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CONSTRUCTING FAMILIES OF PAIRING-FRIENDLY ELLIPTIC
CURVES.

DAVID FREEMAN

Abstract. We present a general method for constructing families of elliptic
curves with prescribed embedding degree and prime order. We demonstrate
this method by constructing curves of embedding degree k = 10, a value which
has not previously appeared in the literature, and we show that our method
applies to existing constructions for k = 3, 4, 6, and 12. We give evidence that
our method is unlikely to produce infinite families of curves for embedding
degrees k > 12.

1. Introduction

A cryptographic pairing is a bilinear map between two groups in which the
discrete logarithm problem is hard. In recent years, such pairings have been applied
to a host of previously unsolved problems in cryptography, the most important of
which are one-round three-way key exchange [10], identity-based encryption [4],
and short digital signatures [5].

The cryptographic pairings used to construct these systems in practice are based
on the Weil and Tate pairings on elliptic curves over finite fields. These pairings
are bilinear maps from an elliptic curve group E(Fq) to the multiplicative group
of some extension field Fqk . The parameter k is called the embedding degree of the
elliptic curve. The pairing is considered to be secure if taking discrete logarithms
in the groups E(Fq) and F∗qk are both computationally infeasible.

For optimal performance, the parameters q and k should be chosen so that the
two discrete logarithm problems are of approximately equal difficulty when using
the best known algorithms, and the order of the group #E(Fq) should have a large
prime factor r. For example, a pairing is considered secure against today’s best
attacks when r ∼ 2160 and k ∼ 6-10, depending on the application. In order to
vary the security level or adapt to future improvements in discrete log technology,
we would like to have a supply of elliptic curves at our disposal for arbitrary q and
k.

Many researchers have examined the problem of constructing elliptic curves with
prescribed embedding degree. Menezes, Okamoto, and Vanstone [13] showed that a
supersingular curve must have embedding degree k ≤ 6, and furthermore k ≤ 3 in
characteristic not equal to 2 or 3. Miyaji, Nakabayashi, and Takano [14] have given
a complete characterization of ordinary elliptic curves of prime order and embedding
degree 3, 4, or 6. There is a general construction, originally due to Cocks and Pinch
[7], for curves of arbitrary embedding degree k, but in this construction the sizes of
the field Fq and the subgroup of prime order r are related by q ≈ r2, which leads
to inefficient implementation. Recent efforts have focused on reducing the ratio
ρ = log r/ log q; the best current results are by Brezing and Weng [6], which achieve
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ρ ≈ 5/4 for k = 8 or k = 24, and ρ ≈ (k + 2)/(k − 1) for prime k. Barreto and
Naehrig [1] give a construction for k = 12 with ρ ≈ 1, which allows for curves with
prime order.

The focus of this paper is the construction of elliptic curves with prime order
and prescribed embedding degree. In Section 2 we present a generalized method for
constructing such curves, and give conditions for when this method will give us infi-
nite families of elliptic curves. Our method is based on the Complex Multiplication
method of curve construction [15], and makes use of properties of real quadratic
fields and quadratic extensions of rings Zpi . In Section 3 we show how this method
can be used to construct curves with embedding degree k = 10; such curves have
not, to our knowledge, previously appeared in the literature. We also demonstrate
that our method is a rephrasing of existing constructions for k = 3, 4, 6, and 12.

In Section 4, we show that for k > 6, our method is not likely to give additional
infinite families of elliptic curves with prime degree. Elliptic curves constructed by
our method correspond to certain integral points on a curve of the form Dy2 = f(x),
and for k > 6 the degree of f(x) is usually at least 4. Thus by Siegel’s theorem
Dy2 = f(x) has a finite number of solutions, so the construction generates only
finitely many elliptic curves. We note, however, that exceptions to this general
result exist for k = 10 or 12, and we ask in Section 5 if such exceptions can be
constructed in a systematic fashion.

1.1. Acknowledgments. Research for this paper was conducted during a summer
internship at HP Labs, Palo Alto. I thank Vinay Deolalikar for suggesting this
problem and for providing advice and support along the way. I also thank Gadiel
Seroussi for bringing me to HP and for supporting my research.

2. A general method for constructing pairing-friendly elliptic
curves

In this section, we provide a general method for constructing elliptic curves of
a given embedding degree k. We parameterize the number of points on the curve
an the size of the field of definition by polynomials n(x) and q(x). For each set of
good parameters n(x0), q(x0) we use of the Complex Multiplication method of curve
construction, and we give a criterion for when there will exist infinite families of such
good parameters. To prove existence of these infinite families, we use properties of
real quadratic fields and of quadratic extensions of rings Zpi ; the latter is discussed
in Section 2.1.

We begin by giving a formal definition of embedding degree.

Definition 2.1. Let E be an elliptic curve defined over a finite field Fq, let n be a
prime dividing #E(Fq). The embedding degree of E with respect to n is the smallest
integer k such that n divides qk − 1.

Equivalently, k is the smallest integer such that Fqk contains µn, the group of
nth roots of unity in F̄q. We often ignore n when stating the embedding degree, as
it is usually clear from the context.

If we fix a target embedding degree k, we wish to solve the following problem: find
a prime (power) q and an elliptic curve E defined over Fq such that n = #E(Fq)
is prime and E has embedding degree k. Furthermore, since we may wish to
construct curves over fields of different sizes, we would like to be able to specify
(approximately) the number of bits in q in advance.
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We follow the strategy of Barreto and Naehrig [1] in parameterizing the trace
of the curves to be constructed. Namely, we choose some polynomial t(x), which
will be the trace of Frobenius for our hypothetical curve, and construct polynomials
q(x) and n(x) that are possible orders of the prime field and the elliptic curve group,
respectively. More precisely, if q(x0) is prime for some x0, we can use the Complex
Multiplication method [2, 15] to construct an elliptic curve over Fq(x0) with n(x0)
points and embedding degree k.

Theorem 2.2. Fix a positive integer k, and let Φk(x) be the kth cyclotomic poly-
nomial. Let t(x) be a polynomial with integer coefficients, let n(x) be an irreducible
factor of Φk(t(x) − 1), and let q(x) = n(x) + t(x) − 1. Let f(x) = 4q(x) − t(x)2.
Fix a positive square-free integer D, and suppose (x0, y0) is an integer solution to
the equation Dy2 = f(x) for which

(1) q(x0) is prime, and
(2) n(x0) is prime.

If D is sufficiently small, then there is an efficient algorithm to construct an el-
liptic curve E defined over Fq(x0) such that E(Fq(x0)) has prime order, and E has
embedding degree at most k.

Proof. We first observe that the given solution allows us to construct the desired
elliptic curve via the Complex Multiplication method [2, 15]. Namely, if HD(x) is
the Hilbert polynomial of the quadratic imaginary field Q(

√−D), then the equality
t(x0)2 +Dy2

0 = 4q(x0) means that the prime q(x0) splits into principal prime ideals
in Q(

√−D), and thus HD(x) has a root modulo q(x0). Let j0 be such a root, and
construct an elliptic curve E defined over Fq(x0) with j-invariant j0. Then

#E(Fq(x0)) = q(x0) + 1± t(x0).

If the sign is negative the curve E has the desired number of points n(x0), which
is prime; if the sign is positive then the quadratic twist E′ has the desired number
of points. The bottleneck in this construction is computing the Hilbert polynomial
HD(x), whose coefficients will in general be very large. If D (or more precisely, the
class number of Q(

√−D) is sufficiently small, then HD(x) can be computed easily,
and our construction is efficient.

We now show that a curve with the given number of points over Fq(x0) (usually)
has embedding degree k. Henceforth we suppress x0 when referring to the specific
values of n, q, and t, and use n(x), etc. when referring to the polynomials we have
constructed.

By definition, E having embedding degree k means that

n | qk − 1, and n - qi − 1 for i < k.

Since q = n + t− 1, this is equivalent to

n | (t− 1)k − 1, and n - (t− 1)i − 1 for i < k.

Now it is a standard property of cyclotomic polynomials (see [11][§VI.3]) that

xu − 1 =
∏

v|u
Φv(x).

We see therefore that E having embedding degree k is equivalent to

n | Φk(t− 1), and n - Φi(t− 1) for i < k.
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We have chosen the polynomial n(x) to divide Φk(t(x)− 1), so n is guaranteed to
divide qk − 1, and the embedding degree of E is thus at most k. ¤

Remark 2.3. The fact that n(x) does not divide Φi(t(x) − 1) as polynomials for
i < k does not guarantee that n does not divide Φi(t−1) as integers for some i < k.
However, this latter case will be rare in practice, and thus the embedding degree of
a curve constructed via the method of Theorem 2.2 will usually be k.

Remark 2.4. If we wish to construct curves whose orders are not necessarily prime
but merely have a large prime factor, we may relax condition (2) accordingly, and
the same analysis holds.

In practice, to construct an elliptic curve of embedding degree k, one chooses
polynomials t(x), n(x), and q(x) satisfying the conditions of Theorem 2.2, and tests
various values of x until n(x) and q(x) are prime. If the values of the polynomials
n(x) and q(x) are sufficiently randomly distributed, the Prime Number Theorem
tells us that we should have to test roughly log n(x0) log q(x0) values of x near
x0 until we find an x1 that gives a prime value for both polynomials. Since the
distribution of prime values of polynomials is not well understood in general, it
will be hard to prove theorems that explicitly construct infinite families of elliptic
curves of prime order. Rather, we will be slightly less ambitious and search for
polynomials as in Theorem 2.2 that will give us the desired elliptic curves whenever
the polynomials take on prime values.

Definition 2.5. Let t(x), n(x), and q(x) be polynomials with integer coefficients.
For a given positive integer k and positive square-free integer D, the triple (t, n, q)
represents a family of curves of embedding degree k if the following conditions are
satisfied:

(1) n(x) = q(x) + 1− t(x).
(2) n(x) and q(x) are irreducible.
(3) n(x) divides Φk(t(x)− 1), where Φk is the kth cyclotomic polynomial.
(4) The equation Dy2 = 4q(x) − t(x)2 has infinitely many integer solutions

(x, y).

Defining a family of curves in this way gives us a simple criterion for constructing
elliptic curves of embedding degree k:

Corollary 2.6. Suppose (t, n, q) represents a family of curves of embedding degree
k for some D. Then for each x0 such that n(x0) and q(x0) are both prime, there is
an elliptic curve E defined over Fq(x0) such that #E(Fq(x0)) is prime, and E has
embedding degree at most k.

In practice, for any t(x) we can choose an appropriate n(x) and q(x) satisfying
conditions (1), (2), and (3) of Definition 2.5; the difficulty arises in choosing the
polynomials so that Dy2 = 4q(x) − t(x)2 has infinitely many integer solutions. In
general, if f(x) is a square-free polynomial of degree at least 3, then Dy2 = f(x)
defines a hyperelliptic curve of genus at least 1, and in general there will be only
a finite number of integral points on such a curve. (See Section 4 for a precise
formulation of this result.) Therefore we conclude that (t, n, q) can represent a
family of curves only if f(x) has some kind of special form.

We now show that if f(x) is quadratic, then one integral solution to the equation
Dy2 = f(x) will give us infinitely many solutions. This is the technique used to
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produce curves of embedding degrees 3, 4, and 6, (the MNT curves; see Section
3.2) and curves of embedding degree 10 (see Section 3.1). The idea is as follows:
we complete the square to write Dy2 = f(x) as u2 −D′v2 = T for some constant
T , and observe that (u, v) is a solution to this equation if and only if u+ v

√
D′ has

norm T in the real quadratic field Q(
√

D′). By Dirichlet’s Unit Theorem, there is
a one-dimensional set of elements of this field of norm 1; multiplying each of these
units by our element of norm T gives an infinite family of elements of norm T .
We then show that a certain fraction of these elements can be converted back to
solutions of the original equation.

Theorem 2.7. Fix an integer k > 0, and choose polynomials t(x), n(x), q(x) ∈
Z[x] satisfying conditions (1), (2), and (3) of Definition 2.5. Let f(x) = 4q(x) −
t(x)2. Suppose f(x) = ax2 + bx+ c, with a, b, c ∈ Z, a > 0, and b2−4ac 6= 0. Let D
be a square-free integer such that aD is not a square. If the equation Dy2 = f(x)
has a solution (x0, y0) in the integers, then (t, n, q) represents a family of curves of
embedding degree k.

Proof. Completing the square in the equation Dy2 = f(x) and multiplying by 4a
gives

aD(2y)2 = (2ax + b)2 − (b2 − 4ac).
If we write aD = D′r2 with D′ square-free, and make the substitutions u = 2ax+b,
v = 2ry, T = b2 − 4ac, the equation becomes

u2 −D′v2 = T.

Note that since aD is not a square, we have D′ > 1.
Under the above substitution, a solution (x0, y0) to the original equation Dy2 =

f(x) gives an element u0 + v0

√
D′ of the real quadratic field Q(

√
D′) of norm T .

Furthermore, this solution satisfies the congruence conditions

u0 ≡ b (mod 2a)

v0 ≡ 0 (mod 2r).
(2.1)

We wish to find an infinite set of solutions (u, v) satisfying the same congruence
conditions, for then we can transform such a solution into an integer solution to
the original equation. To find such solutions we employ Dirichlet’s unit theorem
([16, §1.7]), which tells us that the solutions to the equation α2 − D′β2 = 1 are
in one-to-one correspondence with the real numbers α + β

√
D′ = ±(α0 + β0

√
D′)n

for some fixed (α0, β0) and any integer n. The number α0 + β0

√
D′ is called the

fundamental unit of the real quadratic field Q(
√

D′).
In Section 2.1 below, we will examine quadratic extensions of the integers modulo

prime powers, and show in Proposition 2.11 that we can compute an integer m ≈ 2a
such we can write (α0 + β0

√
D)m as α1 + β1

√
D for integers α1, β1, with

α1 ≡ 1 (mod 2a),

β1 ≡ 0 (mod 2a).
(2.2)

Now for any integer n we can compute integers (u, v) such that

u + v
√

D′ = (u0 + v0

√
D′)(α1 + β1

√
D′)n.

We claim that (u, v) satisfy the congruence conditions (2.1). To see this, let αn +
βn

√
D′ = (α1 + β1

√
D′)n. The conditions (2.2) impliy that αn ≡ 1 (mod 2a) and
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βn ≡ 0 (mod 2a). Combining this observation with the formulas

u = αnu0 + βnv0D
′

v = αnv0 + βnu0,

we see that u ≡ u0 ≡ b (mod 2a) and v ≡ v0 (mod 2a). In addition, v0 ≡ 0
(mod 2r) and 2r divides 2a (since aD = D′r2 and D is square-free), so we conclude
that v ≡ 0 (mod 2r).

The new solution (u, v) thus satisfies the congruence conditions (2.1). Any inte-
ger n gives such a solution, so by setting x = (u− b)/2a and y = v/2r for each such
(u, v), we have generated an infinite number of integer solutions to the equation
Dy2 = f(x). This is condition (4) of Definition 2.5; by construction (t, n, q) satisfy
conditions (1), (2), (3), so we conclude that (t, n, q) represents a family of curves
of embedding degree k. ¤

Theorem 2.7 tells us that if f(x) is quadratic and square-free, we may get a
family of curves of the prescribed embedding degree for each discriminant D. If
f(x) is in fact an integer times a square, then we still get a family of curves, but
for only a single D. This is the method used to construct curves for k = 12 (see
Section 3.3).

Proposition 2.8. Fix an integer k > 0, and let n(x), t(x), and q(x) be polynomials
in Z[x] satisfying conditions (1), (2), and (3) of Definition 2.5. Let f(x) = 4q(x)−
t(x)2, and suppose f(x) = Dg(x)2 for some square-free positive integer D and some
polynomial g(x). Then (t, n, q) represents a family of curves of embedding degree k.

Proof. Under these hypotheses, the equation Dy2 = f(x) is satisfied by (x, g(x))
for any x, so condition (4) of Definition 2.5 is satisfied for the integer D. ¤
2.1. Quadratic extensions of Zpr . In the proof of Theorem 2.7 we wished to
compute an element α1 +β1

√
D′ of a real quadratic field Q(

√
D′) such that α1 and

β1 satisfied certain congruence conditions. To show that this number can be easily
computed from a fundamental unit of Q(

√
D′), we analyze quadratic extensions of

Zpr , the integers modulo pr, for various prime powers pr.

Lemma 2.9. Let pr be a power of an odd prime, and let D be a square-free integer.
Let R be the ring

Zpr [x]
(x2 −D)

,

and denote its group of units by R∗. Define the norm map N : R → Zpr by N(a +
bx) = a2 −Db2, and let N∗ be the restriction of N to R∗. If p does not divide D,
then N∗ maps R∗ surjectively onto Z∗pr , and the size of the kernel is

# kerN∗ = pr−1
(
p− (D

p )
)

.

If p divides D, then N∗ maps R∗ surjectively onto (Z∗pr )2, and #ker N∗ = 2pr.

Proof. It is easy to check that N is a homomorphism under multiplication. Now
suppose θ ∈ R∗. Then there is a χ ∈ R such that χθ = 1, so N(χ)N(θ) = 1, and
N(θ) ∈ Z∗pr . Conversely, if θ = a+ bx ∈ R and N(θ) ∈ Z∗pr , then χ = (a− bx)/N(θ)
satisfies χθ = 1, so θ ∈ R∗. We conclude that θ ∈ R∗ if and only if N(θ) ∈ Z∗pr .

Since N(a) = a2 for a ∈ Zpr , it is clear that every square in Z∗pr is in the image
of N∗. We now consider three possible cases:
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• If p divides D then (Z∗pr )2 is the entire image, since N(a+bx) ≡ a2 (mod p),
and an integer is a square mod pr if and only if it is a square mod p.

• If (D
p ) = 1, we set D = d2, and let θ = a+(a−1)d−1x. Then N(θ) = 2a−1,

so for any t ∈ Z∗pr , setting a = (t + 1)/2 gives an element θ ∈ R∗ of norm
t, so N∗ surjects onto Z∗pr .

• If (D
p ) = −1, we wish to show that non-squares of Z∗pr are also in the image

of N∗. It suffices to show that there is a single θ ∈ R∗ for which N(θ) is not
a square, since N(aθ) = a2N(θ). Note that as b takes on all values in Z∗pr ,
−Db2 takes on the values of all squares or all non-squares, depending on
whether −1 is a square mod p. We consider the two subcases separately:
(1) If (−1

p ) = 1 then N(x) = −D, which is not a square.
(2) If (−1

p ) = −1, then −Db2 is a square for all b. Find an integer c such
that c and c+1 are nonzero mod p, with c is a square and c+1 a non-
square mod p; this is always possible since 1 is a square mod p. Now
considering c mod pr, let b =

√
c
−D (mod pr). Then N(1+bx) = 1+c

is a non-square in Z∗pr .
We conclude that N∗ maps R∗ surjectively onto Z∗pr .

Now that we have determined the image of N∗, we may compute the size of the
kernel of N∗ by counting the number of elements of R∗ and using the formula

#kerN∗ =
#R∗

#im N∗ .

To count the elements of R∗, we count the number of non-invertible elements of
R. We have shown above that if θ = a + bx, then θ ∈ R \ R∗ if and only if
N(θ) ∈ Zpr \ Z∗pr = pZpr ; i.e. a2 ≡ Db2 (mod pZpr ). There are three cases:

• (D
p ) = −1: In this case, a2 ≡ Db2 (mod pZpr ) if and only if a, b ∈ pZpr .

Thus #(R \R∗) = (pr−1)2.
• (D

p ) = 0: In this case, a must be in pZpr , and b can be any element of Zpr .
Thus #(R \R∗) = (pr)(pr−1).

• (D
p ) = 1: In this case, for any a there are two possible values of b modulo

pZpr , except when a ∈ pZpr , when there is one possible value. Thus #(R \
R∗) = (pr − pr−1)(2pr−1)− (pr−1)2.

In each case, we have

#(R \R∗) = p2r−2
(
p + (D

p )(p− 1)
)

.

Since #R = p2r, we conclude that

#R∗ = p2r−2(p− 1)(p− (D
p )),

and therefore, since Z∗pr has pr−1(p − 1) elements, half of which are squares, we
have

# kerN∗ =

{
pr−1

(
p− (D

p )
)

if p - D
2pr if p | D.

¤

When p = 2 the result is slightly different, and depends on the equivalence class
of D modulo 8.
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Lemma 2.10. Let pr be a power of 2, and let D be a square-free integer. Let R,
N , and N∗ be defined as in Lemma 2.9. The size of the kernel of N∗ is

#ker N∗ =





2r+2 if D ≡ 0 (mod 8)
2r+1 if D ≡ 2, 3, 4, 6, 7 (mod 8)
2r if D ≡ 1, 5 (mod 8).

Proof. As in the case of odd p, N is a homomorphism and θ ∈ R∗ if and only if
N(θ) ∈ Z∗2r . To determine the image of N∗, it suffices to determine its image mod
8, since t ∈ Z2r is a square if and only if t ≡ 1 mod 8Z2r . Thus we have

# im N = (#8Z2r )(# im(N∗ mod 8)).

If D is even, then the possible values of N(a+ bx) mod 8 are {1, 1−D}, which is
a single value if D ≡ 0 (mod 8) and two values if D ≡ 2, 4, 6 (mod 8). In addition,
a + bx ∈ R∗ if and only if a ∈ Z∗2r , so #R∗ = 22r−1.

If D is odd, then the possible values of N(a+bx) mod 8 are {1, 4−D, 1−4D,−D}.
If D ≡ 1, 5 (mod 8) then this set contains all four values of Z∗8, and if D ≡ 3, 7
(mod 8) it contains only two. In addition, a + bx ∈ R∗ if and only if exactly one of
a, b is odd, so #R∗ = 22r−1 in this case as well.

We use the formula #kerN∗ = #R∗/# im N∗ to get the stated result:

D mod 8 #R∗ #im N∗ #kerN∗

0 22r−1 2r−3 2r+2

2, 3, 4, 6, 7 22r−1 2 · 2r−3 2r+1

1, 5 22r−1 4 · 2r−3 2r

¤
Given a quadratic extension R of Zpi , Lemmas 2.9 and 2.10 tell us the size of

the kernel of the norm map. This kernel is a multiplicative subgroup, so raising any
element of norm 1 to the size of the kernel will give us 1 in R. Combining different
prime powers via the Chinese Remainder Theorem allows us to get 1 modulo any
integer.

Proposition 2.11. Let D be a square-free positive integer, and let α0, β0 ∈ Z such
that α2

0 −Dβ2
0 = 1. For any positive integer n, there is an integer m ≈ n such that

we can write (α0 + β0

√
D)m as α1 + β1

√
D for integers α1, β1, with

α1 ≡ 1 (mod n),
β1 ≡ 0 (mod n).

Proof. Let pr be a prime power dividing n, and let R = Zpr [x]/(x2 − D). Con-
sidering α0 and β0 modulo pr gives an element θ ∈ R∗ that is in the kernel of the
norm map N∗ defined in Lemma 2.9. We may then use Lemma 2.9 (or Lemma
2.10 if p = 2) to compute mp = # kerN∗. Then mp ≈ pr and θmp = 1 in R. If we
write αp + βp

√
D = (α0 + β0

√
D)mp , then αp ≡ 1 (mod pr) and βp ≡ 0 (mod pr).

If we compute mp for each p dividing n and let m =
∏

mp, then by the Chinese
Remainder Theorem m satisfies the conditions of the statement. ¤

3. Examples of elliptic curve families

In this section we give explicit examples of how the general method of Section
2 can be used to construct families of elliptic curves of prime order with specified
embedding degrees. We first construct curves with embedding degree 10; such
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curves have not (to our knowledge) appeared previously in the literature. We then
show how our method gives interpretations of the MNT construction of curves of
embedding degrees 3, 4, and 6 [14], and of the Barreto-Naehrig construction of
curves of embedding degree 12 [1].

3.1. Elliptic curves with embedding degree 10. If we wish to apply Theorem
2.7 to find an infinite family of curves, we require f(x) to be quadratic. If ϕ(k) = 2
(i.e. k = 3, 4, or 6) and t(x) is linear then this condition is trivial; otherwise we
must choose t(x) such that the high-degree terms of (t(x)− 2)2 cancel out those of
n(x). It turns out that this is possible when k = 10.

For k such that ϕ(k) = 4, Galbraith, McKee, and Valença [9] find all of the
quadratic polynomials u(x) such that the degree-8 polynomial Φk(u(x)) splits into
a product of two quartics. For k = 10 there is an infinite family of such u(x),
parameterized by the rational points of an elliptic curve. It turns out that one of
the t(x) that Galbraith, et al give as an example produces a quadratic f(x), and
from this t(x) we may thus compute (t, n, x) that represents a family of curves of
embedding degree 10.

Theorem 3.1. Fix a positive square-free integer D such that 15D is not a square.
Define t(x), n(x), and q(x) by

t(x) = 10x2 + 5x + 3
n(x) = 25x4 + 25x3 + 15x2 + 5x + 1
q(x) = 25x4 + 25x3 + 25x2 + 10x + 3.

Let 15D = D′r2, where D′ is square-free. If the equation u2 −D′v2 = −20 has a
solution with u ≡ 5 (mod 15) and v ≡ 0 (mod r), then (t, n, q) represents a family
of curves of embedding degree 10.

Proof. We must verify that conditions (1)-(4) of Definition 2.5 are satisfied. It is
easy to check that n(x) = q(x)+1− t(x) (1), and that n(x) and q(x) are irreducible
(2). Recall that Φ10(x) = x4 − x3 + x2 − x + 1. Then we have

(3.1) Φ10(t(x)− 1) =

(25x4 + 25x3 + 15x2 + 5x + 1)(400x4 + 400x3 + 240x2 + 60 + 11),

so n(x) satisfies condition (3).
Condition (4) requires an infinite number of integer solutions to Dy2 = f(x),

where D is a square-free integer not equal to 15 and f(x) = 4q(x)− t(x)2. The key
observation is that for this choice of t and n,

f(x) = 4q(x)− t(x)2 = 15x2 + 10x + 3.

If we call this expression f(x), we wish to solve Dy2 = f(x). Multiplying by 15
and completing the square gives

D′(ry)2 = (15x + 5)2 + 20.

Integer solutions to this equation correspond to integer solutions to u2−D′v2 = −20
with u ≡ 5 (mod 15) and v ≡ 0 (mod r). By Theorem 2.7, if one such solution
exists then an infinite number exist, so (t, n, q) represents a family of curves of
embedding degree 10. ¤
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Computations with PARI indicate that for a fixed D the solutions to Dy2 =
f(x) grow very fast, and it is unlikely that we will find a solution where x is of
a reasonable size and q(x) is prime. We computed solutions (x, y) for D = 2, 3,
and 7 (note that an integer solution to u2 − 15Dv2 = −20 implies D ≡ 2 or 3
(mod 5)), and did not find any such solution with q(x) a prime of less than 100
decimal digits. Thus to compute examples of curves of embedding degree 10, we
must take a different tack. Namely, we choose values of x and compute q(x); if
q(x) is prime we take D to be the non-square factors of f(x). If the class number
of D is sufficiently small, we can compute an elliptic curve over Fq(x) with n(x)
points. We illustrate this method with a small example. We refer the reader to [2,
Chapter VII] for a full description of the Complex Multiplication method of curve
construction.

Example 3.2. Let t(x), n(x), and q(x) as in Theorem 3.1. For x = 4 we have
t = 183, n = 8261, and q = 8443, a prime number. Then f(x) = 4q− t2 = 283. We
check that n | q10 − 1 and n - qi − 1 for i < 10, so an elliptic curve over Fq with n
points does indeed have embedding degree 10. We now construct such a curve via
the CM method.

The class number of Q(
√−283) is 3, and the Hilbert polynomial (as computed

by Ben Lynn [12]) is

HD(x) = x3 + 89611323386832801792000x2

+ 90839236535446929408000000x + 201371843156955365376000000000.

This polynomial has roots {1129, 5237, 7723} mod q. Taking the first listed root to
be the j-invariant of our elliptic curve, we compute the curve

E : y2 = x3 + 6278x + 1371

defined over Fq with j-invariant 1129. Then #E(Fq) = q + 1± t; selecting a point
P = (1, 4943), we find that nP 6= O. Thus the quadratic twist of E has the desired
number of points. We twist E by c = 2 (a non-square mod q) to get

E′ : y2 = x3 + 8226x + 2525.

This curve has the desired number of points, as can be easily checked by computing
that Q = (3, 4565) has order n.

Unfortunately, using this method to compute curves of cryptographic size (q ≈
2160) seems to be out of reach of current computational power. For such q the
corresponding CM discriminant D dividing f(x) would have around 80 bits, and
the class number is expected to have roughly 40 bits. The bottleneck comes in
computing Hilbert polynomials of quadratic imaginary fields, and the state of the
art appears to be when the class number is around 8 bits (see [12]).

The table below lists some possible field sizes q(x), group orders n(x), and dis-
criminants D for curves of embedding degree 10 when the field size is at most 32
bits.
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x q(x) dlog2 q(x)e n(x) D
class no. of
Q(
√−D)

4 8443 14 11 · 751 283 3
10 277603 19 11 · 31 · 811 1603 6
16 1747363 21 11 · 158611 4003 13
−20 3809803 22 11 · 31 · 11161 5803 10
22 6134923 23 31 · 197741 7483 10
52 186373723 28 571 · 326351 41083 22
−68 526788523 29 41 · 12847381 68683 45
−80 1011359203 30 4391 · 230311 95203 45
−92 1771725883 31 191 · 9275611 126043 28
−110 3627276403 32 38611 · 93941 180403 60

We note that for about half of these curves (4 of 10), the ratio ρ = log q/ log r,
where r is the largest prime dividing #E(Fq), is less than 4/3. Current methods
for constructing elliptic curves over prime fields achieve only ρ ≈ 2, so our curves, if
they could be constructed over prime fields of cryptographic size, would represent
a significant improvement.

3.2. MNT elliptic curves. Theorem 2.7 also allows us to rephrase the results
of Miyaji, Nakabayashi, and Takano [14], who showed how to construct ordinary
elliptic curves with embedding degrees 3, 4, and 6. Their theorem is as follows:

Theorem 3.3 ([14]). Let E be an ordinary elliptic curve over Fq such that #E(Fq) =
n = q+1−t is prime. Then the following table lists all the possibilities for embedding
degree k = 3, 4, 6:

k t(x) n(x) q(x)
3 −1± 6x 12x2 ∓ 6x + 1 12x2 − 1
4 −x or x + 1 x2 + 2x + 2 or x2 + 1 x2 + x + 1
6 1± 2x 4x2 ∓ 2x + 1 4x2 + 1

Since ϕ(k) = 2 for these k, any linear t(x) will give a CM equation Dy2 = f(x)
with f(x) = 4q(x)− t(x)2 quadratic. If the equation Dy2 = f(x) has one solution,
then by Theorem 2.7 (t, n, q) represents a family of curves of embedding degree
k. Miyaji, et al. arrive at their stronger result by using the fact that n(x) must
be prime to show that t(x) must be one of the specific forms described in their
theorem.

3.3. Elliptic curves with embedding degree 12. Finally, we note that the
Barreto-Naehrig construction of curves of embedding degree k = 12 [1] falls under
the case of Proposition 2.8. Specifically, if t(x) = 6x2 + 1, then Φ12(t(x) − 1) =
n(x)n(−x), where n(x) = 36x4 + 36x3 + 18x2 + 6x + 1, and

f(x) = 4n(x)− (t(x)− 2)2 = 3(6x2 + 4x + 1)2.

We may thus apply Proposition 2.8 to conclude that (t, n, q) represents a family of
curves of embedding degree 12.
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4. Higher embedding degrees

In this section, we show that for most k, the method of Theorem 2.2 is unlikely to
produce infinite families of curves of embedding degree k and prime order. We start
by using Siegel’s Theorem on integral points on curves to give a condition for when
the CM equation Dy2 = f(x) will have only a finite number of integer solutions.
We then analyze the degrees of the polynomials involved in the construction to
show that most cases of our construction will satisfy this condition.

As in Section 2, we fix k and consider triples of polynomials (t(x), n(x), q(x)) ∈
Z[x]3 such that:

(1) n(x) = q(x) + 1− t(x).
(2) n(x) and q(x) are irreducible.
(3) n(x) divides Φk(t(x)− 1), where Φk is the kth cyclotomic polynomial.

Let f(x) = 4q(x) − t(x)2. Recall that if Dy2 = f(x) has infinitely many integer
solutions for some positive square-free integer D, then we say that (t, n, q) represents
a family of curves of embedding degree k. In this case, a solution (x0, y0) to
Dy2 = f(x) with q(x0) prime gives an elliptic curve over the field Fq(x0) with
n(x0) points.

Theorem 2.7 tells us that if we choose (t, n, q) such that f(x) is quadratic, then
we are likely to find an infinite family of curves. The following proposition gives a
partial converse; namely, if the degree of f(x) is at least 3, then we are unlikely to
find an infinite family of curves.

Proposition 4.1. Let (t, n, q) be polynomials with integer coefficients satisfying
conditions (1), (2), and (3), and let f(x) = 4q(x)− t(x)2. Suppose f(x) is square-
free and deg f(x) ≥ 3. Then (t, n, q) does not represent a family of elliptic curves
of embedding degree k.

Proof. Let d = deg f(x), and let g = b(d− 1)/2c. If f(x) is square-free (i.e. has no
double roots), then the equation y2 = D−1f(x) defines a smooth affine plane curve
of genus g (cf. [17, Example II.2.5.1 and Exercise II.14]). By Siegel’s Theorem (cf.
[17, Theorem IX.4.3] and [8, §I.2]), for g ≥ 1, such curves have a finite number
of integral points, and thus (t, n, q) cannot represent a family of elliptic curves of
embedding degree k. ¤

In the remainder of this section, we give evidence that in general the degree of
f(x) is large, and thus by Proposition 4.1 we are unlikely to find an infinite family
of curves. We start by showing that the degree of n(x) must be a multiple of ϕ(k),
where ϕ is the Euler phi function, and thus for k > 6 Proposition 4.1 is likely to
apply.

Lemma 4.2. Fix k, let t(x) be a polynomial, and let n(x) be an irreducible factor
of Φk(t(x)− 1). Then the degree of n is a multiple of ϕ(k).

Proof. Suppose t(x) has degree d, so deg Φk(t(x)− 1) = dϕ(k). Let θ be a root of
n(x), and let ω = t(θ)− 1. Then Φk(ω) = 0, so ω is a primitive kth root of unity.
We thus have the inclusion of fields Q(θ) ⊃ Q(ω) ⊃ Q. Since [Q(θ) : Q] = deg n(x)
and [Q(ω) : Q] = ϕ(k), we conclude that ϕ(k) divides deg n(x). ¤

From this lemma and Proposition 4.1, we see that if ϕ(k) > 2, then the only way
to generate an infinite family of curves is to choose n(x) and t(x) such that f(x)
is either quadratic (as in the k = 10 case of Section 3.1) or has a square factor (as
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in the k = 12 case of Section 3.3. This will be difficult in general, as the condition
n(x) | Φk(t(x)− 1) constrains our choices of n.

In addition, while the degree of n(x) is likely to be large, the Hasse bound
|t| ≤ 2

√
q restricts the possible degree of t(x).

Lemma 4.3. Suppose (t, n, q) represents a family of curves of embedding degree k
for some k and D. Then

deg t(x) ≤ 1
2

deg n(x).

Proof. Suppose deg t(x) > 1
2 deg n(x). Then since f(x) = 4n(x) − (t(x) − 2)2,

deg f(x) = 2 deg t(x), and furthermore, the leading coefficient of f(x) is negative.
Thus f(x) < 0 for all but finitely many x. Since D > 0, Dy2 = f(x) can only
have a solution when f(x) ≥ 0, so the equation must have finitely many solutions,
contradicting property (4) of Definition 2.5. ¤

Combining all of these results, we see that in most cases for a given k there will
be only one possible value of deg t(x).

Proposition 4.4. Let (t, n, q) be polynomials with integer coefficients satisfying
conditions (1), (2), and (3), and suppose ϕ(k) > 2. If (t, n, q) represents a family
of curves of embedding degree k and f(x) = 4q(x)− t(x)2 is square-free, then

deg t(x) =
1
2

deg n(x) =
1
2

deg q(x).

Proof. By Lemma 4.3, deg t(x) ≤ 1
2 deg n(x). If the degree of t(x) is strictly less

than that of n(x), then since f(x) = 4n(x) − (t(x) − 2)2, the degrees of f(x) and
n(x) are equal. By Lemma 4.2, deg n(x) is a multiple of ϕ(k), so deg n(x) > 2.
By Proposition 4.1, if f(x) is square-free than (t, n, q) cannot represent a family
of curves. We conclude that deg t(x) = 1

2 deg n(x). Furthermore, since n(x) =
q(x) + 1− t(x), we see that deg n(x) = deg q(x). ¤

As an immediate corollary, we see that if k > 6 (so ϕ(k) > 2) then choosing a
linear t will not in general give us an infinite family of curves, whereas if k > 12 (so
ϕ(k) > 4) then choosing a quadratic t will not in general give us an infinite family
of curves. Thus for higher embedding degrees we will have to choose t of large
degree such that φk(t(x) − 1) is not irreducible. Galbraith, McKee, and Valença
[9] observe that this is hard even for quadratic t, and as the degree increases the
problem will only become more difficult.

5. Conclusion and Open Questions

We have seen in Section 2 that the current methods in the literature for con-
structing families of elliptic curves of prime order and prescribed embedding degree
can all be subsumed under a generalized method. In Section 3 we showed how the
method can be used to construct curves of embedding degree 10, which have not
previously appeared, and to rephrase the existing results for embedding degrees
3, 4, 6, and 12.

In Section 4 we showed that our method can only produce an infinite family
of curves if a certain polynomial f(x) is either quadratic or has a square factor.
These conditions have been achieved for k = 10 and 12, respectively, but these two
examples appear to be special cases, and in general we have not found a way to
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achieve either of these two conditions. The success of our method in producing
curves of embedding degree greater than 12 depends on our ability to construct
such polynomials, and is thus the most important pressing open question.

Open Question 5.1. Given an integer k such that ϕ(k) > 2, do there exist poly-
nomials t(x) and n(x) such that

• n(x) is an irreducible factor of Φk(t(x)−1), where Φk is the kth cyclotomic
polynomial, and

• f(x) = 4n(x)− (t(x)− 2)2 is either quadratic or has a square factor.

If we can choose t and n such that f(x) is quadratic or a square, then we may
apply Theorem 2.7 or Proposition 2.8, respectively, to look for infinite families
of curves with embedding degree k. However, if f(x) = g(x)2h(x) where h(x) is
square-free, the process becomes more complicated. In fact, if deg h(x) ≥ 3, then
under the rational change of variables y′ = yg(x), the CM equation Dy2 = f(x)
becomes Dy′2 = h(x), and by Siegel’s theorem the latter can only have infinitely
many integral solutions if deg h(x) ≤ 2. However, even if h(x) is quadratic, we
still do not know of a method for finding infinitely many solutions, as the method
of Theorem 2.7, using Dirichlet’s unit theorem for real quadratic fields and our
analysis of quadratic extensions of Zpi , does not seem to apply in this case. We
thus pose finding solutions to equations of this form as our second open question.

Open Question 5.2. Given a single solution in the integers to the equation Dy2 =
g(x)2h(x), where g, h are polynomials with integer coefficients and h is square-free,
find an infinite number of solutions.
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