

A Framework for Dynamic Resource Management on the Grid

Jyotishman Pathak, Jem Treadwell, Raj Kumar, Philip Vitale, Fernando Fraticelli
HP Laboratories Palo Alto
HPL-2005-153
August 22, 2005*

Grid resource
management,
Dynamic
adaptation,
resource
provisioning, SLA
management

A grid computing environment enables sharing of loosely coupled
resources and services required by various applications in a large-scale.
In such an environment, one of the key challenges is to develop a
flexible, scalable, and self-adaptive resource management system which
would allow users to carry out their jobs by transparently accessing
autonomous, distributed, and heterogeneous resources. In this paper, we
discuss the research issues and conceptual architectural design of such a
dynamic resource management framework, which leverages the open-
source Globus Toolkit and commercially available HP OpenView
Configuration Management Solutions software (Radia). Our approach
provides adaptive and scalable middleware for static and dynamic
resource provisioning, resource monitoring, virtual organization-wide
authorization, and business policy management. The framework is based
on automated, policy-driven change and configuration management
functionality that can dynamically adjust the size, configuration and
allocation of various resources that will be consumed in the environment.

* Internal Accession Date Only Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

A Framework for Dynamic Resource Management on the Grid

Jyotishman Pathak1,3,∗ Jem Treadwell3 Raj Kumar2 Philip Vitale3 Fernando Fraticelli3
1Artificial Intelligence Lab, Department of Computer Science, Iowa State University, Ames, IA 50011, USA
2Hewlett-Packard Laboratories & Office of Corporate Strategy and Technology, Palo Alto, CA 94304, USA

3Hewlett-Packard Company, Mount Laurel, NJ 08054, USA
{firstname.lastname}@hp.com

Abstract

A grid computing environment enables sharing of
loosely coupled resources and services required by var-
ious applications in a large-scale. In such an envi-
ronment, one of the key challenges is to develop a
flexible, scalable, and self-adaptive resource manage-
ment system which would allow users to carry out
their jobs by transparently accessing autonomous, dis-
tributed, and heterogeneous resources. In this pa-
per, we discuss the research issues and conceptual ar-
chitectural design of such a dynamic resource man-
agement framework, which leverages the open-source
Globus Toolkit and commercially available HP Open-
View Configuration Management Solutions software
(Radia). Our approach provides adaptive and scal-
able middleware for static and dynamic resource provi-
sioning, resource monitoring, virtual organization-wide
authorization, and business policy management. The
framework is based on automated, policy-driven change
and configuration management functionality that can
dynamically adjust the size, configuration and alloca-
tion of various resources that will be consumed in the
environment.

Keywords: Grid resource management, Dynamic
adaptation, Resource provisioning, SLA management.

1 Introduction

The development of grid computing technologies[20]
over the past several years has provided us a means
of using and sharing heterogeneous resources over lo-
cal/wide area networks, and geographically dispersed
locations. This has resulted in the ability to form
loosely coupled, high-performance computational envi-
ronment comprising numerous scalable, fault tolerant,
and platform-independent services across the entire In-
ternet. The grid infrastructure provides a way to ex-

∗This work was done while Jyotishman Pathak was an intern
at Hewlett-Packard. Additional email: jpathak@cs.iastate.edu

ecute applications over autonomous, distributed and
heterogeneous nodes by secure resource sharing among
individuals and institutions. Typically, a user can sub-
mit jobs to a grid without necessarily knowing (or even
caring) where it will be executed. It is the responsibil-
ity of the grid resource management system to distrib-
ute such jobs among a heterogeneous pool of servers,
trying to optimize the resource usage and provide the
best possible quality of service. However, the design
and implementation of such systems where clients can
seamlessly execute their applications pose several chal-
lenges. Firstly, the grid is a dynamic framework where
resources are subjected to changes due to system per-
formance degradation, node failure, allocation of new
nodes in the infrastructure, etc. As a result, a grid
resource management system should have the capa-
bility to adapt to these changes and take appropriate
actions to improve performance of various computing
applications. For example, if a node running an appli-
cation crashes, then the resource management system
should migrate the jobs running in that machine to an
alternate one. Secondly, typical grid resource require-
ments for an application vary during the course of its
execution. Similarly, user demand patterns may also
fluctuate, as a result of which, some resources may
be over-utilized while others under-utilized. In such
cases, it might be beneficial to provision additional re-
sources (if all resources are over-utilized) or migrate
jobs from an under-utilized resource and de-allocate it,
hence ensuring optimal resource usage1. At the same
time, the decisions for resource provisioning and shar-
ing should be made while maintaining the autonomy of
their environments and geographical locations. Thus,
the resource management framework should provide
a highly scalable and configurable approach for pro-
visioning and securely accessing the resources. Also,

1In some situations allowing jobs to execute in an under-
utilized node (resulting in faster execution) might be optimal,
as opposed to migrating them. Such decisions could be made
using various optimization heuristics[35, 37] or policy-based
modeling[31].

1

lately there has been interest in using grid computing
for e-Business and e-Commerce applications which de-
mand stricter service guarantees. Typically, such guar-
antees are specified as part of agreements, which need
to be monitored and assured by the grid resource man-
agement system.

Keeping these issues in mind, in this paper we inves-
tigate a framework for dynamic grid resource manage-
ment using the open-source Globus Toolkit[19]—a soft-
ware toolkit for building grid infrastructure—and com-
mercially available HP OpenView Configuration Man-
agement Solutions software (Radia)[3]—an automated,
policy-driven change and configuration management
infrastructure for dynamic allocation of physical sys-
tem and data resources. More specifically, we introduce
the architecture of Globus-Radia Resource Man-
agement System (GRRMS)—a framework for sta-
tic and dynamic resource provisioning, resource moni-
toring, virtual organization-wide resource sharing, SLA
management and resource brokerage. The main goal
of this system is to provide seamless access to users for
submitting jobs to a pool of heterogeneous resources,
and at the same time, dynamically monitoring the re-
source requirements for execution of applications and
adapting to those needs in accordance with the chang-
ing load characteristics of the underlying resources.
The architecture has been designed to be a pluggable
core component for resource management processes
which leverage various services provided by the existing
technologies, namely the Globus Toolkit (hereafter
Globus) and HP OpenView Configuration Man-
agement Solutions software (also known as Radia).
GRRMS implements various WSRF-compliant[14] ser-
vices to provide the dynamic resource management
functionalities required in a typical grid computing en-
vironment.

The rest of the paper is structured as follows: in
Section 2, we give a brief introduction to Globus and
Radia software. Section 3 describes the architecture of
GRRMS in detail. Related work is presented in Section
4, while Section 5 concludes with a summary of our
work.

2 Existing Technologies

In what follows, we provide an overview about the
main functionalities of Globus and Radia software.

2.1 Globus

The development of Globus began in the early 90’s
to support the building of distributed computing appli-
cations and infrastructures[19]. Globus has been used

to build computational Grids and Grid-based appli-
cations by enabling sharing of computer power, data
storage, and various other facilities online, spanning
the Internet across institutional and geographic bound-
aries in a secured manner. The latest release of the
software, Globus Toolkit version 4.0, provides signifi-
cant Web services implementation advancements over
its previous counterparts in terms of features, compli-
ance to various emerging standards (e.g., WSRF[14]),
and usability. The following is a brief description of
some of its core components:

• Security: Globus security tools build on the Grid Se-
curity Infrastructure (GSI)[21] for authenticating users
and services, secure communications, and authoriza-
tion. These tools support functions such as managing
user credentials, delegation of credentials and main-
taining group membership information. Examples of
the tools include Community Authorization Service,
Delegation Service etc.

• Execution Management: The execution manage-
ment tools enable initiation, monitoring, management,
scheduling, and/or coordination of remote computa-
tions. Globus implements the Grid Resource Alloca-
tion and Management (GRAM) service for providing
these functionalities. In order to address issues such as
data staging, delegation of proxy credentials, and job
monitoring and management, the GRAM server is de-
ployed along with Delegation and Reliable File Transfer
(RFT) servers.

GRAM typically depends on a local mechanism
for starting and controlling the jobs. To achieve
this, GRAM provides various interfaces/adapters to
communicate with local resource schedulers (e.g.,
Condor[10], PBS[8], LSF[7]) in their native messaging
formats. The job details to GRAM are specified us-
ing an XML-based job description language, known as
Resource Specification Language (RSL). RSL provides
syntax consisting of attribute-value pairs for describing
resources required for a job, including memory require-
ments, number of CPU’s needed etc.

• Information Services: The information services
provide static and dynamic data about the various Grid
resources. These services are mainly concerned with
gathering, indexing, archiving, processing, and distrib-
uting information about the configuration and state
of various resources and services over the Grid. The
Globus component within this package is called Mon-
itoring and Discovery Service (MDS). Globus uses its
WSRF core and WS-Notification[13] interfaces to sim-
plify the tasks of registering information sources and
locating and accessing the required information. Other
Globus components, such as GRAM and RFT, also de-

2

fine various resource properties, providing a basis for
monitoring and discovery.

• Data Management: The data management pack-
age provides many utilities and tools for transmitting,
storing and managing large amounts of data required
for various Grid-based applications. The elements of
this package include GridFTP service, Reliable File
Transfer (RFT) service, Replication Location Service
(RLS) etc.

2.2 Radia

Radia[3] implements an automated, policy-driven
change and configuration management system for dy-
namically adjusting the size, configuration and alloca-
tion of physical system and data resources. It provides
a highly adaptable, flexible, and automated approach
to resource provisioning for an infrastructure. Radia
adopts an object-oriented technology for transforming
software and content from file-based media into self-
aware, platform-independent, intelligent objects that
can automatically assess the environment into which
they are deployed, and have the capability to install,
update and repair themselves accordingly. This deploy-
ment of resources is governed by a distribution model or
desired state which records the identities and intended
configurations of the various nodes (including deploy-
ment destinations e.g., PDAs, desktops) that are part
of the Radia-managed infrastructure. Figure 1 shows
the elements for such a distribution model, which we
categorize and explain in detail in the remainder of this
section.

The various components of the Radia Distribution
Model can be divided into four main categories:

• Radia Management Applications: The Radia
Management Applications are the client-side compo-
nents that allow for automated deployment (of soft-
ware), updates, repairs, and deletion activities. They
also have the ability to inspect the hardware and soft-
ware configurations of the client machine.

There are three types of Radia Management Appli-
cations: Radia Application Manager allows the admin-
istrator to control the distribution of applications. Us-
ing this software, the administrator can select, install,
uninstall, and update a subscriber’s software and con-
tent automatically in a seamless way. Radia Software
Manager allows subscribers to install, delete, verify,
and update their own elective software and content via
a user interface. However, the administrator still de-
cides which software and content each subscriber uses.
The Radia Inventory Manager Client gathers informa-
tion about software and hardware configurations auto-

matically and stores them in a centralized server loca-
tion. This information can be viewed as reports. Typi-
cal information gathered might be the amount of RAM
in a computer, hard disk capacity, processor type, ver-
sions of OS running etc.

• Radia Management Infrastructure: This mod-
ule is the heart of all Radia activities. It is used
to maintain the desired state or distribution model,
store software and content packages, automate soft-
ware management activities, and perform various ad-
ministrative functions. The core of this infrastructure
consists of the Radia Configuration Server and Radia
Administrator Workstation.

The Radia Configuration Server dynamically gener-
ates the distribution model based on situation-specific
data, creating a software environment that automati-
cally adapts to changes in a user or machine environ-
ment. The server synchronizes distribution of objects
such as application packages, computer configurations,
and policy relationships across the network automat-
ically. Typically, a policy defines which services sub-
scribers, client computers or managed devices are en-
titled to. These policies are stored in the Radia Con-
figuration Server Database. It also stores the various
software components (e.g., application packages) that
Radia distributes and the security and access rules for
Radia administrators.

The Radia Administrator Workstation provides var-
ious tools, namely Radia Publisher, Radia System
Explorer, Radia Client Explorer and Radia Screen
Painter, for centralized control of Radia objects and
entitlements. These tools carry out basic Radia func-
tions such as manage Radia database, prepare appli-
cations for deployment, view Radia client objects etc.
The Radia Publisher provides an interface for packag-
ing all software for deployment and post-deployment
management. It determines what packages to install
by scanning the destination node before and after in-
stalling the software. The Radia System Explorer al-
lows the administrator to view and configure policy and
application services stored in the Radia database. Us-
ing the explorer, the administrator can modify applica-
tion packages after the initial publishing process or de-
fine new application service prerequisites and policies
for application entitlements. The administrator also
uses the Radia Client Explorer to manipulate (create
new, view/edit existing) objects, and the Radia Screen
Painter to create new customized dialog boxes.

• Radia Extended Infrastructure: The Radia Ex-
tended Infrastructure provides a scalable solution to
software management services across an enterprise.
Through distributed administrative capabilities, repli-

3

Figure 1. Elements in Radia Distribution Model[3]

cation services, and bandwidth conservation and me-
tering, it gives an end-to-end management solution.
This infrastructure comprises the following compo-
nents:

Radia Distributed Configuration Server allows shar-
ing of information about policies and management con-
tent in an enterprise-wide network comprising more
than one Radia Configuration Server. It can automat-
ically synchronize distributed Radia databases allow-
ing managed applications and policy information to be
shared across the enterprise.

The Radia Multicast Server enhances and simplifies
data-transmission technology by reducing the number
of transmissions necessary, optimizing the use of net-
work bandwidth. Such an approach transmits the same
data stream to many receivers simultaneously as op-
posed to transmitting individually. However, the server
makes sure that only the participants eligible for re-
ception receive the data and only the data requested
is transmitted. The information required to determine
whether a client is eligible is stored in the Radia data-
base.

The Radia Integration Server integrates indepen-
dent modules, giving them access to all the functions
and resources under its control. This server com-
prises the following modules: Radia Management Por-
tal, provides a web-based single access point from which
Radia administrators can deploy Radia client compo-
nents, detect the current status of some Radia com-
ponents, manage the Radia database, and track the

completion status of many tasks. It also exposes the
following Web services - GroupManagement service for
managing device groups, their attributes and member-
ships, ServiceManagement service for managing vari-
ous Radia services, their availability and deployment,
PolicyManagement service for managing the definition
of policies in devices, groups etc., JobManagement ser-
vice for managing jobs that are created and monitored
and EntityManagement service for managing entities
that can access the various Radia objects. The Ra-
dia Inventory Manager Server stores the hardware and
software information collected from various machines
by the inventory manager client. This server enables
centralized reporting and administration based upon
the discovery results. The Radia Mobility Server acts
as an interface between the mobile device and the Ra-
dia Configuration Server for mobile devices distribu-
tion activities. The Radia Proxy Server localizes digi-
tal content enabling Radia-managed devices to receive
application data over LANs as opposed to WANs, as a
result reducing the overall network traffic. Such servers
are beneficial in environments where many clients re-
quest the same resource to be deployed from the same
location. Placement of proxy servers at strategic loca-
tions in a network improves its efficiency. Radia Stag-
ing Server also helps in reducing the network traffic.
Typically, when a client first connects to the Radia
Configuration Server to retrieve an application pack-
age, a copy of the software is sent from the Radia Con-
figuration Server to the Radia Staging Server. The

4

next client that connects to the Configuration Server is
re-directed (based on network locality-aware heuristics
such as[36]) to obtain its application from the Staging
Server. This also reduces the workload on the Config-
uration Server.

• Radia Management Extensions: These exten-
sions provide enterprise integration and extended func-
tionality. The following are the various extensions:
Radia Extensions for Windows Installer is a manage-
ment system which gives complete control over resource
gathering and analysis of Windows installer packaging.
It provides the ability to build, test, maintain, deploy
and troubleshoot applications and installation pack-
ages. The Radia Policy Server is used for administra-
tion purposes. It integrates with LDAP servers, Novell
NDS etc. to enable single source points of control for
user authentication, access policies and subscriber en-
titlement. The Radia Configuration Server can be con-
figured to query the Policy Server to determine what
applications and software components should be dis-
tributed and managed for a particular subscriber. The
Radia Adapter for SSL utilizes the latest encryption
and security protocols for secured network and soft-
ware distribution. The Radia Publishing Adapter is a
tool that allows automated, unattended updates to ap-
plication packages. It identifies a set of files and compo-
nents, and publishes them, in a controlled, automated,
and repeatable manner, to the Radia database where
they are stored as objects (to be deployed).

3 Globus-Radia Resource Management
System

This section describes the conceptual architectural
design of Globus-Radia Resource Management System
(GRRMS). It provides an automated, scalable, highly
configurable and adaptable solution to dynamic re-
source management for a grid environment. One of the
key features of this framework is the ability to automat-
ically provision (and de-provision) resources for execu-
tion of applications based on the changing load charac-
teristics of the environment, thereby ensuring optimal
resource usage. The GRRMS architecture, shown in
Figure 2, implements a set of WSRF-compliant ser-
vices to provide various functionalities for authoriza-
tion, resource discovery, job monitoring and manage-
ment, SLA management, and resource provisioning as
part of the Globus-Radia Broker (GRB). In what fol-
lows, we describe these components in detail.

3.1 Globus-Radia Broker

The Globus-Radia Broker (GRB) provides a gate-
way to clients for interacting with GRRMS. The aim
of this module is to efficiently use various components
of GRRMS and control the whole process of job and
resource management. Typically, a client interacts
with the broker by providing its own proxy creden-
tials, which are authenticated and authorized by the
Authorization Manager (Section 3.3). Once the client
gains access to GRRMS, it can perform various actions
(e.g., submit a job request for execution, query for job
status, request for advance reservation of multiple re-
sources). GRB provides generic interfaces for achieving
these functionalities by communicating with different
modules within GRRMS.

Figure 2. GRRMS Architecture

3.2 Job Queue

This module provides a secure (GSI-enabled[21])
JobQueue interface for GRRMS, using which clients
can submit job requests. The module validates each
incoming job description and puts the job in the job

5

queue. The job queue stores the jobs which are
ready for execution and implements First In First
Out (FIFO) strategy, although in principle, it can
implement any alternative queue management algo-
rithm (e.g., Shortest Job First, Negotiated Priorities).
JobQueue also communicates with the JobManager
(Section 3.5) via GRB, as a result of which clients can
monitor the status of their jobs (either by querying or
subscribing to notifications). The job descriptions in
our framework are specified using Resource Specifica-
tion Language (RSL), an XML-based job description
language for Globus. However, the grid community
is currently working on an (abstract) Job Submission
Description Language[4] which is independent of lan-
guage bindings and provides a rich set of features and
attribute semantics. We are following these develop-
ments and will adhere to the standards as and when
available.

3.3 Authorization Manager

Globus provides a secure framework for submitting
and executing jobs and applications on various grid re-
sources. It uses the GSI[21] infrastructure for authenti-
cating users and services, secure communications and
authorization. This infrastructure is based on a sta-
tic mapping from the user’s Distinguished Name (DN)
to a local user-id using a grid-mapfile. While this ap-
proach provides the benefits of secure single-signon au-
thentication, for our purposes we need a framework
which is more scalable (support for several thousands
of users), extensible (support for detailed authoriza-
tion rules) and expressive (support for authorization
policies between Virtual Organizations and communi-
ties).

GRRMS provides these features with the
AuthorizationManager service. This service acts as
a mediator between the clients and resource providers
for authentication and authorization. It provides a
registry (based on My-Proxy[19]) to which all the po-
tential grid users and services/sites are registered. The
various grid resources and sites belonging to a partic-
ular Virtual Organization (VO) or community register
via a local identity. Typically, the registry stores
information about user profiles, proxy credentials
authorized by a Certificate Authority (CA), and user
access control policies. Such policies describe ‘who,
what and when’ issues related to user access, essen-
tially specifying resources, users, and when users have
permission to access the resources. These policies are
represented using Extensible Access Control Markup
Language (XACML)[2]. The AuthorizationManager
service implements an authorization server based on

Sun’s open-source XACML engine[9]. The server
grants or denies authorization to users based on
their associated access policies (specified by the
administrator) and generates a temporary proxy
credential for resource access, valid for a particular
time period. However, in a multi-VO configuration,
it is possible that the requesting user does not have
access to the referenced VO. In such situations,
the AuthorizationManager service maps the user’s
credentials to a guest/template user credential to
provide authorization. These guest accounts are also
specified as part of the XACML policy and, in general,
have limited access and authorization capabilities.

3.4 Resource Manager

The Resource Manager is responsible for finding
and monitoring appropriate resources for execution of
jobs and applications over the grid and provides a
ResourceManager interface. It relies on static and
dynamic data provided by a set of information and
monitoring services. Static data is the information
that does not vary during run-time (e.g., OS type),
whereas dynamic data refers to variables affecting the
actual resource availability (e.g., CPU usage). In our
current framework, the ResourceManager communi-
cates with Globus’s Monitoring and Discovery Service
(MDS) and Radia’s Inventory Manager Server (IMS)
for providing such information. Both these services
provide centralized access to the various hardware and
run-time configuration-related information about the
grid resources. Typically in a grid environment one
can envision multiple independent projects or applica-
tion suites making use of many heterogeneous clusters
and services. Similar to [32], we assume a hierarchically
structured set of clustered resources, spanning multiple
VOs, such that they deploy information providers (e.g.,
Ganglia[24], Hawkeye[10]) for local/host-level monitor-
ing and allow MDS & IMS access to scheduler and
cluster information. The ResourceManager filters the
resources by comparing the dynamic resource informa-
tion received from MDS & IMS and static data with the
job requirements received from the client. Once a re-
source (or a set of candidate resources) is selected, the
manager interacts with the AuthorizationManager in-
terface to determine if the requested user has access
and authorization to the resource.

However, in certain cases it might be that there are
insufficient resources available for execution of a par-
ticular job (based on its requirements). In such situ-
ations, the ResourceManager communicates with the
Provisioning Manager (Section 3.7) via GRB, for pro-
visioning of new resources.

6

3.5 Job Manager

The Job Manager is responsible for job submis-
sion, monitoring, logging and rescheduling. The man-
ager comprises several other subsystems which work
cooperatively to provide these functionalities. It ex-
poses a JobManager interface via which the Globus-
Radia Broker (GRB) can interact. A particular job
execution request from the client is forwarded to the
JobExecution interface which provides the job launch-
ing facility. It implements customized methods for
submitting jobs to various local resource managers of
the grid (e.g., GRAM[19], Condor-G[10]). These lo-
cal resource managers also provide job status change
information, which can be either queried for or sub-
scribed (for notifications[13]) via the interface. The
Job Manager module is also responsible for logging
job status-related information in a database together
with some additional data (e.g., user id, job id, re-
source requirement, submission time, total execution
time, wait time etc.). Access to such historical in-
formation not only helps clients in decision-making,
but also allows implementation of advanced (meta)
scheduling algorithms (e.g., prediction based schedul-
ing). In addition, such information can be used for
implementing a usage-based ‘chargeback model’ (e.g.,
GridBank[11]). Finally, the manager module im-
plements a ReScheduler interface for providing dy-
namic adaptability to changes in the load character-
istics of the resources on the grid. Specifically, it en-
ables job/application migration between resources. To
achieve this, ReScheduler leverages the checkpoint-
ing and job migration functionalities provided by the
local resource management systems (e.g., Condor[10],
LSF[7]). During the migration process, it communi-
cates with the AuthorizationManager interface to en-
sure that the user has access and authorization to use
the resource. ReScheduler implements three modes
of migration: on-demand, timeserving, and failure-
based2. During the on-demand mode, the client (via
GRB) may send a request to migrate a job from
one resource to another (e.g., because of pre-emption
by a higher-priority job). In the timeserving mode,
the ReScheduler interacts with JobExecution and
ResourceManager (Section 3.4) interfaces to gather
real-time data about job and available resource status.
Based on this information, it may make a greedy choice
to migrate selected job(s) such that its total execution
time is reduced. Finally, in the case of failure-based
migration, the ReScheduler migrates a job to an al-
ternate resource due to a resource failure (e.g., server

2Failures solely correspond to the malfunctioning of resources,
and not the various components of GRRMS.

crash). Note that in each of these three migrating
modes it might be possible that there are not adequate
resources available to migrate a particular application.
In such situations, the ReScheduler interacts with the
Provisioning Manager (Section 3.7) to attempt to allo-
cate additional resources.

3.6 SLA Manager

The increasing adoption of grid computing in the
commercial space has shifted its principal of operation
of what used to be a ‘best effort approach’[30]. With
this shifting focus, there is an emerging need to con-
sider and incorporate agreements as part of the soft-
ware building process. These agreements represent ex-
pectations and responsibilities of different parties in-
volved about the functionality and performance of sys-
tems and services. They also help support automated
adaptation and management in the presence of mul-
tiple interests[27]. Such contracts are called Service
Level Agreements (SLAs). SLAs encompass both the
functional and non-functional requirements of the re-
sources. In addition, they cover the cost of consuming a
resource, as well as a penalty for breaking the contract.
In our framework, these SLA-related issues are handled
by the SLA Manager. It exposes an SLAManager inter-
face by which the clients can interact (via GRB). The
clients formalize their requirements unambiguously us-
ing SLAs, which are published and stored using the
SLAPublishing interface. The SLANegotiator engine
acts as a broker between such demands of the client and
the capabilities of the resources. This engine interacts
with the ResourceManager interface (Section 3.4) to
discover resource(s) which meet the SLA requirements.
It also maintains an ordered list of resources based on
their (historical) performance rating. Upon successful
completion of a job, it requests client feedback (about
the resources utilized for that particular job), which is
used for rating the performance of the resources. Such
a rating is used for assigning best of breed rankings
among alternative resources for execution of a partic-
ular application.

However, simply having an SLA-based negotiation
mechanism is not sufficient to guarantee that the re-
quirements will be fulfilled. To assure correct behav-
ior of the system and ensure that SLAs are not vi-
olated, we need to monitor the resources involved in
order to detect failures and, if needed, migrate jobs
to other available resources. This is done by the
SLAMonitoring module. The module communicates
with the ResourceManager and JobManager interfaces
to determine the state of the jobs as well as the re-
sources executing those jobs. Based on the status, it

7

identifies and takes action if there is any violation of the
negotiated SLA between the client and the provider.
For example, if there is a hardware resource failure,
then the SLAMonitoring engine activates the ‘failure-
based’ re-scheduling mode of the ReScheduler for mi-
grating jobs to alternate resources. At the same time,
the engine penalizes the failed resource by reducing its
performance rating. In addition, the SLA Manager
provides an SLAProvisioning interface using which
the clients can determine appropriate resources (e.g.,
based on functional/non-functional capabilities, perfor-
mance ratings etc.) for executing their application and
make advance reservations (also called static provision-
ing). This interface can also be used for dynamically
provisioning additional resources (based on the client’s
requirements) during run-time, if such resources are
not available for migrating (and further executing) the
client application. Similarly, if a particular job has ex-
ceeded its wait time (as specified in the SLA) in the
job queue, the monitoring engine might invoke ‘on-
demand’ provisioning of new resources for execution
of the job. Such active monitoring capabilities are vi-
tal to ensure SLA compliance. To provide these func-
tionalities, the interface interacts with the Provisioning
Manager (Section 3.7).

The agreements in our framework are defined us-
ing the WS-Agreement specification[12] of Global Grid
Forum. This specification defines a protocol for estab-
lishing agreement between two parties and provides an
XML-based representation for specifying them.

3.7 Provisioning Manager

The Provisioning Manager is responsible for alloca-
tion and deployment of resources needed to execute a
client application. It provides a ResourceProvision

interface via which the various modules of GRRMS
can interact. In our framework, we use Radia[3] as
a tool for provisioning of hardware and software re-
sources. Radia provides a Web services-based API
(called Radia Management Portal) for basic manage-
ment of resources and their deployment. As mentioned
in Section 2.2, the provisioning of resources in Radia
is determined by a distribution model. These models
are created dynamically by the Radia Configuration
Server (based on situation-specific data) and are spec-
ified (by the Radia administrator) using XML-based
‘policies’, which broadly defines what application needs
to be installed/deployed where, when and how. They
also specify software dependency, i.e., the deployment
relationship with other software components, operat-
ing systems and hardware. The policies are stored in
the Radia Database, and queried by the Configuration

Server during run-time. Similar policies can also be
defined for resource de-allocation, wherein applications
are terminated and/or uninstalled.

Typically, the ResourceProvision interface re-
ceives resource allocation requests from various com-
ponents of GRRMS—namely Resource Manager, Job
Manager and SLA Manager. An example of such a re-
quest could be ‘Allocate an HP-UX 11i node with 20GB
of free hard disk space and 2Gigabit network connectiv-
ity into a local Condor pool.’ Upon receiving such re-
quests, the interface interacts with the Radia Inventory
Manager Server to determine an appropriate destina-
tion node with appropriate hardware requirements (in
this case, 20GB free hard disk space and 2Gigabit net-
work connection). Assuming that such a node is avail-
able (and hence selected), ResourceProvision sub-
mits an allocation request to the JobManagement Web
service of the Radia Management Portal (Section 2.2)
by providing destination node details, and the action to
perform (in this case, installing Condor[10] daemons,
setting the appropriate CONDOR HOST, and starting
the CONDOR MASTER). The JobManagement service
submits this request to the Radia Configuration Server,
which creates an appropriate distribution model for re-
source allocation. The Configuration Server interacts
with various other Radia components (e.g., Radia Pub-
lisher for packaging all the software for deployment,
Radia Policy Server for securing access to the node
etc.) during this process. The JobManagement ser-
vice monitors the progress of the actions and updates
the ResourceProvision interface. On successful pro-
visioning, the Radia Inventory Manager Server is up-
dated, as a result of which the Resource Manager (Sec-
tion 3.4) becomes aware of the newly provisioned re-
source. In addition, the Provisioning Manager provides
an interface for ActiveMonitoring. This service con-
stantly communicates with the Resource Manager and
Job Manager (Section 3.5) to gather up-to-date status
information about the various jobs that are running as
well as the health of the resources as a whole. Based
on this run-time status and requirements of the in-
frastructure, the service determines whether to allocate
or de-allocate additional resources. Such active moni-
toring results in optimal resource usage. For example,
if the infrastructure is over-subscribed (e.g., CPU uti-
lization exceeds a certain threshold) and still more jobs
are waiting in the job queue, then ActiveMonitoring
will direct the ResourceProvision service to allocate
more resources.

GRRMS provides two basic modes of provisioning:
static and dynamic. During the static mode, clients
can request provisioning of resources before executing
their application. To achieve this, ResourceProvision

8

provides various generic methods for creation, modi-
fication, monitoring, and cancellation of a provision-
ing request. In our framework, these methods im-
plement the interfaces provided by the Maui Cluster
Scheduler[5], but in principle any reservation manager
framework [34] can be adopted. However, if a partic-
ular reservation cannot be fulfilled (e.g., due to non-
availability of resources at the requested time), then
ResourceProvision submits a request to Radia for al-
location of additional resources based on the client’s
requirements. On the other hand, in the dynamic pro-
visioning mode, the client is not aware apriori of the re-
source where its application will be executed. Instead,
provisioning requests are coordinated and formulated
at run-time by the various components of GRRMS.

4 Related Work

Over the past several years, there has been a lot
of work towards the development of grid middleware
technologies. A good survey of such approaches can
be found in [23]. Due to space limitation, we discuss
only a few other projects (which were not introduced
in [23]).

UNICORE[16] is a vertically integrated grid com-
puting environment that facilitates seamless, secure
and intuitive access to resources in a distributed envi-
ronment. It adopts a 3-tier architecture and provides a
client-side graphical interface allowing them to create
Abstract Job Object (AJO) represented as a serialized
Java object. The UNICORE Network Job Supervisor
(NJS) incarnates these AJOs into target system specific
actions. NJS also manages the submitted jobs and per-
forms user authorization (single sign-on through X.509
certificates). The UNICORE Target System Interface
(TSI) accepts incarnated job components from NJS,
and passes them to the local batch schedulers for exe-
cution.

Gridbus[11] is an open-source middleware toolkit
for computational grids. It provides a service-oriented
cluster and grid middleware for e-Business and e-
Science applications. Its design and development is
based around the notion of ‘utility computing’ and uses
various economic models for efficient management and
usage of shared resources. Gridbus provides an array
of software for: Grid Economy and Scheduling (Econ-
omy Grid), Data Grid Brokering and Scheduling (Grid-
bus Broker), Cluster Economy and Scheduling (Libra),
.NET-based Grid computing (Alchemi), Grid Market
Directory and Service Publication (GMD), Grid Simu-
lation (GridSim toolkit), Resource Usage and Account-
ing (GridBank) and Grid Portals (GridScape, GMoni-
tor).

Another on-going project which provides a suite of
software for various grid middleware functionalities is
GridLab[15]. The GridLab framework is based around
a Grid Application Toolkit (GAT), which implements
a set of high-level APIs, using which clients and appli-
cations are able to call the underlying grid services.

NAREGI[25] aims to research and develop high-
performance, scalable grid middleware for the Japanese
national scientific computational infrastructure. The
implementation of the NAREGI framework is divided
into six R&D groups, also called ‘Work Packages’
(WPs): WP-1 focuses on resource management and
managing information services; WP-2 works on basic
parallel programming tools; WP-3 develops grid tools
for end users; WP-4 deals with packaging and configu-
ration management of the software products from the
project; WP-5 investigates issues related to network-
ing, security, user management; and WP-6 is in charge
of grid-enabling various nanoscience applications.

The ASKALON[18] project provides a tool set
for service-based performance-oriented development of
grid applications. The tools implemented can be
broadly categorized as: resource brokerage and moni-
toring, scalable discovery and organization of resources,
workflow-based dynamic and fault-tolerant execution
of activities, meta scheduling, performance prediction
for estimation of job execution time, and performance
monitoring, instrumentation and analysis of grid appli-
cations. The GLARE system[33], developed as part of
the ASKALON framework, allows automatic deploy-
ment and on-demand provisioning of components for
grid applications. In this work, the authors adopt
a peer-to-peer architecture for resource management
and consider ‘activities’ as generalized abstractions of
grid tasks/jobs, which can be deployed during run-time
on different computers and executed in a coordinated
manner to accomplish a particular application goal.

GrADS[35] (Grid Application Development Soft-
ware) is a framework designed to solve numerical ap-
plications over the grid. An important aspect of this
framework is the ability to decide when to migrate jobs
based on actual and predicted execution times. If the
system detects minimal differences between the actual
and predicted performance of the application, it avoids
job migration. Such an approach makes those jobs
which are about to finish execution in a short period
of time less susceptible to suspension and migration.

Othman et al.[28] implemented an adaptive grid re-
source broker using reflection technology to facilitate
adaptation during run-time to variations in system re-
sources, such as load or CPU utilization of a particular
job. They also implement prediction based modeling
that is used as a basis for a decision as to whether

9

job migration is required to satisfy a pre-specified time
constraint.

SmartFrog[22] is a framework for service configu-
ration, description and lifecycle management. The
framework adopts a component-based architecture and
provides a declarative language for describing service
configuration and provisioning. This language is used
to design code templates which are executed by Smart-
Frog engines running on remote nodes. The SmartFrog
component model enforces lifecycle management by
transitioning components through various stages (in-
stalled, initiated, started, terminated, failed), which in
turn allows the SmartFrog engines to redeploy compo-
nents during a failure.

Apart from the above mentioned approaches, the
Global Grid Forum CDDLM working group[1] is also
working towards development of specifications for de-
scribing configuration of services, their deployment on
the grid, and management of their life cycle. In addi-
tion, there is on-going work in the Open Grid Services
Architecture (OGSA) Basic Execution Service Working
Group[6] which focuses on many aspects of job execu-
tion and management. We are closely following these
developments and will adhere to the specifications in
future.

There has also been an increasing amount of work
on grid resource management based on Service agree-
ments. An overview of such approaches can be found
in[27]. Sahai et al.[29, 30] proposed an architecture for
SLA monitoring to ensure stricter service guarantees.
Their architecture provides a language for specifying
SLAs and relies on a network of communicating prox-
ies, each maintaining SLAs committed within the ad-
ministrative domain of the proxy. SLAs are either ne-
gotiated between or specified to management proxies,
which are responsible for automated monitoring and
triggering of appropriate actions for the agreements.
The problem of resource allocation for SLA-constrained
grid applications is discussed in [26]. In this system,
an application is decomposed into simple tasks which
exhibit precedence relationships. Then, a heuristic is
used to optimally allocate resources for running the
tasks by minimizing total cost and preserving execution
time SLAs. Burchard et al.[17] introduced the Virtual
Resource Manager which builds on existing resource
manager systems and provides various components for
QoS management. The granularity for the deployment
of these components (decided by the local administra-
tor) effects the overall QoS management offered by the
system.

Our framework is also motivated by the approaches
mentioned above. However, one of the key facets
of our approach is the ability to dynamically moni-

tor and adapt to the run-time resource requirements
of the various applications that are executing. The
Resource Manager, Job Manager, and SLA Manager
constantly monitor the overall functioning of the in-
frastructure to ensure optimal resource usage as well
as strict guarantee of service agreements. For exam-
ple, if additional resources are needed for execution
of a particular job, the Provisioning Manager gives
GRRMS the ability to provision brand-new resources
based on such requirements. To the best of our knowl-
edge, none of the proposed approaches deals with this
problem of requirements-based resource provisioning.
At the same time, GRRMS implements an XACML-
policy based authorization framework. Such an ap-
proach is not only scalable and flexible in a grid en-
vironment, but in a way realizes the true meaning of
‘Virtual Organizations’[20].

5 Conclusion

In this paper, we introduced the conceptual ar-
chitectural design of Globus-Radia Resource Manage-
ment System (GRRMS)—a modular and extensible ap-
proach for dynamic resource allocation and manage-
ment in a grid environment. The framework provides
a pluggable component by leveraging a set of core ser-
vices provided by two existing technologies: Globus
and Radia. The novelty of this approach is the ability
to provision resources based on the job requirements.
Such automated and highly adaptive systems will play
an important role in realizing next-generation grid ap-
plications. Apart from this, the framework also pro-
vides a flexible approach for SLA-based service man-
agement and an XACML-based VO-wide authoriza-
tion mechanism, which are vital for realizing commer-
cial grid applications. Our future work is targeted to-
wards a prototype implementation of various compo-
nents of GRRMS. We also plan to include additional
features (e.g., prediction-based scheduling and migra-
tion, chargeback model for utility computing applica-
tions) into our framework.

Acknowledgment. The authors would like to thank
Greg Astfalk from Hewlett-Packard for his encourage-
ment and continued support in pursuing this research.

References

[1] Configuration, Deployment and Life Cycle
Management of Grid Services,
https://forge.gridforum.org/projects/cddlm-wg.

[2] Extensible Access Control Markup Language,
http://www.oasis-open.org/committees/xacml.

10

[3] HP OpenView Configuration Management Solutions
Software,
http://managementsoftware.hp.com/solutions/ascm.

[4] Job Submission Description Language,
https://forge.gridforum.org/projects/jsdl-wg.

[5] Maui Cluster Scheduler,
http://www.clusterresources.com/products/maui/.

[6] OGSA Basic Execution Service Working Group,
https://forge.gridforum.org/projects/OGSA-BES-wg.

[7] Platform’s Load Sharing Facility,
http://www.platform.com/products/LSF.

[8] Portable Batch Scheduler, http://www.openpbs.org.

[9] Sun’s XACML Implementation,
http://sunxacml.sourceforge.net.

[10] The Condor Project,
http://www.cs.wisc.edu/condor.

[11] The Gridbus Project, http://www.gridbus.org.

[12] Web Services Agreement,
https://forge.gridforum.org/projects/graap-wg.

[13] Web Services Notification,
http://ws.apache.org/pubscribe.

[14] Web Services Resource Framework,
http://ws.apache.org/wsrf.

[15] G. Allen, K. Davis, and et al. Enabling Applications
on the Grid: A GridLab Overview. Intl. Journal of
High Performance Computing Applications,
17(4):449–466, 2003.

[16] J. Almond and D. Snelling. UNICORE: Uniform
Access to Supercomputing as an Element of
Electronic Commerce. Future Generation Computer
Systems, 15(5-6):539–548, 1999.

[17] L.-O. Burchard, B. Linnert, F. Heine, M. Hovestadt,
O. Kao, and A. Keller. A Quality-of-Service
Architecture for Future Grid Computing
Applications. In IEEE Parallel and Distributed
Processing Symposium, 2005.

[18] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. S.
Junior, and H.-L. Truong. ASKALON: A Tool Set
for Cluster and Grid Computing. Concurrency and
Computation: Practice and Experience,
17(2-4):143–169, 2005.

[19] I. Foster and C. Kesselman. Globus: A
Metacomputing Infrastructure Toolkit. Intl. Journal
of Supercomputer Applications and High
Performance Computing, 11(2):115–128, 1997.

[20] I. Foster and C. Kesselman. The GRID: Blueprint
for a New Computing Infrastructure, 2nd Edition.
Morgan-Kaufmann, San Mateo, CA, 2004.

[21] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A
Security Architecture for Computational Grids. In
5th ACM Conference on Computer and
Communications Security, 1998.

[22] P. Goldsack, J. Guijarro, A. Lain, G. Mecheneau,
P. Murray, and P. Toft. SmartFrog: Configuration
and Automatic Ignition of Distributed Applications.
In HP OpenView University Association Workshop,
Hewlett-Packard Labs, 2003.

[23] K. Krauter, R. Buyya, and M. Maheswaran. A
Taxonomy and Survey of Grid Resource Management
Systems for Distributed Computing. Software -
Practice and Experience, 32(2):135–164, 2002.

[24] M. Massie, B. Chun, and D. Culler. The Ganglia
Distributed Monitoring System: Design,
Implementation and Experience. Parallel Computing,
30(7):817–840, 2004.

[25] S. Matsuoka, S. Shimojo, M. Aoyagi, S. Sekiguchi,
H. Usami, and K. Miura. Japanese Computational
Grid Research Project: NAREGI. Proceedings of the
IEEE, 93(3):522–533, 2005.

[26] D. Menasce and E. Casalicchio. A Framework for
Resource Allocation in Grid Computing. In Intl.
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, 2004.

[27] C. Molina-Jimenez, J. Pruyne, and A. van Moorsel.
The Role of Agreements in IT Management Software.
In Architecting Dependable Systems III, LNCS 3549,
pages 36–58, 2005.

[28] A. Othman, P. Dew, K. Djemame, and I. Gourlay.
Adaptive Grid Resource Brokering. In IEEE Intl.
Conference on Cluster Computing, 2003.

[29] A. Sahai, A. Durante, and V. Machiraju. Towards
Automated SLA Management for Web Services. In
HP Labs Technical Report, HPL-2001-310R1, 2002.

[30] A. Sahai, S. Graupner, V. Machiraju, and A. van
Moorsel. Specifying and Monitoring Guarantees in
Commercial Grids through SLA. In HP Labs
Technical Report, HPL-2002-324, 2002.

[31] C. A. Santos, A. Sahai, X. Zhu, D. Beyer,
V. Machiraju, and S. Singhal. Policy-Based Resource
Assignment in Utility Computing Environments. In
HP Labs Technical Report, HPL-2004-142, 2004.

[32] J. Schopf, M. D’Arcy, N. Miller, L. Pearlman,
I. Foster, and C. Kesselman. Monitoring and
Discovery in a Web Services Framework: Funtionality
and Performance of the Globus Toolkit’s MDS4. In
Submitted to SuperComputing Conference, 2005.

[33] M. Siddiqui, A. Villazon, J. Hofer, and T. Fahringer.
GLARE: A Grid Activity Registration, Deployment
and Provisioning Framework. In Intl. Conference on
High Performance Computing and Communications,
2005.

[34] W. Smith, I. Foster, and V. Taylor. Scheduling with
Advanced Reservations. In Intl. Parallel and
Distributed Processing Symposium, 2000.

[35] S. Vadhiyar and J. Dongarra. Self Adaptivity in Grid
Computing. Concurrency and Computation: Practice
and Experience, 17(2):235–257, 2005.

[36] B. Zhao, A. Joseph, and J. Kubiatowicz.
Locality-aware Mechanisms for Large-scale Networks.
In Workshop on Future Directions in Distributed
Computing, 2002.

[37] S. Zhuk, A. Chernykh, A. Avetisyan, S. Gaissaryan,
N. Kuzjurin, and A. Pospelov. Comparison of
Scheduling Heuristics for Grid Resource Broker. In
3rd Intl. Conference on Parallel Computing Systems,
2004.

11

	Introduction
	Existing Technologies
	Globus
	Radia

	Globus-Radia Resource Management System
	Globus-Radia Broker
	Job Queue
	Authorization Manager
	Resource Manager
	Job Manager
	SLA Manager
	Provisioning Manager

	Related Work
	Conclusion

