcia, Daniel, Javier Garcia. “TPC-W E-CommercendBenark
(DSOM). 2005. Evaluation.”|EEE Computer, February 2003.
[3] Menascé, Daniel A. “TPC-W: A Benchmark for E-Comoet IEEE [12] PHARM benchmark http://www.ece.wisc.edu/~pharm/tgstwml|
Internet Computing. May-June 2002. - .
puiing. May [13] Cristiana Amza, Emmanuel Cecchet, Anupam ChandagB&Inikety,
[4] Sahai, Akhil, Sharad Singhal, Rajeev Joshi, Vijapdkiraju. “Auto- Alan Cox, Romer Gil, Julie Marguerite, Karthick Rajani and Willy
mated Generation of Resource Configurations thraeglicies.” IEEE Zwaenepoel. “Bottleneck Characterization of Dynami¢eb Site
Policy, 2004. Benchmarks.” Rice University Technical Report TRIBB.
[5] Goldsack, Patrick, Julio Guijarro, Antonio Lain, itaume Mecheneau, [14] Chung, I-Hsin, Jeffrey K. Hollingsworth. “Automate@luster Based
Paul Murray, Peter Toft.: SmartFrog: Configurataod Automatic Igni- Web Service Performance Tuning.” HPDC 2004. Hongltlawaii.
ti f Distributed Applicati .HP O i Unisity A iati
énggren(l:senzgoz pplications penview Unfsdy Association [15] Zhang, Qi, Alma Riska, Erik Riedel, and Evgenia Simi“Bottlenecks
' ' and Their Performance Implications in E-commercst&ys.” WCW
[6] Pu, Calton, Galen Swint. "DSL Weaving for Distribdt Information 2004. pp. 273-282. 2004
Flow Systems." (Invited Keynote.) Proceedings @f 2005 Asia Pacific) “ .
Web Conference. (APWeb05). Springer-Verlag LNCSrd1i&9 - April [16] Debusman, .M" M. Schmld,_anq R. Kroeger_. Generigfdtmance
1, 2005. Shanghai, China Instrumentation of EJB Applications for ServicedéwWanagement.”
' ' ' ' NOMS 2002.
[7] Galen S. Swint, Gueyoung Jung, Calton Pu. “EvesetaoS for Dis- . . . S
tributed Continual Query Systems.” IEEE 2005 In&tional Conference (17] Grundy, J., Cai, Y., Liu, A: SoftArch/MTE: Ge”e"“.’@' Dlstrlbu_teq
on Information Reuse and Integration (IRI-2005)gast 2005. System Test-beds from ngh-level Software ArchiteetDescriptions.
Automated Software Engineering, 12, 1.
8] Swint, Galen S., Calton Pu. "Code Generation forl WS Using AX-
(8] d [18] Cal, Y., Grundy, J., and Hosking, J. Experiencésdrating and Scaling

pect." Proceedings of 2004 |EEE International Crerfee on Web Ser-
vices (ICWS 2004). July 6-9, 2004. San Diego, ©atifa.

a Performance Test Bed Generator with an Open 8&@ASE Tool.
ASE 2004.

APPENDIXA: EVALUATION DATA
Table 1. Resource utilization. “L” is a low end, “H” a hig¢tnd machine (see text for description). Percentagegor the system. “M/S” is

“Master/Slave” replicated database

DB host APP server host

cpu(%) mem (%) cpu(®%) mem (%)
L/L 99.8 96.9 11.3 78.3
H/L 66.3 98.4 22.2 98.5
H/H 66.0 98.72 5.48 79.7
2H(M/S)/IL 36.6/46.9 96.2/89.5 21.9 98.2
2H(M/S)/H 47.3/38.0 96.6/90.0 5.2 79.5

Table 2. Average response times. 90% WIRT is the web intema response time within which 90% of all reqsefstr that interaction type
must be completed (including downloading of angilldocuments such as pictures). Each number iawbege over three test runs. As we can
see, even though some entries havavarage response time that may be less than that in thhe 8ie deployment may still not meet the SLAs
90% stipulation (e.g. “H/H” case for “Best Seller”)

Interaction
Type 5
- . &% 9 - o

cE 6 . E 8 52 % 8 .z .z S5_ 5% 5= s

EE EZ B2 »E 2 B> E 323 2% 83 8BE s 3 0ot
Hardware < O T O) 5 O 5 0 S O o o 2 = .0 = O S o o] o O c d
Provision <O x m N m O nmxY O T zZo [ela) O£ o0 unuxr ouno [HNS]
90% WIRT 20 3 5 5 3 3 3 5 3 3 3 3 10 3
L/L 54.6 93 441 189 111 69 90 126 116 310 804 86 126 146
HIL 7.2 0.4 45 0.7 03 02 03 0.4 0.2 0.04 02 03 0.42 0.39
H/H 7.8 0.2 4.8 0.7 0.4 0.2 0.2 0.4 0.3 0.01 0.2 0.2 0.39 0.4
2H/L 2.9 0.04 2.6 0.7 0.1 0.1 0.1 0.1 0.1 0.03 0.1 01 20 01
2H/H 2.8 0.04 2.7 0.4 01 01 01 0.1 0.1 0.02 01 01 10 01
Table 3.Percentage of requests that meet response timeeegunts. 90% must meet response time requirenefutill the SLA
L/L 0 36.8 0 17.5 24.6 47.1 33.7 27.3 19.3 73.4 36.9 33.7 46.6 155
H/L 97.8 95.7 | 68.8 97.1 97.7 99.5 99 99.3 99.1 100 99.2 99 99.9 97.2
H/H 100 100 63.6 97.2 97.2 99.6 99.4 99.4 96.9 100 99.3 99.3 99.9 97
2H/L 100 100 96.9 99.1 99.7 100 99.6 100 100 99.8 99.79.59 100 99.5
2H/MH 100 100 94.5 99.7 99.8 100 100 100 100 100 100 99.900 100

APPENDIXB: XTBL, XMOF AND PERFORMANCE POLICY WEAVING

a) XTBL

[<xtbl version="0.1">
<Depl oynent | nf 0>
<i nput name="TPCW XMOF" type="net a- model " >
<ver si on>0. 1</ ver si on>
<descripti on>XM. based O MVOF net a- nodel descri bi ng
resources. . . </ descri pti on>
<l ocati on>. / met a- nodel / TPCW XMOF. xni </ | ocat i on>
</input >
<input name="TPOMWSM." type="sla">
<versi on>0. 1</ ver si on>
<descripti on>XM_ based SLA describing per f or mance
metrics. .. </ description>
<l ocation>. /sl a/ TPOW WSM.. xm </ | ocat i on>
</input>
<input name="TPCWShoppi ng" type="f | ow nodel ">
<ver si on>0. 1</ ver si on>
<descri pti on>TPCW benchmar k shoppi ng
nodel </ descri ption>
<l ocati on>. / f 1 ow model / TPOWShoppi ng. xni </ 1 ocat i on>
</input >
</ Depl oynent | nf 0>

<AppUni ts>

<par ans>
<param nane="target"/ >
<par am nane="max| nt eracti ons"/ >
</ parans>
</ AppUni t >

</ xtbl >

<AppUni t name="Enul at edBr owser " dependency="dl i ent Wr k| oadGener at or " >

b) XMOF

rue” NAM
<VALUE>Wor k| oadGener at or _LS1</ VALUE></

<I NSTANCE CLASSNAVE="QM Act i vi ty"
<PROPERTY PROPAGATED="true" NAME=
/ALUE>VVr k| oadGener at or-1_I nst al
/ | NSTANCE>
TNSTANCE CLASSNAVE=" QM_ACt i vi ty">
PROPERTY PROPAGATED="tr ue” NAVE=
<VALUE>VMr k| oadGener at or - 1_| gni ti on!

<VALUE>QM Act i vi ty. | d=Wr kI oadGener at or - 1_I nst al | </ VALUE></ PROPERTY:
<PROPERTY PROPAGATED="true" NAME="Dependent Activity" TYPE="string"

C) Performance Requirements (as WSML)
fesLa>

I<provi der >ht t p: // her a. cc. gat ech. edu: 8000/ t pcws/ pr ovi der >

>Wr kI oadGener at or </ consuner >

[<SLO i d="TPCWCommon" >
<cl ause>
<eval On i d="TPCWConcurrent Users” recor dt ype="i nput ">

<expr essi on>
<contai ner_name="nunBrowsers”_type="int eger">

<val ue>100</ val ue></ cont ai ner >

<l expr essi on>
</ eval On>
<eval On i d="TPOM&XI nt eractions” recordtype="i nput">

<expr essi on>
<contai ner _name="max| nteractions” type="integer">

<val ue>100000</ val ue></ cont ai ner >

<Texpr essi on>
<Teval On>
<eval On i d="TPCWWaxErrors”_recor dtype="i nput">
<expressi on>
<cont ai ner name="naxErrors" type="integer">
<val ue>30</ val ue></ cont ai ner >
< expr essi on>
<Teval On>
<Tclause>
KTsLo
[<SLO i d="TPCWIhr oughput * >
<metric id="Throughput"></metric>

<cl ause>
<measur edAt i d="TPCWO i ent " >Wr k| oadGener at or </ measur edAt >

</ eval On>
<eval Func i d="TPOWrhr oughput GT12" recordt ype="static">

TET .
\
d) XTBL+
i<xt bl\ nane="TPCWBenchmar k"| versi on="0. 1" >
<Appgni t s>
<AppUni t name="Wor kl ogdGener ator" tenpl at e="Wrkl oadGener at or. xsl " | ang="JAVA" >
<par anms>
<par am nanme="nunirhr eads" type="integer" val ue=100/>
<param nane="t hrepd" type="0Cbject" val ue="Enmul at edBr owser"/ >
<par am name arget" typ string"
val uegd"http://hera. cc. gat ech. edu: 8000/ t pcw'/ >
<param nane="|nax| nteractions" type="integer" val ue=100000/ >
</ par ans>
<aspect name="ptat" tenplate="Stat.xsl>
<par anms>
<par am nal nuniThr eads" typ: i nteger" val ue=100/ >
<param na maxErrors" type="integer" val ue=30/>
</ par ans>
<docs>
<aspect namg="Thr oughput" tenpl ate="Throughput.xsl">
<docs>
<doc na TPCWWSM." type="xm "/>
</ AppUni t >

<i nstances>

<i nst ance type="install">

<sr c>Wor kl oadGener ator/*. cl ass</ src>|

<t ar get >awi ng14. cc. gat ech. edu//t np/ t pcw genCode</ t ar get >|
</ i nst ance>
<i nst ance type="ignition">|

</ i nst ance>

</ xt b|>

[<sr c>awi ng13. cc. gat ech. edu// t np/ t pcw nysql / nysql - st andar d- 4. 0. 18- pc- | i nux-i 686/ start_nysql </ src>|

Figure 12. Example XTBL, XMOF, Performance requirements, arkBK+. XTBL+ is computed from developer-provided sifieations. XTBL is the primary source documentiaghe primary input to
Mulini. In thei nput tag, the XTBL contains references to deploymefarination, the XMOF, shown in b) in reverse-prilitalso refers to a WSML document, ¢) with undegtirtext. The WSML encap-
sulates performance policy information applicablstaging. Mulini’s first stage then incorporatee three documents into a single, interwoven XTBloeéument in d). Reverse-print and underlining corre
spond to the data retrieved from the XMOF and WSkkpectively.

