

Pairing-Based Identification Schemes

David Freeman
Information Theory Research
HP Laboratories Palo Alto
HPL-2005-154
August 24, 2005*

public-key
cryptography,
identification,
zero-knowledge,
pairings

We present several different identification schemes that make use of
bilinear pairings. Each of the schemes is more efficient and/or more
secure than any known pairing-based identification scheme.

* Internal Accession Date Only Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

PAIRING-BASED IDENTIFICATION SCHEMES

DAVID FREEMAN

Abstract. We present several different identification schemes that make use
of bilinear pairings. Each of the schemes is more efficient and/or more secure
than any known pairing-based identification scheme.

1. Introduction

An identification scheme is a protocol whereby Peggy the Prover proves to Victor
the Verifier that she is indeed who she says she is. In practice, Peggy’s identity
is encoded in a private key a and a public key y. The protocol takes the form of
Peggy proving to Victor that she has knowledge of the private key a. For example,
the private key might be a and the public key y = xa (mod p), where a and x are
integers and p is a prime number, and Peggy proves her identity by demonstrating
that she knows the discrete logarithm of y. Now, Peggy could simply tell Victor
a, and Victor could verify that a is the correct private key, but then Victor could
impersonate Peggy to a third party. A viable identification scheme must prevent
this from happening; we require that Victor can’t impersonate Peggy even if she
proves her identity to him polynomially many times. Because of this property, an
identification scheme is also called a zero-knowledge proof of identity.

Feige, Fiat, and Shamir [7] introduced the first identification scheme in 1988,
based on the difficulty of inverting RSA. Soon thereafter, Guillou and Quisquater
[9] and Schnorr [15] introduced their own identification schemes, based on RSA
and discrete logarithms respectively. These two schemes are still amongst the most
efficient and well-studied identification schemes, though their security has never
been reduced to a standard computational problem such as factoring or discrete
logarithms.

Identification schemes are closely related to signature schemes. For example, one
way for Peggy to prove her identity to Victor is for him to ask her to digitally sign
a message of his choice; if the signature is hard to forge, then a valid signature will
constitute an acceptable proof of identity. On the other hand, any of the standard
identification schemes can be converted to a signature scheme by replacing Victor
with a one-way hash function.

Recent years have brought a host of signature schemes that make use of bilinear
pairings. The first of these was the short signature scheme of Boneh, Lynn, and
Shacham in 2001 [6]. This was quickly followed by a spate of pairing-based schemes
designed for various applications that have certain advantages over tradition RSA
or discrete-log based signatures: group signatures, ring signatures, aggregate sig-
natures, multisignatures, threshold signatures, and more. Given this plethora of
pairing protocols and the close relationship between identification schemes and sig-
natures, it is natural to ask whether there might be a pairing-based identification
scheme that has some advantage over the GQ or Schnorr schemes. The first step in

1

2 DAVID FREEMAN

this direction was taken by Kim and Kim in 2002 [11]. Their scheme was later shown
to be flawed; others have since proposed pairing-based identification schemes [10],
[16], [17], but none has given a convincing proof of security with a tight reduction.

In this paper, we present four new identification schemes based on pairings, and
prove their security given certain computational assumptions. We begin in Section 2
by giving a formal definition of security for identification schemes, reviewing some
standard computational assumptions, and describing the bilinear pairings useful
for cryptography. In Section 3, we describe a basic scheme based on the Boneh-
Lynn-Shacham signatures and prove its security in the random oracle model under
the Computational Diffie-Hellman assumption. Since the random oracle model is
somewhat unsatisfactory for proving security of identification schemes, in Section
4 we modify the scheme so that it does not require the use of hash functions.
To prove security of this new scheme we introduce a new assumption, called the
“one-more-Computational Diffie-Hellman” assumption, which is related to several
existing assumptions in the literature.

In Section 5 we take another tack, adapting a signature scheme that does not
make use of random oracles for its proof of security. The proof of security of this
scheme relies of the “Strong Diffie-Hellman assumption,” an analogue of the “Strong
RSA assumption” used to prove security of RSA signatures. Finally, in Section 6
we introduce a scheme whose proof of security relies on the assumption that the
pairing used is a one-way function. We show that this assumption is weaker than
any other made in this paper, and thus this scheme is the most secure of our new
schemes.

Having presented our four new schemes and proved their security, in Section 7
we describe two other pairing-based identification schemes in the literature, and
in Section 8 we examine the bandwidth and computational requirements of all six
schemes. We conclude that each of our protocols is the preferred identification
scheme in some context, for either efficiency or security reasons.

1.1. Acknowledgments. Research for this paper was conducted during a summer
internship at HP Labs, Palo Alto. I thank Vinay Deolalikar for suggesting this
problem and for providing advice and support along the way. I also thank Gadiel
Seroussi for bringing me to HP and for supporting my research.

2. Preliminaries

2.1. Identification schemes. An identification scheme is a protocol whereby Peggy
the Prover proves to Victor the Verifier that she is indeed who she says she is, in
such a way that after interacting with Peggy, Victor cannot turn around and imper-
sonate Peggy to a third party. The protocol must thus be a zero-knowledge proof
of identity: Victor must be convinced by Peggy’s proof, but he cannot gain any
knowledge that allows him to impersonate Peggy.

More formally, an identification scheme consists of a key-generation algorithm G
that creates a valid set of keys a (Peggy’s private key) and pa (Peggy’s public key),
and an interactive protocol (P,V) that takes as input the public and private keys,
and outputs 1 (accept) or 0 (reject). We require that if both users follow the protocol
and use a valid public/private key pair, the protocol always outputs 1 (accepts).
We also require that any cheating prover A that does not know Peggy’s private
key cannot interact with an honest verifier V and give output 1. Furthermore, we
require that a cheating verifier B cannot interact with Peggy, pass what he learns

PAIRING-BASED IDENTIFICATION SCHEMES 3

on to the cheating prover A, and have A interact with an honest verifier V and
output 1. We note that the first security condition is a special case of the second,
in which B outputs nothing. This leads us to the following definition:

Definition 2.1 (cf. [8, Definition 4.7.8]). A (t, q, ε)-identification scheme is a triple
(G,P,V), where G is a probabilistic polynomial-time algorithm and (P,V) is a
pair of probabilistic interactive machines running in time at most t, satisfying the
following conditions:

• Viability: For any α ∈ {0, 1}n, let G(α) = (aα, pα). Then

Pr [〈P(aα, pα),V(pα)〉 = 1] = 1.

• Security: For any α ∈ {0, 1}n, let G(α) = (aα, pα). For any probabilistic
interactive machine B running in time at most t, let Tα be a random variable
describing the output of B(pα) after interacting with P(aα, pα) q times.
Then for any probabilistic interactive machine A running in time at most
t,

Pr [〈A(pα, Tα),V(pα)〉 = 1] < ε.

Note that the security condition implies that a third party, Malice, cannot im-
personate Peggy to Victor, provided that Malice cannot interact concurrently with
Peggy and Victor. Indeed, if Malice can interact concurrently with both, she may
impersonate Peggy by referring Victor’s queries to Peggy and relaying the response
back to Victor.

2.2. Computational assumptions. All of public-key cryptography relies on cer-
tain computational assumptions for its security; e.g. that factoring is difficult.
The assumptions relevant to our identification schemes are of the Diffie-Hellman
type, named after the two creators of public-key cryptography. The original Diffie-
Hellman problem is known as the Computational Diffie-Hellman (CDH) problem.

Definition 2.2. Let G be a cyclic group of order n, let g ∈ G, and let a, b ∈ Zn.
The Computational Diffie-Hellman problem in G is as follows: Given {g, ga, gb},
compute gab.

The (t, ε)-Computational Diffie-Hellman assumption holds in G if there is no
algorithm A : G3 → G running in time at most t such that

Pr
[A(g, ga, gb) = gab

] ≥ ε,

where the probability is taken over all possible choices of (g, a, b).

The CDH problem arises in the context of Diffie-Hellman key exchange, in which
an eavesdropper sees the triple {g, ga, gb} and wants to compute the secret key gab.
In many cases, even partial information about the secret key gab may compromise
the system. If we want to assume that no such partial information can be gained,
we must make an even stronger assumption, known as the Decision Diffie-Hellman
(DDH) assumption. The DDH problem asks whether a given quadruple of elements
of G is a solution to the CDH problem; the DDH assumption is that there is
no polynomial-time algorithm that correctly solves the DDH problem with non-
negligible probability.

Definition 2.3. Let G be a cyclic group of order n, let g ∈ G, and let a, b, c ∈
Zn. The Decision Diffie-Hellman problem in G is as follows: Given {g, ga, gb, gc},
determine whether gab = gc.

4 DAVID FREEMAN

The (t, ε)-Decision Diffie-Hellman assumption holds in G if there is no algorithm
A : G4 → {0, 1} running in time at most t such that

∣∣Pr
[A(g, ga, gb, gab) = 1

]− Pr
[A(g, ga, gb, gc) = 1

]∣∣ ≥ ε,

where the probabilities are taken over all possible choices of (g, a, b, c).

Remark 2.4. The discrete logarithm problem in G is to compute a from {g, ga}.
We note that if the discrete logarithm problem is easy, then the CDH and DDH
problems are both easy, for we can compute a from {g, ga} and then compute
gab = (gb)a. Furthermore, a solution to the CDH problem gives a solution to the
DDH problem. It is not known whether solutions to the CDH or DDH problems
can be used to solve the discrete logarithm problem.

2.3. Bilinear maps and pairings. Joux and Nguyen [12] showed that an effi-
ciently computable bilinear map on G gives an algorithm for solving the Decision
Diffie-Hellman problem on G. Boneh, Lynn, and Shacham [6] make use of this prop-
erty in their signature algorithm by using the pairing to verify that the signature
creates a valid Diffie-Hellman tuple. Our identification schemes will use pairings in
their verification procedures in a similar manner.

The following definition gives the conditions necessary for a bilinear map to be
useful for cryptographic purposes. To simplify our exposition, we will consider only
the case where both arguments of the pairing are in the same group; for the more
general case, see [6].

Definition 2.5. Let G1 and G2 be cyclic groups of prime order p. A map e : G1×
G1 → G2 is a cryptographic pairing if the following conditions hold:

• Bilinearity: for all x, y ∈ G1 and a, b ∈ Z, e(xa, yb) = e(x, y)ab.
• Non-degeneracy: if g is a generator of G1, then e(g, g) is a generator of G2.

Remark 2.6. A cryptographic pairing e can be used to solve the DDH problem
on G1 as follows: given {g, ga, gb, gc}, where g is a generator of G1 and a, b, c are
integers, compute h1 = e(g, gc) and h2 = e(ga, gb). Then h1 = h2 in G2 if and only
if c = ab (mod p). If the CDH problem in G1 is hard and the DDH problem is
easy (e.g. if there is a cryptographic pairing on G1), G1 is known as a Gap Diffie-
Hellman group. The Gap Diffie-Hellman problem is to solve the CDH problem
given an oracle for the DDH problem.

The only known examples of cryptographic pairings are derived from the Weil
and Tate pairings on elliptic curves over finite fields. The study of these groups
is deep and beautiful and is of great interest to current researchers. However, in
describing our protocols we will not take into account the structure of the groups
involved in the pairing; rather, we will make certain computational assumptions
about the group and use the pairing as a “black box.” For further information on
elliptic curves, see [3] or [4].

3. Identification scheme based on BLS signatures

A particularly simple method of building identification schemes is to use a digital
signature algorithm. Victor the Verifier sends a random message to Peggy the
Prover, Peggy signs the message with her secret key, and Victor verifies that the
signature is correct. If the signature scheme is secure against forgery, the cheating
prover has a negligible chance of creating a valid signature on a random message

PAIRING-BASED IDENTIFICATION SCHEMES 5

given him by an honest verifier, no matter how many signatures he has obtained
from the honest prover.

3.1. The BLS signature scheme. Boneh, Lynn, and Shacham [6] were the first
to devise a digital signature scheme based on pairings. The algorithm provides for
signatures of half the length of a DSS signature with an equivalent level of security,
and as such it makes for a particularly efficient identification scheme in terms of
bandwidth. We now describe the BLS signature scheme and the corresponding
identification scheme. We describe the scheme in terms of a pairing, but the scheme
is in fact valid in any group in which the Decision Diffie-Hellman problem is easy
and the Computational Diffie-Hellman problem is hard; such a group is called a
Gap Diffie-Hellman group.

Protocol 3.1 ([6]). Let G1, G2 be cyclic groups of prime order p, and let e : G1 ×
G1 → G2 be a cryptographic pairing. Let g be a generator of G1. Let H : {0, 1}∗ →
G1 be a full-domain hash function.

Key generation: Pick random x ← Zp, and compute v ← gx. The public
key is v, and the secret key is x.

Signing: Given a secret key x ∈ Zp and a message M ∈ {0, 1}∗, compute
h ← H(M) and σ ← hx. The signature is σ ∈ G.

Verification: Given a public key v ∈ G, a message M ∈ {0, 1}∗, and a
signature σ ∈ G, compute e(g, σ) and e(v, h). If the two are equal, output
valid; if not, output invalid.

Boneh, Lynn, and Shacham prove the security of their scheme using the following
game between a challenger and an adversary A.

Setup: The challenger runs algorithm KeyGen to optain a public key PK
and a private key SK. The adversary A is given PK.

Queries: Proceeding adaptively, A requests signatures with PK on at most
qS messages of his choice, M1, . . . ,Mqs ∈ {0, 1}∗. The challenger responds
to each query with a signature σi = Sign(SK, Mi).

Output: Eventually, A outputs a pair (M,σ) and wins the game if (1) M is
not any of M1, . . . , MqS

, and (2) V erify(PK,M, σ) = valid.
The advantage of A, denoted Adv(A), is the probability that A wins the above

game, taken over the coin tosses of KeyGen and of A itself. We are now ready to
define the security of a signature scheme.

Definition 3.2 ([6, Definition 3.1]). A forger A (t, qS , qH , ε)-breaks a signature
scheme if A runs in time at most t, makes at most qS signature queries and at
most qH queries to a hash function, and Adv(A) > ε. A signature scheme is
(t, qS , qH , ε)-existentially unforgeable under adaptive chosen-message attack if no
forger (t, qS , qH , ε)-breaks it.

Theorem 3.3 ([6, Theorem 3.2]). Suppose the (t′, ε′)-Computational Diffie-Hellman
assumption holds in G1. Then the signature scheme defined in Protocol 3.1 is
(t, qS , qH , ε)-secure against existential forgery under an adaptive chosen-message
attack (in the random oracle model) for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − c(qH + 2qS),

where c is a constant that depends on G1, and e is the base of the natural logarithm.

6 DAVID FREEMAN

3.2. The BLS Identification scheme. We now show how the BLS signature
scheme can be adapted nearly verbatim to serve an an identification scheme. We
describe the scheme as an interactive protocol between Peggy the prover and Victor
the verifier.

Protocol 3.4. Let G1, G2 be cyclic groups of prime order p, and let e : G1×G1 →
G2 be a cryptographic pairing. Let g be a generator of G1. Let H : {0, 1}∗ → G1

be a full-domain hash function.
Key generation: Pick random x ← Zp, and compute v ← gx. The public

key is v, and Peggy’s secret key is x. Let n be a positive integer.
Interactive protocol:

(1) Victor sends Peggy a random M ∈ {0, 1}n.
(2) Peggy computes h = H(M) and sends Victor σ = hx.
(3) Victor computes e(g, σ) and e(v, h). If the two are equal he outputs 1

(accept); else he outputs 0 (reject).

Since our signature makes use of a hash function and the proof of security is
in the random oracle model, we must add another parameter to our description
of security of identification schemes. We say that a scheme using a hash function
is a (t, q, r, ε)-identification scheme if the conditions of Definition 2.1 hold, with
the additional requirement that (A,B) make no more than r queries to the hash
function.

Theorem 3.5. If the BLS signature scheme of Protocol 3.1 is (t′, q, r, ε′)-secure
against existential forgery under an adaptive chosen-message attack, then the scheme
of Protocol 3.4 is a (t, q, r, ε) identification scheme, provided that

ε ≥
(

2n

2n − q

)
· ε′ and t ≤ t′ − c

for some constant c depending on the groups and pairing used.

Proof. If Peggy and Victor follow the protocol, then Protocol 3.4 satisfies the
viability condition of Definition 2.1, since

e(g, σ) = e(g, hx) = e(g, h)x = e(gx, h) = e(v, h)

by bilinearity of e.
Now suppose (A,B) is a pair of algorithms that (t, q, r, ε)-breaks the scheme (in

the sense of Definition 2.1) for a given public/private-key pair. Define an attacker
C on the BLS scheme with the same public and private keys, as follows:

(1) For each Mi that the cheating verifier B sends to the honest prover P, have
C request a signature on Mi. Run B on the output.

(2) Simulate the honest verifier V by choosing a random M and sending M as
input to the cheating prover A.

(3) Output the pair (M, τ), where τ ∈ G1 is the element that the cheating
prover A sends to V.

If (A,V) outputs 1, then the output of algorithm C is a valid BLS message-signature
pair. Thus if M is distinct from all of the queries Mi, then (M, τ) is a valid
forgery. Since the probability of (A,B) simulating the prover P is at least ε and
the probability that M is equal to one of the Mi is q/2n, the probability of forging
a signature is at least (1− q/2n) · ε. We thus have broken the BLS scheme with an

PAIRING-BASED IDENTIFICATION SCHEMES 7

attacker that runs in time t+c for some constant c. The attacker makes q signature
queries and h hash queries. ¤
Corollary 3.6. Suppose the (t′, ε′) Computational Diffie-Hellman assumption holds
in G1. Then Protocol 3.4 defines a (t, qS , qH , ε)-identification scheme for all t and
ε satisfying

ε ≥ 2ne(qS + 1)
2n − q

· ε′ and t ≤ t′ − c(qH + 2qS),

where c is a constant that depends on G1, and e is the base of the natural logarithm.

4. Identification schemes based on the one-more-CDH assumption

Protocol 3.4, an identification scheme derived directly from the BLS signature
scheme, is unsatisfactory in several ways. While the communication overhead is
minimal (one element of G1 and one random string which needs only to be large
enough to avoid hash collisions), the prover and verifier must both compute the
hash of the parameter M , which adds computational time. In addition, the proof
of security is in the random oracle model, which requires us to introduce another
security parameter and to assume that the hash function H acts as a random func-
tion. Recent attacks on SHA-1 and other hash functions have called into question
the credibility of such an assumption, so we would ideally like our identification
schemes to be hash-free.

Our first attempt at constructing a pairing-based identification scheme that does
not use hash functions is to simply recreate the scheme based on BLS signatures,
but do away with the hash function.

Protocol 4.1. Let G1, G2 be cyclic groups of prime order p, and let e : G1×G1 →
G2 be a cryptographic pairing. Let g be a generator of G1.

Key generation: Pick random x ← Zp, and compute v ← gx. The public
key is v, and Peggy’s secret key is x.

Interactive protocol:
(1) Victor sends Peggy a random challenge h ∈ G1.
(2) Peggy computes sends Victor σ = hx.
(3) Victor computes e(g, σ) and e(v, h). If the two are equal he outputs 1

(accept); else he outputs 0 (reject).

We can think of Protocol 4.1 as Protocol 3.4 where instead of sending a random
message M in step (1), Victor sends the hash h of the message M ; if the hash
is random, then h is just a random element of G1. With this modification, the
reduction of the scheme to the Computational Diffie-Hellman assumption in G1

breaks down, as that reduction requires that Peggy can’t compute M from h. The
security of this scheme thus requires a different assumption.

To determine what kind of assumption we need to make, we examine the behavior
of an attacker. The cheating verifierA interacts with the honest prover P by sending
q queries of her choice h1, . . . , hq and receiving the ‘signature’ of each message,
hx

1 , . . . , hx
q . The cheating prover B must then take a random query h and return

hx. (Note that by the bilinearity of the pairing e, hx is the only element that B can
send in step (2) that will cause an honest verifier to accept.) If q = 0, then this is
the Computational Diffie-Hellman problem: compute hx from {g, gx, h}. If q > 0,
we are asking for the solution to a CDH problem given the solution to q related
CDH problems. We formalize this notion in the following definition.

8 DAVID FREEMAN

Definition 4.2. Let G be a finite cyclic group. Let A be a randomized algorithm
that takes input g, ga ∈ G and has access to two oracles. The first is a CDH oracle
CDHg,ga(·), which on input h ∈ G returns ha ∈ G. The second is a challenge oracle
C() that, when invoked, returns a random challenge point r ∈ G. Furthermore,
we require that A cannot invoke its CDH oracle after it has invoked the challenge
oracle. We say that algorithm A has advantage ε in solving the one-more-CDH
problem in G if

Pr [A(g, ga, r ← C()) = ra] ≥ ε,

where the probability is taken over the choices g and ga input to A and the r output
from C().

We say the (t, q, ε)-one-more-CDH assumption holds in G if there is no algorithm
A that runs in time at most t, makes at most q queries to its CDH oracle, and has
advantage at least ε in solving the one-more-CDH problem in G.

Definition 4.2, while it has not appeared previously in the literature, is closely
related to the “one-more-RSA-inversion” and “one-more-discrete-logarithm” prob-
lems defined by Bellare, et al. [1]. Bellare and Palacio [2] use these assumptions to
prove the security of the well-known Guillou-Quisquater and Schnorr identification
schemes, so it seems eminently reasonable that we should have to use a similar
assumption in proving the security of our scheme.

We now prove the security of Protocol 4.1 based on the one-more-CDH assump-
tion.

Theorem 4.3. Suppose the (t, q, ε)-one-more-CDH assumption holds in G. Then
Protocol 4.1 is a (t−O(1), q, ε)-identification scheme.

Proof. Let (g, gx) be the public parameters for Protocol 4.1. Suppose (A,B) is
an attack that (t, q, ε)-breaks Protocol 4.1 in the sense of Definition 2.1. Define an
algorithm C that attempts to solve the one-more-CDH problem in G1, as follows:

(1) For each challenge hi that the cheating verifier B sends to the honest prover
P in step (1) of the protocol, query the CDH oracle with hi. Run B on the
set of outputs {hx

i }.
(2) Simulate the honest verifier V by querying the challenge oracle C(). Send

the output r as input to the cheating prover A.
(3) Output t, the element of G1 sent by the cheating prover A in step (2) of

the protocol.
If (A,B) successfully breaks the identification scheme, then the element t satisfies
e(g, t) = e(ga, r), and thus by the bilinearity of the pairing, t = ra. The probability
of success of C is thus at least ε. Furthermore, C makes at most q queries to the
CDH oracle and runs in time t + O(1). ¤

5. Identification scheme based on the Strong Diffie-Hellman
assumption

Protocol 4.1 is very efficient, requiring an exchange of two elements of G1, one
exponentiation for the prover, and two pairing computations for the verifier. The
one-more-CDH required to prove the scheme’s security seems reasonable, especially
given that similar assumptions are used in the proof security of two well-known
identification schemes [2]. However, the fact that the one-more-CDH assumption
has not previously appeared in the literature may give one pause, as it is generally

PAIRING-BASED IDENTIFICATION SCHEMES 9

not advisable to introduce new assumptions about computational difficulty. Thus
we would like to find an identification scheme as efficient as Protocol 4.1 that
requires a weaker security assumption, or at least one that is more widely believed.

The difficulty in adapting the BLS signature scheme into an identification scheme
resulted from the random oracle nature of the security proof. Thus we may have
more success if we try to adapt a signature scheme that does not require random
oracles for its security. Boneh and Boyen [5] have devised such a scheme. The
security rests on an assumption known as the Strong Diffie-Hellman assumption.

Definition 5.1 ([5, §3.2]). Let G be a cyclic group of prime order p, and let g be
a generator. The q-Strong Diffie-Hellman problem in G is defined as follows: given
a (q + 1)-tuple (g, gx, g(x2), . . . , g(xq)) as input, output a pair (c, g1/(x+c)), where
c ∈ Zp. An algorithm A has advantage ε in solving the q-SDH problem in G if

Pr
[
A(g, gx, g(x2), . . . , g(xq)) = (c, g

1
x+c)

]
≥ ε,

where the probability is over the choice of g ∈ G and x ∈ Z∗p.
We say that the (t, q, ε)-Strong Diffie-Hellman assumption holds in G if there

is no algorithm A that runs in time t and has advantage ε in solving the q-SDH
problem in G.

The Boneh-Boyen signature scheme based on the q-SDH problem is as follows.

Protocol 5.2 ([5]). Let G1, G2 be cyclic groups of prime order p, and let e : G1 ×
G1 → G2 be a cryptographic pairing. Let g be a generator of G1.

Key generation: Pick random x, y ← Z∗p, and compute u ← gx, v ← gy,
and z ← e(g, g). The public key is (u, v, z), and the secret key is (x, y).

Signing: Given a secret key (x, y) ∈ (Z∗p)2, and a message m ∈ Z∗p, pick a
random r ∈ Z∗p and compute σ ← g1/(x+m+yr) ∈ G1, where 1/(x + m + yr)
is computed modulo p. In the (unlikely) event that x+m+yr = 0 (mod p),
try again with a different random r. The signature is (σ, r) .

Verification: Given a public key (u, v, z) ∈ G2
1×G2, a message m ∈ Z∗p, and

a signature (σ, r) ∈ G1×Z∗p, compute e(σ, u · gm · vr). If the result is equal
to z output valid; if not, output invalid.

Theorem 5.3 ([5, Theorem 3.1]). Suppose the (q, t′, ε′)-SDH assumption holds in
G1. Then the signature scheme defined by Protocol 5.2 is (t, qs, ε)-secure against
existential forgery under adaptive chosen message attack, provided that

qs ≤ q, ε ≤ 2 (ε′ + qS/p) ≈ 2ε′ and t ≤ t′ −Θ(q2T),

where T is the maximum time for an exponentiation in G1.

In our protocol based on the Boneh-Boyen scheme, Victor the Verifier sends a
random challenge message to Peggy the Prover, which Peggy then signs with her
private key.

Protocol 5.4. Let G1, G2 be cyclic groups of prime order p, and let e : G1×G1 →
G2 be a cryptographic pairing. Let g be a generator of G1.

Key generation: Pick random x, y ← Z∗p, and compute u ← gx, v ← gy,
and z ← e(g, g). The public key is (u, v, z), and Peggy’s secret key is (x, y).

Interactive protocol:
(1) Victor sends Peggy a random m ∈ Z∗p.

10 DAVID FREEMAN

(2) Peggy chooses a random r ∈ Z∗p, computes σ = g1/(x+m+yr), and sends
Victor (σ, r).

(3) Victor computes e(σ, u · gm · vr). If the result is equal to z he outputs
1 (accept); else he outputs 0 (reject).

Theorem 5.5. Suppose the (q′, t′, ε′)-SDH assumption holds in G1. Then Protocol
5.2 defines a (t, q, ε)-identification scheme, provided that

q ≤ q′, ε ≥ 2ε′ ·
(

p

p− q

)
+

2q

p− q
≈ 2ε′ and t ≤ t′ −Θ(q′2T),

where T is the maximum time for an exponentiation in G1.

Proof. We first check the viability condition. If Peggy and Victor both follow the
protocol, then Victor will always accept, since

e(σ, u · gm · vr) = e(g1/(x+m+yr), gx · gm · gyr) = e(g, g) = z

by bilinearity of e. To check the soundness condition, given an attacker (A,B)
that (t, q, ε)-breaks the scheme (in the sense of Definition 2.1), we can define an
attacker C that (t + O(1), q, ε′)-breaks the Boneh-Boyen signature scheme, where
ε′ = ε(1− q/p). The reduction is identical to that in the proof of Theorem 3.5, and
we choose not to repeat the details. ¤

6. Identification scheme based on pairing as a one-way function

The identification scheme of Protocol 5.4 is less efficient than that of Protocol 4.1,
requiring both more bandwidth and more computation. However, the assumption
required to prove security is weaker for the former, implying a tradeoff between
efficiency and security. One may ask how far we can carry this tradeoff: what is the
weakest possible assumption necessary for a secure identification scheme? We now
propose a scheme whose proof of security rests solely on the assumption that the
pairing e : G1 × G1 → G2 is a one-way function when one argument is fixed. This
assumption is weaker than both Computational Diffie-Hellman in G1 and Decision
Diffie-Hellman in G2, both of which are standard assumptions that have been used
to prove the security of a wide variety of cryptosystems.

When we say than a pairing is a one-way function, we mean that given g ∈ G1

and y ∈ G2, it is hard to invert the pairing; that is, to find an element h ∈ G1 such
that e(g, h) = y.

Definition 6.1. Let e : G1 ×G1 → G2 be a cryptographic pairing. We say that e
is a (t, ε)-one-way pairing if for any algorithm A that takes as input g ∈ G1 and
x ∈ G2, produces as output an element of G1, and runs in time at most t,

Pr [e(g,A(g, x)) = x] < ε,

where the probability is taken over the possible values of g and x. Given any such
A, we say that A inverts the pairing with probability at most ε.

As evidence that one-wayness of pairings is a weak assumption, we show that
inverting a pairing is no easier than solving either the Computational Diffie-Hellman
problem in G1 or the Decision Diffie-Hellman problem in G2.

Proposition 6.2. Let e : G1×G1 → G2 be a cryptographic pairing between groups
of order p. Suppose the (t, ε) Computational Diffie-Hellman assumption holds in
G1. Then e is a (t−O(1), ε)-one-way pairing.

PAIRING-BASED IDENTIFICATION SCHEMES 11

Proof. Let A(g, x) be an algorithm that runs in time t and inverts the pairing with
probability at least ε. Given a triple (h, ha, hb) of elements in G1, let y = e(ha, hb),
and run A(h, y). Then A outputs hab with probability at least ε. ¤

Proposition 6.3. Let e : G1×G1 → G2 be a cryptographic pairing between groups
of order p. Suppose the (t, ε)-Decision Diffie-Hellman assumption holds in G2.
Then e is a (t/ε−O(1), 4

√
ε)-one-way pairing.

Proof. Let A(g, x) be an algorithm that runs in time t and inverts the pairing
with probability at least ε. We are given a quadruple {y, ya, yb, yc} of elements of
G2 and asked to determine if c = ab (mod p). Define algorithm B as follows.

(1) Choose a random g ∈ G1, and compute

h1 = A(g, y), h2 = A(g, ya),
h3 = A(g, yb), h4 = A(g, yc).

(2) Compute e(h1, h4) and e(h2, h3). If the two are equal output 1; else output
0.

Suppose all four outputs of algorithm A are correct. Then h2 = ha
1 , h3 = hb

1, and
h4 = hc

1. We therefore have e(h1, h4) = e(h1, h1)c and e(h2, h3) = e(h1, h1)ab. The
two are equal if and only if c = ab (mod p). Thus if all four outputs are correct B
gives a correct output to the Decision Diffie-Hellman problem. The probability that
all four outputs are correct is at least ε4, which gives the stated security bound.
Furthermore, B runs in time 4t + O(1). ¤

Remark 6.4. We can increase the probability of success of B by iterating the
algorithm. Performing each computation of hi ε−4 times increases the probability
of success to a constant; fewer repetitions lead to different time/success ratios.

Given these two propositions as evidence, we are confident that inverting a pair-
ing is a sufficiently hard problem. We thus forge ahead and define an identification
scheme based on the difficulty of inverting a pairing.

Protocol 6.5. Let G1, G2 be cyclic groups of prime order p, and let e : G1×G1 →
G2 be a cryptographic pairing.

Key generation: Pick random P,Q ← G1, random y ← G1, and random
s ← Z∗p. Compute v ← e(P, Q)−1 · y−s ∈ G2. The public key is (P, y, v),
and Peggy’s secret key is (Q, s).

Interactive protocol:
(1) Peggy chooses random R ← G1 and r ← Zp, and sends Victor x =

e(P,R) · yr ∈ G2.
(2) Victor sends Peggy a random m ∈ Z∗p.
(3) Peggy computes T = R · Qm ∈ G1 and a = r + ms ∈ Zp, and sends

Victor (T, a).
(4) Victor computes e(P, T) · ya · vm ∈ G2. If the result is equal to x he

outputs 1 (accept); else he outputs 0 (reject).

12 DAVID FREEMAN

Remark 6.6. It is easy to see that this protocol is viable: if Peggy and Victor
both follow the protocol, Victor will always output 1, since

e(P, T) · ya · ve = e(P,R ·Qm) · yr+ms · (e(P, Q)−1 · y−s)m

= e(P,R) · e(P, Q)m · yr+ms · e(P, Q)−m · y−ms

= e(P,R) · yr

= x.

Showing security is a trickier matter. Our proof uses the “heavy row” tech-
nique introduced by Feige, Fiat, and Shamir [7] in their seminal paper on proofs of
identity. The proof closely follows those of Okamoto’s schemes [14] based on the
discrete logarithm and RSA inversion.

The idea of the proof is as follows. We suppose there is an algorithm (A,B) that
breaks Protocol 6.5, and construct an algorithm that tries to invert the pairing.
Given P ∈ G1 and y ∈ G2, we simulate Protocol 6.5 using (P, y) as the public key
and our own randomly chosen private key. Successful execution of the algorithm
(A,B) on this instance of the protocol gives a valid interaction between the cheating
prover A and the honest verifier V. If we run the algorithm again and have the
cheating prover A use the same random coins, the “heavy row” lemma tells us that
we will, with high probability, find a second valid interaction between A and V.
From the transcripts of these two interactions we can compute X ∈ G1 such that
e(P, X) = y, and we have inverted the pairing.

We begin the detailed proof by defining a “heavy row” and proving some useful
lemmas.

Definition 6.7. Let (A,B) be an algorithm attacking Protocol 6.5. Let RAB
denote the random coins consumed by (A,B). Let M be a matrix summarizing
all of the possible outcomes of the cheating prover A interacting with an honest
verifier V, as follows: the rows of M are indexed by the possible choices of RAB,
the columns of M are indexed by all the possible choices e of the verifier V in step
(2), and the entries are 1 if V accepts A’s proof, and 0 otherwise.

Suppose the probability of success of (A,B) (i.e. the fraction of 1’s in M) is ε.
A row of M is a heavy row if its fraction of 1’s is at least ε/2.

Lemma 6.8. Suppose the success probability of (A,B) in attacking Protocol 6.5 is
at least 2/p. Then at least half of the 1’s in M are located in heavy rows.

Proof. Assume the contrary, i.e. at least half the 1’s in M are located in non-heavy
rows. Then the fraction of 1’s in all of the non-heavy rows combined is at least 1/p.
On the other hand, in each non-heavy row the fraction of 1’s is by definition less
than 1/p, a contradiction. ¤
Lemma 6.9. Let (A,B) be an algorithm attacking Protocol 6.5 that runs in time
t and has success probability ε > 2/p. Then there is a algorithm that runs in
expected time O(t/ε) and, with probability at least 1

2 (1 − 1
e)2 outputs the history

of two accepted interactions (x,m, T, a) and (x,m′, T ′, a′) of the cheating prover A
with an honest verifier V, where m 6= m′.

Proof. We adopt the following two-step “probing strategy” (cf. [13], [14]) to find
two 1’s in the same row of M .

Step 1: Probe random entries in M to find an entry a0 that is a 1. Denote
the row in which a0 is located by M0.

PAIRING-BASED IDENTIFICATION SCHEMES 13

Step 2: Probe random entries along M0 to find another entry a1 with 1.
Let p1 be the success probability of Step 1 after probing 1/ε random entries of M .
Since the fraction of 1’s in M is ε, we have

p1 ≥ 1− (1− ε)1/ε > 1− 1
e
.

Let p2 be the success probability of Step 2 after probing 2/ε random entries of M0.
If M0 is a heavy row, then the fraction of 1’s in M0 is at least ε/2, and thus the
probability of success is at least

1−
(
1− ε

2

)2/ε

> 1− 1
e
.

By Lemma 6.8, the probability that M0 is a heavy row is at least 1/2, and thus
p2 > 1

2 (1− 1
e). Therefore the overall success probability of our strategy is at least

1
2 (1− 1

e)2, and the total running time is approximately 3t/ε.
If the strategy finds two entries a0, a1 in the same row of M , we output the

transcripts (x, e, T, a) and (x, e′, T ′, a′) of the interaction between A and V when
given the random coins corresponding to a0 and a1 respectively. Since the entries are
in the same row, the random coins of (A,B) are the same for the two interactions,
and thus the first output x is the same for the two interactions. Since the entries are
in different columns, the random coins of V are different for the two interactions,
and thus m 6= m′. ¤

With this setup, we may now prove the security of our identification scheme.

Theorem 6.10. Suppose e : G1 × G1 → G2 is a (t′, ε′)-one-way pairing, where
ε′ > 3/16 and p = |G1| = |G2| ≥ 17. Then Protocol 6.5 is a (t, q, ε)-identification
scheme, provided that either

ε ≤ 2
p

or c0 +
3(t + csq)

ε
≤ t′

for some constants c0, cs depending on G1, G2, and the pairing e.

Proof. In Remark 6.6 we demonstrated the viability condition of Definition 2.1,
so we need only show the security condition. Suppose (A,B) is an algorithm that
runs in time t and attacks Protocol 6.5 with success probability ε > 2/p. Define an
algorithm C that attempts to invert the pairing, as follows:

(1) Given input P ∈ G1 and y ∈ G2, choose random Q∗ ∈ G1 and s∗ ∈ Zp,
and compute v = e(P, Q∗)−1y−s.

(2) Simulate Protocol 6.5 with (P, y, v) as the public key and (Q∗, s∗) as the
private key.

(3) Run (A,B) on the simulated protocol 1/ε times. If the attack succeeds,
record RAB (the random coins of (A,B)) and the transcript (x,m, T, a).

(4) Run (A,B) on the simulated protocol 2/ε times, using RAB as the random
coins. If the attack succeeds, record the transcript (x,m′, T ′, a′).

(5) Let Q = (T/T ′)1/(m−m′) ∈ G1 and s = (a− a′)/(m−m′) ∈ Zp. Output

Z = (Q/Q∗)1/(s∗−s)
.

We now analyze the algorithm C. By Lemma 6.9, the probability that steps (3)
and (4) both succeed and output valid transcripts with m 6= m′ is at least 1

2 (1− 1
e)2.

We now claim that if steps (3) and (4) both succeed, then (Q, s) 6= (Q∗, s∗) with

14 DAVID FREEMAN

probability almost 1. To prove this, we show that if (Q, s) and (Q∗, s∗) are both
valid private keys for the public key (P, y, v), then even an infinitely powerful cheater
B cannot distinguish the two solely from his interaction with an honest prover P.
The condition (Q, s) and (Q∗, s∗) both being valid private keys for the public key
(P, y, v) implies that

(6.1) e(P,Q) · ys = e(P, Q∗) · ys∗ .

Let R∗ = R + (Q − Q∗)m ∈ G1 and r∗ = r + m(s − s∗) ∈ Zp. Then the following
relations hold:

e(P,R) · yr = x = e(P, R∗) · yr∗

R + Qm = T = R∗ + Q∗m

r + ms = a = r∗ + ms∗

Furthermore, for given (Q,Q∗, s, s∗,m), the distribution of (R, r) is identical to
that of (R∗, r∗). Since the cheating verifier B receives only (x, T, a) from the honest
prover P, we see that there is no way for B to determine which private key was used.
Since there are p possible pairs (Q, s) satisfying e(P, Q)−1y−s = v, the probability
that (Q, s) 6= (Q∗, s∗) is (p− 1)/p, or nearly 1.

We now show that if steps (3) and (4) succeed and (Q, s) 6= (Q∗, s∗), then step
(5) outputs a Z such that e(P,Z) = y. We first note that if (Q, s) 6= (Q∗, s∗), then
equation (6.1) implies that Q 6= Q∗ and s 6= s∗, so Z is well-defined. Since x is the
same in both transcripts, we have

e(P, T) · ya · vm = e(P, T ′) · ya′ · vm′
.

By the bilinearity of the pairing, this implies that

e(P, T/T ′) · ya−a′ = vm′−m,

so by definition of Q and s we have

e(P, Qm−m′
) · ys(m−m′) = vm′−m

Raising the whole equation to the power 1/(m − m′) and applying the definition
v = e(P,Q∗)−1 · y−s gives

e(P, Q) · ys = e(P, Q∗)ys∗ .

Again using the bilinearity of the pairing, this gives us

e(P, Q/Q∗) = ys∗−s,

and raising both sides to the power 1/(s∗ − s) gives

e(P, Z) = y,

as desired.
Finally, we analyze the running time and success probability of C. If cs is the time

taken to simulate the protocol with the private key (Q∗, s∗), then each iteration of
steps (3) and (4) takes time t+ csq, so those two steps take time 3(t+ csq)/ε. Steps
(1) and (5) take a constant amount of time, say c0, so the total running time is
c0 + 3(t + csq)/ε. By Lemma 6.9 and our computations above, if steps (3) and (4)
succeed and (Q, s) 6= (Q∗, s∗), then step (5) outputs a valid Z. The probability of
the former is at least 1

2 (1 − 1
e), while the probability of the latter is (p − 1)/p. If

p ≥ 17 then the simultaneous probability of the two events is at least 3/16. Thus
our reduction gives the stated bounds. ¤

PAIRING-BASED IDENTIFICATION SCHEMES 15

The assumption p ≥ 17 is trivial, since in cryptographic applications p ≈ 2160.
However, the assumption that e is a (t′, ε′)-one-way pairing with ε′ > 3/16 is a
bit stronger than we would like. If we remove both of these conditions we get the
following reduction:

Corollary 6.11. Suppose e : G1 × G1 → G2 is a (t′, ε′)-one-way pairing. Then
Protocol 6.5 is a (t, q, ε)-identification scheme, provided that

ε ≥ 3
√

ε′ and t ≤ t′

2
− c0 − csq,

for some constants c0, cs depending on G1, G2, and the pairing e.

Proof. The reduction is the same as in the proof of Theorem 6.10, except we don’t
iterate steps (3) and (4) of algorithm C. Then the success probability of step (3) is
ε. By Lemma 6.8 the entry of the summary matrix M corresponding to the output
of step (3) is in a heavy row with probability at least 1/2, and if this is the case
then the success probability of step (4) is at least ε/2. The success probability of
step (5) is still (p− 1)/p, which is at least 1/2 since p ≥ 2. Thus the total success
probability π of the algorithm satisfies

π ≥ ε · 1
2
· ε

2
· 1
2

>
ε2

9
.

The algorithm takes time 2(t + csq) + 2c0, where cs is the time taken to simulate
the protocol and 2c0 is the time taken to perform the computations in steps (1)
and (5). Thus our reduction gives the stated bounds. ¤

7. Other identification schemes

While there have been several pairing-based identification schemes proposed in
the literature, none of these have been given satisfactory proofs of security. The
first such scheme, proposed by Kim and Kim [11] and based on the Gap Diffie-
Hellman problem, was shown to be breakable in constant time by any adversary
knowing only the public key. Yao, Wang, and Wang [17] proposed a modification
of the scheme and proved it to be secure if the Gap Diffie-Hellman problem (cf.
Remark 2.6) is hard. However, their reduction requires exponential time, and thus
the proof is unsatisfactory. We will therefore not consider these two schemes when
comparing the various pairing-based identification schemes.

More recently, two pairing-based identification schemes have been proposed that
appear to be more promising. Shao, Cao, and Lu [16] have proposed a scheme
very similar to our Protocol 5.4, based on the Boneh-Boyen signature scheme. The
authors claim that the scheme’s security depends on the intractability of the Strong
Diffie-Hellman problem, but they do not give a proof, and we have not been able
to come up with a reduction. The scheme is as follows:

Protocol 7.1 ([16]). Let G1, G2 be cyclic groups of prime order p, and let e : G1×
G1 → G2 be a cryptographic pairing.

Key generation: Pick random g ← G1 and x ← Z∗p, and compute v ← gx ∈
G1 and z ← e(g, g) ∈ G2. The public key is (g, v, z), and Peggy’s secret
key is x.

Interactive protocol:
(1) Peggy chooses a random w ∈ Z∗p and sends Victor τ = gw.
(2) Victor sends Peggy a random r ∈ Z∗p.

16 DAVID FREEMAN

(3) Peggy sends Victor σ = g1/(xr+w).
(4) Victor computes e(σ, τ · vr). If the result is equal to z he outputs 1

(accept); else he outputs 0 (reject).

Conjecture 7.2. Suppose there exists an algorithm (A,B) that (t, q, ε)-breaks
Protocol 7.1. Then there is an algorithm C that runs in time polynomial in t
and q and succeeds in solving the Strong Diffie-Hellman problem with probability
polynomial in ε.

The final pairing-based identification scheme we consider was proposed by Huf-
schmitt, Lefranc, and Sibert [10]. The scheme is similar to our Protocol 6.5. The
authors assert that breaking the scheme is equivalent to solving the Gap Diffie-
Hellman problem (cf. Remark 2.6), and that the reduction is based on the same
ideas as Theorem 6.10. Indeed, the scheme appears to be amenable to the same
type of reduction as in our proof, but the details have yet to be worked out. We
thus state the security result as a conjecture.

Protocol 7.3 ([10]). Let G1, G2 be cyclic groups of prime order p, and let e : G1×
G1 → G2 be a cryptographic pairing..

Key generation: Pick random g ← G1 and a, b ← Z∗p, and compute h ←
ga, k ← gb, s ← gab ∈ G1 and z ← e(g, g), v ← e(g, g)ab ∈ G2. The public
key is (g, ga, gb, s, v, z), and Peggy’s secret key is gab.

Interactive protocol:
(1) Peggy sends Victor a random r ∈ Z∗p and sends Victor w = zr =

e(g, g)r.
(2) Victor sends Peggy a random c ∈ Z∗p.
(3) Peggy sends Victor σ = gr · sc.
(4) Victor computes e(g, σ) and w · vc in G2. If the two are equal he

outputs 1 (accept); else he outputs 0 (reject).

Remark 7.4. The public parameters h = ga and k = gb are not used anywhere in
the protocol; it appears that they are only included to allow us to reduce breaking
the protocol to breaking the Computational Diffie-Hellman problem in G1. If these
two parameters are ignored, then the relevant computational problem is not CDH
but inverting the pairing. We therefore conjecture that breaking the protocol will
reduce to inverting the paring as in our Theorem 6.10.

Conjecture 7.5. Suppose there exists an algorithm (A,B) that (t, q, ε)-breaks
Protocol 7.3. Then there is an algorithm C that runs in time polynomial in t and
q and succeeds in inverting the pairing e with probability polynomial in ε.

8. Comparison of identification schemes

We now compare the various identification schemes we have presented so far in
terms of bandwidth and computation required for one iteration of each protocol.
The results are summarized in Table 1.

Currently, the only pairings used in cryptographic applications are derived from
the Weil and Tate pairings on elliptic curves over finite fields Fq. These pairings
map from the elliptic curve group E(Fq) to some extension field Fqk ; the parameter
k is called the embedding degree of the curve E. For the pairing to be useful, it is
necessary that the discrete logarithm problems in E(Fq) and Fqk are both hard.

PAIRING-BASED IDENTIFICATION SCHEMES 17

ID Security Bandwidth Computation
Scheme Assumption G1 G2 Zp G1 exp. G2 exp. Pairings

3.4 CDH in G1 (ROM) 1 0 1 1P 0 2V
4.1 one-more-CDH 2 0 0 1P 0 2V
5.4 SDH in G1 1 0 2 1P, 2V 0 1V
6.5 e is one-way 1 1 2 1P 1P, 2V 1P, 1V
7.1 SDH in G1(?) 2 0 1 2P, 1V 0 1V
7.3 e is one-way(?) 1 1 1 2P 1P, 1V 1V

Table 1. Comparison of proposed identification schemes. The
Bandwidth column indicates the number of elements of G1, G2,
and Zp exchanged during one instance of the protocol. The Com-
putation column indicates how many exponentiations in G1, expo-
nentiations inG2, and pairing computations the Prover and Verifier
must execute during one instance of the protocol. We note that
the security proof of Protocol 3.4 is in the Random Oracle Model.

Given current discrete logarithm algorithms, q ∼ 2160 and k ∼ 21024 appear to be
reasonable choices for the parameters.

We now assume that G1 = E(Fq), G2 = Fqk , and p ≈ q. An element P of E(Fq)
can be represented by an element of Fq corresponding to the x-coordinate of P , plus
one bit for the sign of the y-coordinate. Thus elements of G1 and Zp are of about
the same size (log2 p bits), while elements of G2 will be k times as large. Therefore
if minimizing bandwidth is a primary concern, one of Protocols 3.4 or 4.1 should
be used. Protocols 6.5 and 7.3 require an element of G2 to be transmitted, so they
should be avoided.

If minimizing computational time is a primary concern, we will wish to minimize
pairing computation and perform as few exponentiations as possible in the larger
group. Thus Protocols 5.4 and 7.1 are ideal for this application. If we only care
about minimizing the Prover’s computational time, as in a smart card application,
then one of Protocols 3.4, 4.1, or 5.4 will be best. However, Protocol 3.4 may be
less preferable since the prover and verifier must each compute a hash function in
addition to performing the group computations.

Finally, if security is the foremost concern, then we should choose a scheme
whose proof requires the weakest security assumption. Table 2 shows the impli-
cations between the various computational assumptions used to prove security of
our protocols. We see that the weakest assumption is that the pairing is a one-way
function. Protocols 6.5 and 7.3 are based on this assumption, so these two schemes
are the most secure. Which of the two is preferable will depend on the particular
implementation: if pairing computation is faster then exponentiation in G1 then
our Protocol 6.5 is preferable; if the reverse is true then Protocol 7.3 will be faster.

9. Conclusion

We have presented four new identification schemes based on pairings, and proved
their security given various computational assumptions. Each of our schemes is at
least as efficient and/or secure as any scheme currently in the literature. Our main
contribution is Protocol 6.5, a scheme which is secure if the pairing in question

18 DAVID FREEMAN

e : G1 ×G1 → G2

is a one-way pairing
(Definition 6.1)

KS

CDH in G1

(Definition 2.2)
3;

nnnnnnnnnnn

nnnnnnnnnnn dl

RRRRRRRRRRRR

RRRRRRRRRRRR

SDH in G1

(Definition 5.1)
one-more-CDH in G1

(Definition 4.2)

Table 2. Implications between various computational assumptions.

is a one-way function; this assumption is weaker than that made for any other
pairing-based scheme currently in the literature.

For another of our schemes, Protocol 4.1, we introduced an assumption called
the “one-more-CDH” assumption, analogous to the “one-more-discrete-log” and
“one-more-RSA-inversion” assumptions, and proved our scheme secure under this
assumption. An important open question is what relation this assumption has to
other computational assumptions in the literature.

References

[1] M. Bellare, C. Namprempre, D. Pointcheval, M. Semanko, “The one-more-RSA-inversion
problems and the security of Chaum’s blind signature scheme,” Journal of Cryptology
16:3 (2003), 185-215.

[2] M. Bellare, A. Palacio, “GQ and Schnorr identification schemes: proofs of security against
impersonation under active and concurrent attacks,” in CRYPTO ’02, ed. M. Yung,
Springer LNCS 2442 (2002), 162-177.

[3] I. Blake, G. Seroussi, N. Smart, Elliptic Curves in Cryptography, LMS Lecture Note
Series 265, Cambridge University Press, 1999.

[4] I. Blake, G. Seroussi, N. Smart, eds., Advances in Elliptic Curve Cryptography, LMS
Lecture Note Series 317, Cambridge Unviersity Press, 2005.

[5] D. Boneh, X. Boyen, “Short signatures without random oracles,” in EUROCRYPT ’04,
ed. C. Cachin, J. Camenisch, Springer LNCS 3027, 2004, 56-73.

[6] D. Boneh, B. Lynn, H. Shacham, “Short signatures from the Weil pairing,” in ASIA-
CRYPT ’01, ed. C. Boyd, Springer LNCS 2248 (2001), 514-532.

[7] U. Feige, A. Fiat, A. Shamir, “Zero knowledge proofs of identity,” Journal of Cryptology
1:2 (1988), 77-94.

[8] O. Goldreich, Foundations of Cryptography, Vol. 1, Cambridge University Press, Cam-
bridge, 2001.

[9] L. S. Guillou, J. J. Quisquater, “A ‘paradoxical’ identity-based signature scheme resulting
from zero-knowledge,” in CRYPTO ’88, ed. S. Goldwasser, Springer LNCS 403 (1990),
216-231.

[10] E. Hufschmitt, D. Lefranc, H. Sibert, “A zero-knowledge identification scheme in Gap
Diffie-Hellman groups,” in Western European Workshop on Research in Cryptology, 2005
(conference records available online at http://www.weworc.org), 8-12.

[11] M. Kim, K. Kim, “A new identification scheme based on the Bilinear Diffie-Hellman
problem,” in ACISP ’02, Springer LNCS 2384 (2002), 362-378.

[12] A. Joux, K. Nguyen, “Separating Decision Diffie-Hellman from Computational Diffie-
Hellman in cryptographic groups,” Journal of Cryptology 16:4 (2003), 239-247.

PAIRING-BASED IDENTIFICATION SCHEMES 19

[13] K. Ohta, T. Okamoto, “On concrete security treatment of signatures derived from iden-
tification,” in CRYPTO ’98, ed. H. Krawczek, Springer LNCS 1462 (1998), 354-370.

[14] T. Okamoto, “Provably secure and practical identification schemes and corresponding
signature schemes,” in CRYPTO ’92, ed. E. F. Brickell, Springer LNCS 740 (1993),
31-53.

[15] C. P. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptology 4:3
(1991), 161-174.

[16] J. Shao, R. Lu, Z. Cao, “A new efficient identification scheme based on the Strong Diffie-
Hellman assumption,” in International Symposium on Future Software Technology, 2004.

[17] G. Yao, G. Wang, Y. Wang, “An improved identification scheme,” in Coding, Cryptogra-
phy, and Combinatorics, Berkhäuser-Verlag Progress in Computer Science and Applied
Logic 23 (2004), 397-405.

Hewlett-Packard Laboratories
E-mail address: dfreeman@math.berkeley.edu

