

Model-based validation of enterprise access policies

Sandeep Bhatt, William Horne, Joe Pato, S. Raj Rajagopalan, Prasad Rao
Trusted Systems Laboratory
HP Laboratories Princeton
HPL-2005-152(R.1)
January 3, 2006*

security, access
control, policy,
validation

Coordinating security seamlessly across an enterprise is a challenge.
Enterprises deploy multiple access control mechanisms at different
technology layers; each mechanism is painstakingly configured and
maintained using specialized user interfaces, most likely by different
administrators in different organizations at different sites, perhaps
employing different notions of users and roles. This piecemeal approach
makes security management labor-intensive and, therefore, expensive,
error-prone and slow to adapt.

We present a model-driven technique for automated policy-based access
analysis. Based on the ideas presented in this paper, we have built a
prototype, the Integrated Security Management (ISM) system which,
given the security configurations of hosts, applications and network
devices, automatically validates whether the enterprise is in compliance
with high-level enterprise access policy. The system relies on composable
models that capture the access control semantics of applications,
middleware and devices, in a manner that enables efficient enterprise-
scale analysis.

* Internal Accession Date Only
 Approved for External Publication

© Copyright 2006 Hewlett-Packard Development Company, L.P.

 - 1 -

Model-based validation of enterprise access policies

Sandeep Bhatt, William Horne, Joe Pato, S. Raj Rajagopalan, Prasad Rao
Trusted Systems Lab, Hewlett Packard Laboratories

Princeton, NJ 08540

Abstract
Coordinating security seamlessly across an enterprise is a challenge. Enterprises deploy multiple
access control mechanisms at different technology layers; each mechanism is painstakingly
configured and maintained using specialized user interfaces, most likely by different
administrators in different organizations at different sites, perhaps employing different notions of
users and roles. This piecemeal approach makes security management labor-intensive and,
therefore, expensive, error-prone and slow to adapt.

We present a model-driven technique for automated policy-based access analysis. Based on the
ideas presented in this paper, we have built a prototype, the Integrated Security Management
(ISM) system which, given the security configurations of hosts, applications and network devices,
automatically validates whether the enterprise is in compliance with high-level enterprise access
policy. The system relies on composable models that capture the access control semantics of
applications, middleware and devices, in a manner that enables efficient enterprise-scale analysis.

1. Introduction
How can an organization verify that access controls implemented on host, application and
network infrastructures match the business intent specified by an organization’s access control
policies? The semantic gap between these policies and the low-level device-specific access
controls complicates the verification problem. According to the Aberdeen report “Security Policy
Automation in the Enterprise,” … “IS buyers are mired in tuning technology knobs that bear
little, if any, relationship to the business policies and procedures employed by the enterprise.”

Enterprise access policies constrain access to services depending on the identity and role assigned
to the user, the method of access, and the actions to be performed. An example of an enterprise
access policy is “Users authenticated as employees may change their personal information via the
corporate self-service portal.” A financial institution’s policy may state that “Analysts must be
denied access to investment banking data.” An example of a Segregation of Duties policy is “No
employee can both create and approve a purchase order.”

Implementing a high-level policy requires carefully setting low-level access control rules on
network devices, servers and applications throughout the enterprise. Unfortunately, systems
administrators do not currently have tools that relate rules on their individual system to high-level
policies. The result is that administrators are wary of making any change lest it violate business
security policy or make a critical service inadvertently inaccessible.

1.1 An Example
To illustrate the nature of the problem, consider a 3-tier web site architecture consisting of a
perimeter firewall protecting an Apache web server, a Tomcat servlet container to host web
applications, a backend MySql database server and an LDAP server. A large number of
configuration parameters restrict access in this simplified example:

 - 2 -

1. The perimeter firewall rules determine whether the client request will reach the machine
hosting the Apache server.

2. Apache server configurations will determine if, and where, the user credentials are checked.
3. LDAP directory data map users to roles.
4. Apache mapping rules use these roles to determine where the request is forwarded, and with

what credentials.
5. Tomcat configurations determine if, and where, user credentials are checked, and which web

apps and database proxies the request is allowed to invoke.
6. Within tomcat, the database proxies are configured with user credentials to establish

connections to specific databases.
7. In the tomcat engine, java security policy (Catalina.policy) configurations specify

permissions granted to web applications for reading or writing to the file system, and opening
socket connections, etc.

8. Web applications hosted on Tomcat may have their own notion of users, credentials, and use
application specific filters to permit or deny requests, independent of Tomcat configurations.

9. MySql configurations determine if the server accepts network connections, and if it checks
permissions for establishing connections and running queries.

10. The privileges configured within the MySql database tables determine whether specific
queries are to be run or not.

11. Finally, the file system is configured with its own access control mechanisms.

Every device and application must be configured carefully so that information flows exactly as
intended: desired accesses must not be blocked, while undesired accesses must not get through.
As a simple example, consider a scenario in which all servers are initially hosted on a single
machine.1 One of the system-wide security policies states that no unauthorized user may connect
to the database. Setting the mysqld configuration parameters skip-networking and
skip-grants-tables both ON ensures that processes local to the machine, which are all
trusted, can open connections to the database. Now, suppose that the Tomcat and MySql are
migrated onto two different machines. Tomcat’s db proxy must be reconfigured to open a
connection to the new location of MySql, and skip-networking must be turned OFF so that
MySql will allow incoming connections. At this point, all previous accesses will be available.
But undesirable accesses are also made available, for example, because skip-grants-tables is still
on, mysqld serves requests without checking the credentials of the querying entity. Thus, mysqld
will execute queries received from any client, including those who should not be permitted by
policy to access the database.

This simple example reveals the complexities of administering information access. Several
factors conspire to make this difficult:

1. Information flows are complex. For example, while the initial request from a user to a
portal might contain user roles and credentials, subsequent requests issued by the web
server to the backend application server and to the database, will contain credentials not
of the original user, but of software components issuing the requests. As a result, the
end application is unaware of the identity of the client who initiated the chain of requests.
Poor coordination of component configurations could result in either a legitimate access
being blocked or an illegitimate access allowed. For example, a user may be denied

1 This example is deliberately simplistic for ease of illustration; the techniques presented in this paper
apply generally to larger and complex architectures.

 - 3 -

access to query a database, but if the user is allowed to access a web application hosted
on Tomcat, and the web application is allowed to query the database, then the user has a
“backdoor” into the database. Each individual access is locally authorized, and therefore
will not trigger an intrusion detection alarm, but the net effect violates the global intent to
block the user from accessing the database.

2. A small configuration change in one component can have a significant impact on the set
of possible information flows in the system. This is because the security properties
depend on interactions between components. There are few, if any, tools to analyze the
system-wide impact of a change. Penetration testing cannot uncover all possible security
violations resulting from misconfigurations, only the ones known and tested for.

3. In large enterprises, the responsibility of administering networks, devices and
applications is distributed across administrators in different organizations and sites.
Changes occur organically in a decentralized manner, and while change procedures may
be documented and followed, these cannot anticipate all system-wide effects. In many
cases, these procedures are cumbersome and make the enterprise slow to adapt to
changing business requirements.

The net result is that the systems evolve to allow undesirable information flows without anyone
being aware of the possibility. These flows may be caught by intrusion detection systems, but
only if the security gap is actively being exploited and monitored. It would be far better to detect
the potential violation before that happens.

1.2 Our Goals
The goal of our work is to investigate the feasibility of automatically detecting possible access
violations resulting from system misconfigurations. Such a mechanism could be used proactively
to help plan and analyze configuration changes before they are deployed, and, in monitoring
mode, to audit live systems for access loopholes before any violations occur. Our vision is that a
security administrator will only have to specify the desired behavior of a system at a high level of
abstraction and our mechanism will enforce that behavior throughout the system lifecycle.

The remainder of this paper is organized as follows. Section 2 outlines the technical issues raised
and gives a high-level overview of our system architecture. Section 3 formulates the problem,
and develops the technical details with examples. Section 4 presents an overview of the policy
validation algorithm. Sections 5 and 6 conclude with extensions and related work.

2. Our Approach
From the business perspective, an enterprise possesses information assets such as data on
employees, customers, products, partners and suppliers, and applications that manipulate these
assets. Access to enterprise data depends on the identity and role assigned to the user, the method
of access, and the action to be performed.

From the administrative perspective, an enterprise consists of components, some of which store
enterprise data and others host applications to access and manipulate the data. A component can
represent a physical device such as a router or server; it can be an operating system, file system,
database or other infrastructural software; or it can be application software such as a web
application for example. A component’s configuration determines how it processes incoming
requests, and which other components it interacts with. These configurations viewed together
specify overall system behavior; that is, they determine which users can access and manipulate

 - 4 -

specific data sets in specific ways. The crux of the administrative problem is to configure the
components so that the overall system behavior matches the executive policies.

The high-level conceptual architecture of our system is shown below. It consists of four main
modules.

configuration
repository

configuration
repository

adapteradapter

adapteradapter

adapteradapter

model
library
model
library

policypolicy

Validation
engine

Validation
engine

enterprise system

administration
console

applications

servers

networking
infrastructure

Conceptual system architecture

1. Adapters that read and write configuration parameters from enterprise components, and

translate these into a standard format for analysis. These adapters can be custom scripts,
or interfaced with existing commercial asset and configuration management tools, for
example HP OpenView, CiscoWorks, etc.

2. A library of models for system components which define the behavior of each
component as functions of their configuration parameters.

3. A set of enterprise security policies represented as access invariants.
4. The analysis engine which, given the system configuration and policies, validates

whether the system is configured to satisfy policy and, if not, suggests new configuration
values to restore the enterprise to a policy-compliant state, when possible.

We have prototyped the analysis engine, as well as models and adapters for components such as
the Apache web server, Tomcat servlet container, specific JSP applications, MySql database
server, network file system, LDAP, and basic firewalls. Initial tests to demonstrate the feasibility
of our ideas and the performance of the analysis engine are encouraging. We do not delve into
the engineering details of the prototype or the experiments in this abstract, but these will appear
in the final version.

2.1 Technical Overview
Resolving the following questions is crucial to the feasibility of our approach.

1. What analysis do we perform?

 - 5 -

2. What is a model and how is it represented?
3. Is the analysis efficient enough to scale to the complexity of an enterprise?

In the following sections, we outline our answers to these questions along with some examples of
how our approach can be effective in solving the enterprise security problem.

2.1.1 Analysis
We briefly describe the kind of analysis we wish to perform. The enterprise environment that we
wish to analyze is composed of entities or components such as applications, servers, clients,
firewalls, etc. Each entity contains a set of attributes, each of which is assigned a value when the
entity is configured. We call the set of attribute-value pairs the “configuration data” for the
entity. Suppose that we are given all the configuration data for all the entities in an enterprise.
We wish to answer questions of the form: “will requests from client C to entity E to perform
operation O with arguments A succeed, or will the request be denied?”

Our analysis is bounded by the following constraints:

1. Our analysis is memoryless: the set of allowed operations in any snapshot depends on the
configuration state at that point in time, but not on the temporal history of the system.

2. Our analysis is static: the configuration values represent a snapshot of the system at one
point in time. Our analysis tells us who can access what services at this point in time.
We do not analyze sequences of events and state transitions over time. Instead, our
analysis can be conducted periodically, using different snapshots of the system in time.
Furthermore, we do not look at actual traffic. Our analysis is restricted to what can be
deduced solely by looking at the configurations and inferring all the possible traffic the
configurations allow. As a result, our analysis can only conclude whether a violation can
occur in the current state of the system, not if it has occurred.

3. Our analysis is restricted to security “holes” created by inconsistent or mistaken
configurations that can be exploited by an honest-but-curious adversary who tries to gain
access to assets by using operations that are permitted to her, but does not try to break the
system – say by a buffer overflow attack or by guessing passwords. Thus, we are not
looking at attacks that change the behavior of a component by exploiting its vulnerability.
Rather, our approach to vulnerabilities is simply to update the model for a component
with different behavior that captures the vulnerability.

This formulation of the access validation problem resembles compiler code analysis -- both
problems are statically defined, and both involve reachability analysis – in one case to track
control flows, and in our case to more general information flows. Although the details are
different, our problem is similarly amenable to efficient algorithmic treatment.

2.1.2 Modeling
For each entity we create models that operate as follows. The model of a component describes all
possible information flows through that component as a function of its configuration parameters,
starting from each specific type of request it receives to the response that the component sends
back to that request.

A model is an abstraction of an entity and as such only approximates its behavior. For security
analysis, we require that our models be conservative: if the model says that a client request is
blocked, then it must never succeed in the real system with the same set of configurations. The
converse need not be true; if the model says that a client request is not blocked, in practice the

 - 6 -

request may fail depending on the configurations of non-security parameters and decision logic
that is not captured in the model as well as dynamic conditions such as congestion or failure in
the environment that are unknown at analysis time. When each model is conservative we can
guarantee that our analysis over a set of models representing an enterprise will also be
conservative.

The first design decision to be made in creating a model is: Of the dozens of configuration
parameters that a component has, which ones do we include in the model and which ones can we
ignore? Such parameters include machine settings, OS parameters, and application specific
settings. Examples of configurations that do affect the flow of information are: access control
rules (on routers, firewalls, file systems, data bases, web servers, etc.), and connectivity settings
(i.e. which components talk with each other). Parameters that are not of interest to us are those
that determine performance but do not change the existence or absence of information flows, such
as cache sizes or timeout values. Because of our snapshot analysis, an additional consideration is
that configuration parameters of interest remain under administrator control and change
infrequently relative to the periodicity of our analysis. Thus, for example, variables which change
frequently and automatically are not modeled.

In general, deciding whether or not a configuration parameter affects access control behavior and
information flows is an art. From our experience, the considerations outlined above enable us to
formulate component models quite naturally and simply.

2.1.3 Complexity
The computational complexity of our analysis is determined by the representations we choose for
our models – in particular, on the expressive power of the modeling language. The greater the
expressive power, the easier it will be to formulate models for entity behavior, but the greater will
be the complexity of performing our analysis. The key is to find the right tradeoff between
expressive power and complexity of analysis.

We represent models as predicates defined in a way that is equivalent to the logical power of
datalog [Imm]. This choice is key, since the complexity of evaluating Datalog queries is known
to be polynomial time. There are several systems that evaluate datalog programs very efficiently,
and that scale to large problem instances. In our initial prototype, we use the XSB Prolog engine
[XSB] which evaluates datalog programs using tabled evaluation – a technique equivalent to
bottom-up evaluation. As we shall see, the main part of the verification consists of computing
transitive closures over monotonic relations; since this can implemented directly, we are not
dependent on XSB Prolog.

3. Enterprise Access Policies
3.1 Terminology
We first establish basic terminology and definitions. Enterprises contain entities of various types
– firewalls, database servers, and file systems for example. Each entity type has an associated
model that specifies its information flow as a function of the configuration parameters of the
entity type. An enterprise consists of a set {E1, …, En} of configured entities, where a configured
entity is an instance of an entity type with all its configuration parameters given concrete values.
A request from a client C (possibly with an attached role, IP address, etc) to a configured entity E
is a pair O, A consisting of an operation and an argument. This request to E is either blocked, or
else a result R is returned to C.

 - 7 -

We define the predicate allows(E, C, O, A, R) which is true if and only if when client C sends
entity E the request O, A, then E successfully performs the requested operation (i.e., it is not
blocked), and result R is returned to the client.

A service S is a subset of C x O x A x R. The service SE provided by entity E is defined to be the
set {(C, O, A, R) | allows(E, C, O, A, R) = true}. Thus every entity E provides one service,
which consists of a set of tuples each of which represents a client C performing an operation O on
an argument A that stands for a resource governed by the entity.

In order to provide a service to a client, an entity may itself depend on other services. For
example, an apache server that provides http service may depend on a file system and an
application server (which itself depends on a database). Our intention is to have the predicate
allows(Apache, Client, Get_http, URL,-) evaluate to false if either the apache server is configured to
block the client access, or if the file system blocks the apache request, or if the database blocks
the application server request, etc. For the predicate to be true, no dependent service must be
blocked by an acl setting. On the other hand if, say the acls are set properly to allow all necessary
information flows, but the named url does not map to an existing file name or an application, then
the predicate must evaluate to true, with the return value being an error message.

3.2 Access Policies
The key to policy-driven enterprise access management is to directly capture the high-level intent
of the network as policy statements that are precise, simple, declarative, and free of
implementation details. Our enterprise access policy specifies who (by role) is allowed
(alternatively, denied) access to what enterprise services. Declarative policies allow us to declare
intent without tying them to specifics of network and application implementations, which are
subject to change. We require that policy statements be simple so that (i) it is efficient to verify
whether or not the system is compliant, and (ii) maintaining a set of policies is not unnecessarily
complex for humans to specify and manage. Indeed, allowing arbitrarily complex policies can
make it intractable to reason about the net effect of even a small policy set.

Although, without loss of generality, we use the terms such as Client and Entity in our discussion,
our assumption is that enterprise access policies will be defined using hierarchical definitions of
roles, resources and services. This simplifies the problem of defining access policies across an
enterprise. A standard RBAC framework can be overlaid atop our policy validation framework.

There are two basic types of access policy:

permit(Entity, Client, Operation, Argument), and
deny(Entity, Client, Operation, Argument)

Complex policies are represented using boolean combinations of the basic permit and deny
policies. A permit policy permit(E, C, O, A) is satisfied when the service SE provided by the
configured system (set of requests for which the allows predicate for specified client and entity is
true) is a superset of the service S specified in policy. In other words, every client permitted by
policy to invoke a service on an entity must be able to do so by sending a request directly to that
entity. An example policy is permit(employee , corporate-portal, get, self-service.htm).

The semantics of a deny policy are necessarily different. A deny policy Deny(E, C, O,A) is
satisfied if and only if there is no request that client C can invoke on any entity, which can, via a

 - 8 -

chain of requests, cause some client (perhaps a different one) to invoke a request in O x A on
entity E which is also allowed by E. In other words, satisfying a deny policy requires us to rule
out the possibility of transitive access via all possible sequences of steps, including those
involving intermediate applications. An example deny policy is deny(contractors, corporate-
portal, get, self-service.htm).

Note that, under the above definitions, a deny policy is stronger than the negation of the
corresponding permit policy. A permit policy can be violated if any of the following conditions
holds: the client cannot send a request to the service, a filter rule denies the client request, or the
service is unavailable because one of the dependent services is down. On the other hand, to
satisfy a deny policy, there must be explicit filter rules that block the client from, directly or
indirectly, sending the request to the service.

Policy Conflict Resolution. In a complex environment, it is reasonable to expect that some
policies will be in conflict, so that a conflict resolution mechanism is necessary. A simple
solution is to require that all policies be prioritized. Other solutions are to add a priority value to
each policy along with a tie-resolution algorithm. Such solutions can be easily accommodated in
our approach. For clarity, we will assume a total ordering on the set of access policies.
The ordering determines the exact set of services available to all clients. For example, the deny
policy deny(employee, finance_server, read, all) will block all requests from employee clients
which can transitively result in a read operation on any file on the finance server. But suppose we
want employees to be able access the file via an application that can read the files. How do we
express the policy that employee should be able to reach the finance_server but only via the stated
application? We can state the positive policy as permit(employee, finance_app, my_salary, _)
before the deny policy. Because the permit policy is more specific than the deny, all compliant
configurations will allow the client (employee) to access the finance_app which, in turn, will be
allowed to read on finance server. But all other paths from the employee to the finance server will
be blocked.

Default-Deny. Any service that is not explicitly permitted by a policy or required to support a
permit policy is automatically denied. Default deny does not obviate the need for explicit deny
policies – for example, if we wish to permit all but a subset of clients access to a service, the
straightforward solution is to write a specific deny policy for the subset, followed by a more
general allow policy for all clients.

3.3 Model Specifications
Each model is specified using three predicates: attributes, allows, and triggers. The first
predicate, attributes, is used to specify the name, type and values of all configuration parameters
of the entity. The second predicate, allows, captures the set of possible conditions under which
the entity will respond to a client request with a specific result. The third predicate, triggers,
models the conditions under which one request to an entity can lead to subsequent requests by the
entity to other entities.

3.3.1 Specifying attributes
Attributes are specified in the form:

attributes(entityName, [attrtype(attributeName, attributeType, defaultValue)]),
where entityName is the entity being modeled, and the second argument is a list of attribute
name, type, and optional default value triples. A type is either a standard type, such as integer,

 - 9 -

string, etc., or the name of another attribute.2 This enables us to define complex attributes such as
a list consisting of access control rules. Such attributes can be viewed as extensional relations
(see [Imm]) of our models and represent the ground facts for our system. For example, if the type
of the attribute installedApps is a list of installed applications, then the predicate
installedApps(Oid, App) is true if and only if App appears in the list referred to by the
installedApps attribute.

There are two special attributes that a model can have: filter and transform. The filter predicate
refers to an extensional relation that contains all the access control rules for the entity. The
adapter for the entity is responsible for extracting the acls from the configuration file, converting
it into normalized form, and creating the filter table. The transform predicate refers to a table
which maps parameters of incoming requests into parameters of outgoing requests.

3.3.2 The “allows” predicate
The first predicate allows(E, C, O, A, R) is true if and only if the request O, A from C to a
configured instance E will succeed with result R returned to the client.

Each predicate must be defined to cover all types of clients and requests that are modeled. For
example, if an entity responds to client identified by any combination of host name, userid, and
credential (password, token or cookie) then the “allows” predicate must be defined over all
combinations, using multiple rules as necessary.

The conditions which appear on the right side of a rule contain configuration parameters of the
entity, which may be simple attribute values or may be a table (an access control list for
example). The right side may also contain variables that are uninterpreted, for example, client
attributes or credentials, or arguments to an operation. Uninterpreted variables help determine
abstract properties that cannot otherwise be determined statically, such as, whether the service
request will be authenticated at least once somewhere along the path of the request and response.
The right side can also contain an “allows” predicate when, for example, the server must invoke
another service to fulfill the request.

As an example, we present a model for the web server apache below consisting of two rules to
define the “allows” predicate. The first argument identifies the “flow label,” which we describe
in Section 3.3.5; the second argument identifies the modeled entity, the third identifies the client,
and the remaining arguments identify the requested operation, arguments passed and the returned
result. The syntax follows the conventions of prolog – commas between predicates denote “and,”
strings beginning with lower case letters denote constants, and those beginning with upper case
characters denote variables.

The model invokes the filter and transform predicates apacheFilterAllows and apacheXform.
These predicates are lookups into relational tables that are produced by the apache adapter which
reads the instance configuration files and parses and normalizes relevant directory and location
data. In database terminology, these are extensional relations. The model also invokes
nwDirectory, a predicate that serves as a directory of network services.

Apache first consults its filters to determine whether the request made by the client is allowed or
not. If yes, apache either serves a request for a path by invoking an operation on the file system
of the machine on which it is installed (the first rule), or it forwards the request to one of the

2 We do not allow recursive type definitions.

 - 10 -

modules installed on it (the second rule). The decision on whether or not to forward the request
to a module is performed by looking up a transform table (this table is created by the adapters by
parsing entries such as jkMount from the apache config files).

allows(Label, ApacheOid, client(_Realm,ClientId,ClientLoc),
 Op, url(_Proto, _Loc, Path, _Args), ok) :-
 object(ApacheOid, apache,_), attr(ApacheOid, filters, Filters),
 apacheFilterAllows(Filters,ClientId, ClientLoc, Path, Op),
 attr(ApacheOid,xforms, Xforms),
 apacheXform(Xforms, Path, undef),
 attr(ApacheOid, filesystem,Fs), attr(ApacheOid, osusername,Uid),
 allows(Label, Fs, Uid, Path, read, ok).

allows(Label, ApacheOid, client(Realm,ClientId,ClientLoc),
 Op, url(_Proto, _Loc, Path, Args), Response) :-
 object(ApacheOid, apache,_), attr(ApacheOid, filters, Filters),
 apacheFilterAllows(Filters,ClientId, ClientLoc, Path, Op)
 attr(ApacheOid,xforms, Xforms),
 apacheXform(Xforms, Path, Match),
 Match = nwService(NIp, NProto, NPort),
 nwDirectory(Oid, NIp, NProto, NPort), %network service directory

allows(Label, Oid, client(Realm,ClientId, ClientLoc), Op,
 url(NProto, NIp ,Path, Args), Response)]).

apacheXform(Transforms, Path, Target) :-

true iff the transform maps specified Path to Target.

apacheFilterAllows(Filters, ClientId, ClientLoc, Path, Op) :-

true iff filters allow Clientid logging in from Clientloc access
to Path.

3.3.3 A crucial restriction
The crucial restriction we make is that all the “allows” terms in the body (the right side of a rule)
appear positively – no “allows” term is negated. Our intuition behind this restriction is that
information flows are monotonic – enabling a new information flow does not disable existing
enabled flows.

When none of the “allows” is negated, the set of all allow rules are equivalent to a datalog
program. An important consequence is that, given all attribute values for all entities, we can
efficiently evaluate the conditions under which each “allows” predicate is true. These conditions
are expressed as propositions containing only uninterpreted variables, and equality checks and
extensional predicates over the uninterpreted variables.

From datalog theory (see [Imm]), we know that datalog programs (alternatively, transitive
closures over monotonic relations) can be evaluated in time polynomial in the size of the program
(number of rules and facts). In our case, if the number N of entities determines the size of the
program (each model is of fixed size, independent of the size of the enterprise system). Each
allows predicate is defined on O(N2) points. In each iteration we compute the value on at least one
point, and each iteration takes O(N) time, for an upper bound of O(N3) on the overall complexity of
validation.

 - 11 -

In practice, bottom-up evaluation of rules combined with tabling of intermediate results is an
efficient way to evaluate transitive closures. We use the XSB Prolog engine which uses this
strategy and is efficient in practice.

3.3.4 The “triggers” predicate
The triggers predicate is related to our earlier point that a deny policy is not a negation of the
corresponding permit policy. The triggers predicate captures the notion that a request made by an
entity can be triggered by another request that was made to that entity. For example, a write
request to the file system made by a database server can be caused by a query request made to the
database. We capture this notion as follows.

The predicate triggers(C1,O1,A1, E1, C2, O2,A2 ,E2) is true if and only if one request – O1,A1 from C1
to E1 – triggers a subsequent request – O2,A2 from E1 (as client C2) to E2 .

In our example above, the entity E1 is the database server, E2 is the file system, and C2 is the userid
of the database server presented to the file system.

We make two special notes here. First, we note here that the allows predicate has a natural
implicit definition of triggers as well. What we seek to model explicitly in “triggers” predicates
are those phenomena that are not captured by allows predicates alone. For example, consider the
policy deny(employees,finance_server,write,_). As noted in the semantics of deny we need to
ensure that the requisite operation cannot be invoked at all. However, the negation of a suitably
defined allows predicate will not suffice. In our particular example, it may be possible to
configure the system so that the write request from the client to finance_server is executed but
succeeds only partially (we do not care about the particular mode of failure). If this is modeled,
this is sufficient to infer that the corresponding allows predicate fails. However this is not
adequate to infer that the write operation cannot be invoked. We use the triggers predicate to
model this.

The second note is that a triggers predicate may be written even when no corresponding allows
predicate exists. This is useful in modeling “secondary” behaviors that are exhibited by entities
that are difficult to describe via the allows model. This is especially true when modeling software
that show undocumented behaviors. For example, web servers may use a cgi-bin script to access
databases. Because of the difficulty of accurately modeling such scripts, the modeler may model
the script as simply querying the database. In addition the modeler may want to capture the fact
that the script may be optionally accessing a filesystem for unknown reasons. Since the filesystem
access is not required for the database querying service, this will not be captured in the allows
predicate. We can capture such behaviors via a triggers predicate.

In order to make the following discussion clearer, we also define here the predicate
triggers*(C1,O1,A1, E1, Cn, On,An ,En) as the transitive closure of triggers; the intuition is that an
operation invoked on E1 can result in, via a series of intermediate invocations, the request On,An
made by Cn to En.

As noted, the triggers predicate will be used to analyze deny policies. For example, suppose we
wish to verify that there is no action that client C1 can perform which will eventually lead to
operation On,An being performed on entity En. This can be verified by checking that
triggers*(C1,O1,A1, E1, Cn, On,An ,En) is not true for any choice of O1,A1, E1, Cn. In practice, we will
first compute the closure, represented as a propositional formula ranging over the variables O1,A1,

 - 12 -

E1, Cn and verify that this formula cannot be satisfied for the given client, and any choice of
requests from that client.

The following is an example of a triggers rule which states the conditions under which a request
from apache to tomcat is triggered by a request from a client to apache.

triggers(client(machineID, IPaddr, credentials(user,password)),

 get, Url, apacheI, Me, TomcatI, jk2invoke, Url) :-
 attr(ApacheI, runAs, Me),
 isJSP(Url),
 attr(ApacheI, jspserver, TomcatI).

In general, the definition of triggers will include triggers predicates on the right hand side, but as
with allows, the triggers on the right side appear in positive form. Therefore, the triggers
predicate, and its closure, can be efficiently computed.

3.3.5 Flow labels
Consider the following sequence of events:

1. An employee, using a browser, requests a url from apache and supplies his user name
and password.

2. Apache, configured to do a basic authentication check, requests the password_file file
from the file system.

3. Having verified the client supplied password, apache requests the file corresponding
to the url from the file system.

In this example, a client request triggered a read request by apache on the password file. From
the discussion in the previous section, this would violate the policy deny(employee,
password_file, read)! This is an unfortunate consequence of our definition. The read request for
password_file from apache to the file system, followed by the file sent back to apache is
conceptually distinct from the client request to apache, followed by apache’s request to the file
system for the corresponding file. But we have not distinguished between these two flows.

Fortunately, there is a simple way to resolve this problem. The trick is to explicitly model the
notion of “flow” using a flow label in each predicate. Roughly speaking, flow labels capture the
role on whose behalf a flow has been created. A flow created to serve information to a client is
different from the flow created for the apache server to verify the client’s credentials. For
example, the model for the apache web server can distinguish between the two flows by using a
distinct flow label for the request for the password file, and reusing the flow label on the
incoming client request for the read request for the content file. In our example, this modification
ensures that the client request no longer appears to trigger the read request for password, and the
deny policy is no longer violated.

The choice of what flow label to assign is made at modeling time. We offer the following
concrete guideline: In any allows predicate the default outgoing flow label is always the same as
the incoming flow label. An outgoing allow should have a new flow label if it is the case that the
allow is a “guard” condition and no information (other than the guard information) is passed back
from this allows into the response part of the incoming allows. For example, the authentication
check is a guard condition on the incoming request. Since no information (except whether the
authentication succeeded or not) passes back to the requestor, the outgoing allows to read the
password file can have a different flow label.

 - 13 -

4. Policy Validation
With the terminology and semantics defined in the previous sections, we now present a high-level
overview of the algorithm to validate access policies. We assume that we are given a datalog
model for each entity type, and that for every entity instance, the input configuration data
includes values for all attributes of the corresponding model.

Step 1. Attribute substitution. For every “allows” and “triggers” rule, replace all attribute names
with the given configuration values.

Step 2. Datalog reduction. Reduce each rule for every entity instance to a boolean value or to a
propositional formula over uninterpreted variables only.

One way to conceptualize this step is as follows. Each allows term unfolds as a tree, where each
node corresponds to an allow rule, and its child nodes correspond to allows terms appearing in the
body of the rule. As this tree is evaluated bottom-up, propositional formulas are combined at
each node. These propositions are attribute-free, but may contain uninterpreted variables such as
client information, or arguments of operations.

Step 3. Policy validation. Validate policies in order of decreasing priority as follows.

i. For each permit policy permit(E, C,O,A), check every allows rule of the form
allows(E, C, O, A, R) for all O, A. If at least one of these rules is true then the policy
is upheld, else it is violated.

ii. For each deny policy deny(E, C,O,A), check if triggers*(C,*,*, *, *, O,A ,E) is false
or if allows(E,C,O,A,*) is false for all choices of wildcards (*). If so, the deny policy
is upheld. Otherwise it is violated.

Step 4. Verify least privilege holds. For every permit policy Permit(C,E,O,A) the set of allow
predicates that must be true to uphold the policy consists of the allow terms in the subtree formed
in Step 2 when an allows rule is unfolded. In this step we must verify that any allows term that is
true must support a permit policy, i.e., it must fall within one of these subtrees. If not, the default
deny policy is violated.

5. Conclusions and Extensions
Based on the ideas presented in this abstract, we have implemented the ISM prototype
system outlined in Section 2. The ISM system runs in a laboratory setting --- with a
number of Linux workstations, each with multiple virtual machines installed and running
Linux (Debian) and Windows. We configured instances of apache 2.0, tomcat 5.0 and
MySql server 4.1 on these virtual machines. As mentioned earlier, we have developed
and tested adapters and models for these components. In our experiments, the adapters
fetch the configuration data and parse them to build the extensional relations in a central
database. The analysis engine operates on the normalized relational data and the policies
that are provided separately. We test the results of the analysis directly against
operations on the live system. Thus far, our results, both in terms of correctness and
performance, have been encouraging. The final version of this abstract will discuss our
implementation and experimental results.

In addition to modeling a greater variety of software components, we are also studying
requirements for a modeling framework that will ease and standardize the process of developing

 - 14 -

and testing models. Finally, we are also investigating the problem of efficiently restoring the
enterprise to a policy compliant state, when possible, by generating a new set of component acls.

6. Related Work
There is a wide body of recent work that is related to this project from various aspects. We
mention some of these below.

The notion of policy based management has been around for some time. The Ponder project
[PON] allows policies to be complex quantified statements on the attributes and methods of
objects. In particular, security policies are typically restrictions on access to individual methods
on objects. Ponder however does not address composability or end-to-end reasoning on the
objects under consideration. As a result there is no concept of high-level policy and policy-based
management is seen as a means largely to specify constraints on classes of objects rather than
constraints on the behavior of the system as a whole.

Filtering Postures [FPOS] proposes using logic-based specifications of the requirements and
binary decision diagrams to validate whether network layer devices such as firewalls, router
ACLs and static routes are configured consistently.

Firmato [FRM] was the first analysis engine to generate rules for multiple firewalls that comply
with high-level policy. Firmato generates firewall configurations given policies and topology.
The “Smart Firewalls” project [SFW] developed closed-loop, policy-based security management
for the network layer to both check policy compliance and generate policy compliant acls.
Modeling network layer access control devices is particularly simple – incoming packets either
flow through without modification, or are blocked depending on the configured rules.
Application models are more complex since they must capture message types and
transformations.

The MulVal system [MVL] uses Datalog models to solve the problem of analyzing vulnerability
reports to infer privilege escalations in a system. MulVal operates in two phases. In the first
phase, a scanner consumes reports of vulnerabilities in common entities (hosts, operating
systems, network devices, applications) in a standardized XML format and searches the given
network to find any components that are affected by these reports. In the second phase, MulVal
logically deduces the privilege escalations (e.g. normal user becoming “root”) that are possible
due to these vulnerabilities using Datalog descriptions of the relationships between the
components in question. Although MulVal addresses a complementary problem using similar
ideas, they do not propose a formal modeling methodology.

Attack Graphs [JAJ, SHY] also model the cascading of attacks through a network but they do not
have formal modeling methods. Unlike MulVal they do not deal with phenomena such as
privilege escalation. Attack graphs analyze the potential impact of vulnerabilities on an
environment without the accompanying context of enterprise security policies.

Transitive Closure-based reasoning: [NetKuang] which is based on [Kuang] proposed to find
transitive vulnerabilities on networked computer systems created by poor system configuration
using a rule-based approach. They use a backward-chained, goal-based expert system search on
rules describing access structure as well as vulnerabilities. While Kuang is limited to analyzing a
single host, NetKuang can analyze a LAN: the analyzer accesses hosts on the LAN using a
customized network search algorithm. These works do not suggest a rigorous and general
methodology that goes beyond vulnerability exploitation on hosts

 - 15 -

Operating system vulnerabilities modeling [OSV]: This paper deals with the problem of modeling
the transitive effects of bugs in operating system routines such as buffer overflow. This work has
the ability to deal with sophisticated attacks such as phased attacks but at the cost of stateful
modeling that makes the complexity of the logic exponential. The paper does not address
networked environments.

In the commercial arena, SolSoft’s policy manager [SOL] allows users to specify high-level
network layer policies that are used to automatically generate configurations for firewalls, routers
and switches for any desired topology. TruSecure [TRU] offers an application layer security
solution that claims to solve the problem of transitive access, but their solution uses best practices
rather than formal methods.

 - 16 -

7. References
[PON] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy specification
language. In Morris Sloman, editor, Proc. of Policy Worshop, 2001, Bristol UK, January 2001.

[FRM] Yair Bartal, Alain Mayer, Kobbi Nissan, and Avishai Wool. Firmato: A novel firewall
management toolkit. In Proc. IEEE Computer Society Symposium on Security and Privacy, 1999.

[FPOS] J. D. Guttman. Filtering postures: Local enforcement for global policies. In Proc. IEEE
Symp. on Security and Privacy, Oakland, CA, 1997.

[MVL] S. Govindavajhala and X. Ou. MulVal: Multiple Vulnerability Analyzer. To appear in
Usenix Security Symposium, 2005.

[NetKuang] Zerkle, D., K. Levitt, “NetKuang—A Multi-Host Configuration Vulnerability
Checker.” 6th USENIX Security Symposium. San Jose, California, July 22–25, 1996, pp. 195–204.

[Imm] N. Immerman. Descriptive Complexity, Springer 1999.

[JAJ] S. Noel and S. Jajodia. Managing attack graph complexity through visual hierarchical
aggregation. Conference on Computer and Communication Security, 2004.

[Kuang] Robert W. Baldwin. Kuang: Rule based security checking. Documentation in
ftp://ftp.cert.org/pub/tools/cops/cops.tar.

[SHY] O. Sheyner and J. Wing. Tools for Generating and Analyzing Attack Graphs.
Proceedings of Formal Methods for Components and Objects, Lecture Notes in Computer
Science, 2004, pp. 344-371.

[SFW] S. Bhatt, S. Rajagopalan, P. Rao. Automatic Management of Network Security Policy.
MILCOM 2003.

[OSV] C.R. Ramakrishnan and R.C. Sekar. Model-Based Analysis of Configuration
Vulnerabilities. Journal of Computer Security, v10, pp 189-209, 2002.

[SOL] Solsoft Policy Manager, SolSoft, Inc. www.solsoft.com

[TRU] Enterprise Policy Management. White Paper. TruSecure, Inc. www.trusecure.com

[XSB] P. Rao, K. F. Sagonas, T. Swift, D. S. Warren, and J. Freire. XSB: A System for
Efficiently Computing Well-Founded Semantics. In J. Dix, U. Furbach, and A. Nerode, editors,
Proceedings of the 4th International Conference on Logic Programming and Non-Monotonic
Reasoning (LPNMR'97), number 1265 in Lecture Notes in AI (LNAI), pages 2--17, Dagstuhl,
Germany, July 1997. Springer Verlag.

