

Petname Systems

Marc Stiegler
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2005-148
August 15, 2005*

computer security,
phishing

It has been repeatedly observed [Zooko, Shirky, PNML, Close] that
global namespaces suffer from a variety of difficulties. While different
analyses have focused on different problems, the conclusion emerges that
global names are often overloaded with too many purposes, purposes that
come into conflict as the system reaches global scale. One representation
of the conflict is, global namespaces attempt to achieve the following trio
of properties all at the same time: each name should be global,
memorable, and securely collision free. Domain names are an example
of a system that attempts to achieve this trinity: domain names are global,
and memorable, but as the rapid rise of phishing demonstrates, they are
not securely collision free.

Though it may not be possible for any single namespace to have all three
properties, petname systems do embody all three properties. Informal
experiments with petname-like systems suggest that petnames can be
both intuitive and effective. Experimental implementations already exist
for simple extensions to existing browsers that could alleviate problems
with phishing. As phishers gain sophistication, experimenting with
petname systems as part of the solution seems compelling.

* Internal Accession Date Only Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

 Petnames/1

Petname Systems

by Marc Stiegler

Abstract
It has been repeatedly observed [Zooko, Shirky, PNML, Close] that global namespaces
suffer from a variety of difficulties. While different analyses have focused on different
problems, the conclusion emerges that global names are often overloaded with too many
purposes, purposes that come into conflict as the system reaches global scale. One
representation of the conflict is, global namespaces attempt to achieve the following trio
of properties all at the same time: each name should be global, memorable, and securely
collision free. Domain names are an example of a system that attempts to achieve this
trinity: domain names are global, and memorable, but as the rapid rise of phishing
demonstrates, they are not securely collision free.

Though it may not be possible for any single namespace to have all three properties,
petname systems do embody all three properties. Informal experiments with petname-like
systems suggest that petnames can be both intuitive and effective. Experimental
implementations already exist for simple extensions to existing browsers that could
alleviate problems with phishing. As phishers gain sophistication, experimenting with
petname systems as part of the solution seems compelling.

 Petnames/2

Problem Description
The figure shows the properties we’d like a name system to have overlaid with a petname
system:

The properties at the points of the triangle are:

• Memorable: a human being should be able to remember the name. Memorable
names pass the "moving bus test": if you see the name on the side of a bus as it
drives past you, you should be able to remember the name long enough to use it
when you get home.

• Global: the name should mean the same thing no matter where it is used or who
is using it. A key goal of marketing and advertising is to capture memorable
names in such a fashion that the memorable name is globally locked to a
particular entity.

• Securely Collision Free: This is means that the name cannot be forged or
mimicked. A name can be forged if one can manufacture an exact duplicate of the
name such that neither man nor machine can tell the difference. A name can be
mimicked if one can make a name similar enough to fool the human being. In
general, phishing depends on mimicry, not forgery.

Attempts to endow a single name with all three properties may lead, at sufficiently large
scale, to any and all of the following problems:

 Petnames/3

• Dependency upon a trusted third party that may make grievous errors or be
subverted.

• Political and legal conflict over particular names, or even over names that are
merely similar. In the best case, resolution will be considered unfair by some
parties in the conflict. In other cases resolution may be unachievable, as the
dispute crosses jurisdictional boundaries.

• Simple confusion periodically leading to both humorous and lethal
miscommunications: a cancer biopsy report emailed to john.doe@domain.net
instead of to john.doe@domain.com could cause loss of life.

• Malicious confusion, as demonstrated by phishing attacks that intentionally use
the similarities of names to lure victims into surrender of valuable private
information.

Basic Petname Layout
A petname system uses three interrelated types of names that, together, achieve all three
of the desirable properties. The types of names are: keys that are global and securely
collision-free (but not necessarily memorable); nicknames that are global and memorable
(but often collide), and petnames that are securely collision free and memorable (but
private, not global):

• Keys lie at the heart of the security properties of the petname system. A key is a
globally unique, unforgeable designator of some specific entity. The security of
the system can be no stronger than the unforgeability of the keys. Self-
authenticating public/private key pairs make good keys since they have strong
unforgeability properties. But there are other ways of achieving unforgeability. A
trusted path can also work well as the key: the full pathname to a file on a specific
computer is also unforgeable. Nicknames and petnames exist to make it easy for
human beings to manipulate keys. It makes no difference in a petname system
whether a key can be mimicked: keys are handled only by the computer, the
human being handles the keys only indirectly via petnames. For a particular
person, for a particular application, there is a one-to-one mapping between a key
and a petname.

• Nicknames can be used to assist in discovery of keys, and for help in selecting a
petname. Nicknames are chosen by the owners of keys in hopes of creating a
distinctive, if not unique, mapping from the memorable nickname to the key.
Such nicknames often are promulgated throughout the world in the hopes of
making the nickname stick in the mind as a reference to the key. Since there are
strong incentives to "take ownership" of a nickname, even though true ownership
is not possible, nicknames may be the most misunderstood part of a petname
system.

In the simple case, a nickname has a one-to-many mapping to keys. The name
John Smith is obviously a nickname: there are many John Smiths. Other
nicknames produce the illusion of being globally unique: the name Argus Billaby

 Petnames/4

appears to be collision free at the time of this writing. But there is no security
property in this accident of global uniqueness. The uniqueness of the name Argus
Billaby would change quite quickly if, through human whimsy, the name
suddenly became desirable. Sometimes the desirability of a nickname is not
whimsical, but venal. It is already desirable for some applications to call
themselves Quicken, and draw windows that request the Quicken password.

• Petnames are our private bidirectional references to keys. There are many dogs
named Rover, but for the owner of a dog with the petname Rover, there is one
specific Rover to whom the name refers. In the computer setting, for a specific
person with a specific application, petnames are unique, each petname refers to
exactly one key, and each key is represented by exactly one petname. In all places
in the application where the application wants to designate the key, the petname is
displayed -- which is to say, a true petname is a bidirectional one-to-one mapping
to a key. All references to the key by the user interface are represented by the
petname. A key cannot have two petnames; if a single key had two petnames,
under what circumstances would the user interface display Petname-1 as the
representation of the key, and under what circumstances would it display
Petname-2?

The security of a petname system depends on the keys to prevent forgery, and on the
petnames to prevent mimicry.

More Detail, and Interactions

A good example of a nickname management system is Google. Type in a name, and
Google will return a list that includes all the entities Google knows, to which the name
refers. Google makes a mapping between these nicknames and their keys (if we think of
the URL of a page as a key). Often enough to be interesting, the first item in the list will
be the desired item. But it fails often enough, and endless pages of other choices appear
often enough, to never leave us in doubt that these identifiers are not securely collision
free mappings to single keys. As is already true in the current world, in a world filled
with petname systems, a key goal of marketing would be to get your URL listed at the top
of the Google rankings for your nickname.

Nicknames are conveniences that may serve as good starting points for petnames. If
Argus Billaby sends someone his key and his nickname, often his nickname will work
quite well as a petname. But the nickname-as-proposal must not be confused with the
petname-as-decided. Never in a true petname system is the nickname presented or
employed as if it were a petname. After all, the recipient might already have assigned that
petname to another Argus Billaby.

Alleged names are similar to nicknames. An alleged name is the name for an entity
proposed by a third party, typically in an introduction. An alleged name can also be
useful as a starting place for picking a petname. Alleged names, like nicknames, are
usually memorable, often global, and never securely collision free. Alleged names are

 Petnames/5

often based on nicknames, though this is unreliable enough, if one really cares about the
nickname then one really needs to ask the entity designated by the key, not the third party
performing the introduction.

In action, keys and alleged names tend to be transferred together. We refer henceforth to
such key/alleged-name pairs as referrals.

It is crucial not to confuse private petnames with global nicknames that temporarily
happen to have a unique mapping to a key. Experience to date suggests that the term
"petname" is attractive, leading people to desire to use it. People can thence easily fall
into the trap of referring to momentarily collision-free nicknames as "petnames". This
error then leads them inevitably to draw fatally confused conclusions about the possibility
of petnames with global meaning. The security properties of a petname derive from its
privacy. Public nicknames are trivially vulnerable to both forgery and mimicry; they have
few interesting security properties. (They do have one interesting security property: If
you do discovery on the nickname “John” and an introduction agent refers you to Jane,
you can authenticate the alleged introduction by asking Jane “Do you go by the nickname
‘Joe’?”. This is irrelevant against phishing attacks, but is useful in other contexts)

Petnames are guessable. Most people will accept Paypal's nickname as the petname. This
can only impact the security of the system if the user interface fails to unambiguously
distinguish the user-specified petnames from suggested nicknames.

The term "petname" suggests that this name is embodied as text. This is not necessary.
Petnames can be graphical as well. Indeed, some of the petname systems listed later use
both pet texts and pet graphics.

Petnames must be repeatably editable by the human being so that the set of petnames can
evolve as the user's set of associations grow. You might use the petname "John Smith"
for the one and only John Smith that you know. But then if you meet another John Smith
you will have to distinguish, possibly by editing the first one: Instead of the single entry
"John Smith" you may now have "John Smith Security Guru" and "John Smith Dentist".

Petnames convey power: since the petname is the user’s representation of the key, it is
through the petname that the human being uses the key, communicates with the key
owner, and conveys authority to the key owner based on the user's purposeful trust
relationship with that owner (purposeful trust is the type of trust needed to engage in
action: I trust (i.e., I am willing to be vulnerable to) PayPal to hold N number of dollars
on my behalf, and to engage in transfers of that money based on orders I give).

Another way of thinking about the relationship between a key and a petname is as
follows. The key is used to authenticate the entity that owns the key. The petname is used
as a handle upon which to hang the trust/reliance/vulnerability data used by the human
being to make authorization decisions for that entity. If the entity represented by the
petname My Phone Company asks for a credit card, if the justification sounds reasonable,
one may choose to release the data. If the entity represented by the petname Deadbeat

 Petnames/6

Brother asks for a credit card, the recipient of the request will probably not release the
card number no matter what the justification (even though the recipient may trust the
Deadbeat Brother to teach soccer to the recipient’s daughter without supervision -- the
trust relationship with a deadbeat brother is not exactly positive nor negative, it is more
complex).

Having leaned so heavily upon the term “entity” in the above paragraph, a brief attempt
to define it seems in order. Entities are those objects with which human beings form
distinct trust relationships. Each human being has his own model of what constitutes an
entity, and this model evolves over time. Let us look at three examples.

• A Web example: if the owners of the car.com domain take over the car.net
domain and duplicate the pages there, car.net and car.com are the same entity.

• A human example: If John creates the pseudonyms Carol and Harley, and Bob
meets both Carol and Harley without realizing they both represent John, then Bob
will treat each separate persona as a different entity. Upon discovering that the
multiple persona represent the same individual, Bob may decide to treat all the
persona as a single entity. Or he may not, if the persona have sufficiently different
characteristics (if Bob/Carol responds to email quickly but Bob/Harley responds
erratically).

• An organizational example: We may have a strong trust relationship with the
repair department of Smith’s Used Cars without trusting the sales department at
all, even though both are part of the same “entity”, and may even share the same
public key from a Certificate Authority.

An idealized petname would have a one to one mapping to an entity, and that mapping
would survive despite changes in the key, despite multiple keys for the same entity, and
even despite single keys that represent multiple entities. For the purposes of this paper,
we assume that there is a one to one mapping between the entity and the key, and
therefore transitively a one to one mapping between the petname and the entity.

Petnames In Action
Informal experimentation suggests that a petname system is much easier to use than to
explain (see examples below). We will create a single example for this introduction, and
give some hint as to the wide diversity of variations in the Examples. Suppose Argus
Billaby sends Carol a referral to John Smith’s OpenPGP public key in email. Argus says,
"here is John Smith’s public key." Argus has sent both a key and an alleged name (John
Smith). Implicit in the transmission of the alleged name is the proposal that one might
want to consider "John Smith" as the petname. Whether one actually chooses John Smith
as a petname depends entirely on the recipient’s context. If one knows this particular
John Smith in other contexts as "John", one may choose "John" as the name referring to
this key in the list of public keys. If one thinks this might be the same John Smith as in
other contexts, but is not willing to be vulnerable to Argus as the sole source of such a
powerful mapping, one might use the petname "Argus Billaby’s John Smith”.

 Petnames/7

If a newly received public key already exists in one’s list of public keys, the software
shouldn't give you the choice of adding it: the software should point out that this public
key is already listed and point out the current petname. If one receives a message signed
with the private key for the “John” petname's public key, the software should display the
petname John. If one sends a message to John, the software should pick the encryption
key based on the petname.

The above example has the security properties of a petname system, but OpenPGP
systems often do not demonstrate the usability properties a petname system needs. Instant
messaging systems with buddy lists demonstrate the usability properties, but discard all
the security properties. See the examples section for more details on buddy lists as
petname systems.

Key Issues with Petname Systems
Two elements of full-fledged petname systems seem to be principle sources of
controversy. One question is, “how do I get the keys transferred around the system?” The
other is, "how easily can Darth Vader mimic a petname?"

Transferring Keys and Purposeful Trust

Transferring keys around the universe is easy; one could, for example, plaster the keys on
all the web sites in the world that will let one do so. The hard part is transferring a key
with an association to purposeful trust. It is useless to both PayPal and the phisher who
wants your Paypal account if you just know Paypal's key. You have to be willing to make
yourself vulnerable to the PayPal key owner to hold your credit card, trusting that entity
to engage in only transfers that you specify, before either PayPal or the phisher can
pursue any benefits.

The question, "how do I transfer a purposeful trust association?" has no single answer.
Rather, there are many answers, each of which works in narrow circumstances. The
question is made even more difficult to answer because the mechanisms by which
humans determine an appropriate purposeful trust relationship is subtle, complex,
powerful, and completely subconscious: the question of how one transfers the association
can easily slide into a much more difficult discussion of how to create purposeful trust in
the first place. Here we outline some general ideas for transferring key/purposeful-trust
mappings, then in the Examples point out some practical approaches in specific narrow
contexts.

Transfers of purposeful trust often start with direct physical contact. One gets a
combination of a nickname and a key in a file from your best friend, who says, "this
Google thing is a great search engine", or "this Consumer Reports site will not lead you
astray". You stick these referrals in your browser, assign petnames, and make yourself
vulnerable to them for the purposes stated because your friend said so. Then when the
side of the bus says PayPal, you might go and see what Google thinks Paypal means.
Since a relationship with PayPal is a serious vulnerability decision, serious enough so that

 Petnames/8

people in general will not jump at the first site just because Google said so, we'll ask a
few of our friends to email referrals to the entities they use for online money. If the
referrals they send corroborate the Google pick (which is easy to tell, because trying to
add each new key/petname mapping will produce the alert that the key matches one
you've already got), one’s willingness to be vulnerable to the key petnamed PayPal
increases.

The process described above is pretty similar to how people started using PayPal even
without petname systems: people joined when enough of their friends and organizations
that they trusted for recommendations about financial matters concurred. The only
difference in the petname version of the story is that the friends explicitly give referrals
rather than easily mimicked domain names, and we explicitly set a petname (perhaps by
just clicking an Accept key when the alleged name was proposed as the petname).

While a full-fledged, purebred petname system could in principle supplant the entire
DNS system, we have DNS now. It can be used for bootstrapping. The ability to type
google.com and paypal.com is adequate to get started.

Regardless of how one bootstraps, one can get referrals by email, thumbdrive, web page,
chat, and even by telephone.

Converting From Nickname to Petname

The other part of the system that cannot be easily quantified is the ease or difficulty of
mimicking pet names. Let us assume a poorly built petname system in the clutches of a
clueless user. Our user has a money transfer site on the Web that has been petnamed
PayPal. The user gets an email telling him to update his PayPal account, he clicks the
link, and goes to a domain that has given itself the nickname “PayPa1” (that last
character, "1", is a one). Our poorly built hypothetical petname system is so poorly built,
the nickname is put into the field where the petnames go with only the slightest indication
that this is a nickname rather than a petname. The user sees no distinction and is phished.

Solutions to this problem are application and context specific, though some good ideas
seem to have wide applicability. In the Waterken Petname Toolbar proposal, the alleged
name is always "untrusted". It's hard to fail to recognize that this isn't PayPal, though a
sufficiently unobservant user might completely disregard the petname information and
get phished anyway.

There are a couple of user interface issues. The petnames must be unambiguously distinct
from nicknames. This seems easy to do, through colors, fonts, additional text, and
separate fields for the nickname as examples of pieces of strategy.

More difficult is the following problem: Petname creation must be both painless (or
people will reject the whole idea) and reliably mimicry-free (it would be a disaster to
have both PayPal and PayPa1 as petnames!).

 Petnames/9

Here are two example ideas for petname creation user interface that seem generally
applicable. First is to compose the default choice for the petname out of a combination of
contextual information and nickname information. Suppose we click on a link to
"PayPal" in the Consumer Reports site (that is, the site that we have assigned the
nickname, "Consumer Reports"). This takes us to a new site that proposes the nickname
"PayPal". The system clearly marks that we do not have a petname for this site and
proposes "Consumer Reports' PayPal". The user can press a button to accept this name,
edit it, or press a second button that says, "let me use the raw nickname “PayPal” as the
petname." This system still depends on the user remembering the petnames he has
already assigned and noticing at the time of creation of the new petname, whether he
already has a similar name in his list. In many circumstances this will not be a problem --
most of us who gave PayPal a petname would have no trouble remembering we had done
so, and if we saw a suggested nickname that looked like "PayPal", we'd notice we were at
risk of confusing ourselves if we accepted that similar name as the petname…but again,
we are dealing with humans, so the process is imperfect. To support the human being,
we'd want to use a font that was as ambiguous as possible during petname creation,
mixing up 1 and l and I in a hopeless mess, so that one could be confident that the
resulting petnames looked unique no matter what font was used later.

A second idea for keeping petnames reliably mimicry-free is to have a weak algorithm
for comparison matching a candidate petname against the existing petnames. We
explicitly call this a weak algorithm because it can be quite poor. It is quite acceptable for
the algorithm to pop a list of "similar petnames" that is overly extensive, i.e., it is fine to
show names that the human easily recognizes as distinct. The serious error is to fail to
show names that the human might confuse. Comparing Paypal to Paypa1, a sample
algorithm might notice that the names are of similar length and have three letters in
common ("p", "a", and "y"), and say, "that's similar enough to be worrisome." The
algorithm for noticing similarity between private petnames is under much less pressure to
be perfect than is the algorithm for a Certificate Authority when deciding whether to
award the name "pawpal" when the name "paypal" already exists. A CA might like to
prevent mimicry, but to do so the CA must tread a difficult line between enabling many
customers to have desirable names, versus abolishing huge swaths of namespace to
ensure similarities don't arise.

Examples, Near Examples, and Comparisons

Physical World Petnames

Humans have been using parts of petname systems since before the invention of the
written word. Human faces were used as keys. These keys resisted forgery far better than
many things that pass for security today on computers (indeed, faces make such good
keys, their forgery is so difficult and rare, that such forgery is used for entertainment, as
in episodes of Mission Impossible, and the occasional Shakespearian comedy like 12th
Night). The referral, "Og, this is my son Oop, he's great with a club," transferred both a
key/alleged-name pair and a purposeful trust recommendation. The recipient of this
referral typically accepts the alleged name as a petname.

 Petnames/10

These physical world petname systems are sufficiently different from computer-based
petname systems that it is dangerous to draw too many conclusions from them. But the
similarities are intriguing. More comprehensive comparison and contrasting of physical
petnaming to computer-based petnaming is left as an exercise for the reader.

Trademark Law

Trademark law is not a petname system. When civilization started creating entities that
did not have unforgeable faces (like Apple Computer), we settled on a legal system that
attempted, with fair success, to enforce (that is, secure) purpose-unique memorable global
IDs for small numbers of entities. It is hard to map trademarks onto petname systems for
comparison, but an attempt seems in order. The trademark-purpose pair is the key, made
unforgeable by government coercion. It is important to note that the trademark itself is
not the key: Apple Computer and Apple Music both used the trademark Apple for
decades, without conflict, until Apple Computer entered the music business.

The trademark by itself is the nickname: Apple Computer thinks of itself as "Apple".
Petnames are absent. Mimicry is prevented by the same government action as forgery,
and indeed the trademark system makes no distinction between forgery and mimicry
(which perhaps helps explain why the distinction is so blurred in most discussions).

Trademark law depends on the legal system to disambiguate "similar purpose". This is
expensive, and consequently trademark law can only apply to "small" numbers of "big"
entities. The name John Smith is covered by trademark law, but only in explicitly
recognizing that all people who have that name may use it, i.e., trademark law recognizes
non-uniqueness in this case. On the Web, the number of entities with whom we would
like to associate trust/vulnerability relationships is extremely large; indeed, one of the
failures of the Web today is that we cannot construct as many such associations as we
would like. Those relationships span multiple legal jurisdictions, further complicating the
trademark system.

Instant Messaging Buddy Lists

Buddy lists for instant messengers follow the logic of petname systems. Each entity gets
a globally unique id, rooted in the domain name of the messaging service, which fills the
role of "key". Once the user puts a petname into the buddy list, all references to the id are
displayed using the petname: you can connect to the entity using the petname, and when
the entity connects to you, the petname appears, not the id.

While buddy lists are petname implementations, some instant messengers lose the
security properties a petname offers because of efforts to overload the id with additional
purposes. A weak effort is made to make the id both human memorable on the one hand,
and unforgeable, on the other. The id is used as both a nickname and a key even though it
is often hard to remember and easy to forge (either through man in the middle attacks or
password attacks).

 Petnames/11

Despite these complications, buddy lists demonstrate the utility and usability of petname
systems. Buddy lists are intuitive. People learn to use them with neither instruction nor
documentation.

 An instant messenger that used true keys, true nicknames, and enforced good security
properties would be virtually indistinguishable in user-interface presentation from
existing systems. Indeed, if one used an object-capability style of key, the biggest
difference would be the absence of passwords, an actual usability improvement.

CapDesk and Polaris

CapDesk [CapDesk] and Polaris [Polaris] are desktop systems that explicitly flesh out
petname systems to enforce security properties. CapDesk is a point and click desktop that
combines usability, security, and functionality, to a degree often found surprising by
those unfamiliar with it. In CapDesk, at application installation time the application
proposes a pet text and a pet graphic (the icon for the top left corner of its windows, and
the text in the title bar that is immediately adjacent). The user may accept this petname or
modify it. Windows launched thereafter by the installed application are unforgeably
marked with the petname. Limited informal experimentation suggested that the CapDesk
petname system was is intuitive and easy to use, like the buddy lists.

Polaris is a derivative of CapDesk that defends the Windows user against several
interesting classes of attack. Polaris uses pet texts similar to the CapDesk pet texts for
marking the windows. Polaris is today being used in a larger set of pilot programs than
CapDesk ever experienced. One result of the pilots that proved a pleasant surprise is that
people are aware of and sensitive to the petname markings. This supports the hope that
petnames could indeed strongly impact phishing.

Domain Names

DNS attempts to create memorable keys. It makes a striking example of the difficulties
that result. The namespace being managed is so large that mimicry occurs, not only by
malicious intent, but by accident. Mimicry becomes increasingly more problematic as
systems grow to global scale since it is less likely that people can reliably remember all
the DNS addresses they use.

Several of the other examples here treat the domain name as a key. Domain names are
forgeable, but in practice they seem resistant enough to forgery to be useful. Judging by
the prevalence of mimicry-based phishing over DNS forgery, it seems that at the time of
this writing forgery is not the weakest link in DNS; mimicry is.

Browser Bookmarks

Browser bookmarks combined with URLs have many similarities to petname
systems...with a significant flaw. Think of the URL as a key and a page title as a

 Petnames/12

nickname. The bookmark can then be thought of as a private name that points at the key,
suggested by the nickname. It sounds like a petname system.

However, the bookmark is not a petname. As noted earlier, a true petname is a two-way
mapping: any reference to the key is represented in the user's world as the petname.
However, bookmarks only map from the private name to the key, with no mapping back.
When you follow a bookmark to a page, or take any other path to get to the page, the
domain name rather than the bookmark is used throughout the user interface as the
"name" for presentation to the user, a fundamental violation of petname logic. Despite
this violation, bookmarks demonstrate how even a partial implementation of petnames
will deliver some defense against mimicry. Any person who reads an email allegedly
from PayPal, and then clicks on an existing bookmark to go to PayPal rather than
following the email-embedded link, gets a security benefit derived from the partial
implementation of petnames afforded by bookmarks.

OpenPGP and the Web of Trust

OpenPGP keys carry nicknames with them, and in some implementations the user can
replace nicknames with a name of the user's choosing, which would be a petname. When
an entity's key is observed by the software, the pet name is properly presented, i.e., the
petname is properly bidirectional. The Web of Trust supplies an interesting way to
associate these keys with purposeful trust, by asking other entities who have vouched for
the new entity, what they recommend as a trust relationship.

With all these features, OpenPGP supplies a true petname system architecture. OpenPGP
has not been tested by phishing attacks yet. Since all the basic elements are there, the
biggest question would be, how must the user interfaces for applications using OpenPGP
evolve to face such a threat? This is another reminder that user interface is as critical for
any practical security architecture as is the crypto. A security system whose user interface
is written by cryptographers is no more likely to succeed than a security system whose
authentication machinery is written by user interface designers.

Waterken Petname Tool

The Petname Tool [Waterken] is a FireFox extension explicitly based on petname
architecture, explicitly to prevent phishing. A CA public key plus an organization name is
treated as the key. The petname is a true two-way mapping between key and private
name. For those sites to which the user assigns petnames, the tool supplies markings that
make it easy for the user to unambiguously distinguish the site. Limited informal
experimentation suggests that the petname tool is as intuitive as the buddy lists and
desktop systems described earlier.

Certificate Authorities

Certificate Authorities create nickname/key pairs. The certificates share with PGP keys
the cryptographic strength to ensure unforgeability. The claim is made that, because the

 Petnames/13

nickname is unique within the CA, interesting security properties may be ascribed to the
nickname. Petnames are not included in the scheme. It looks like DNS, with the CA
playing the role of the DNS root servers. In a world where web pages cross jurisdictional
boundaries at the speed of light, it is hard to see how the standard CA concept could fix
what DNS demonstrates so vividly is broken.

Trustbar

The Trustbar [trustbar] is a Certificate Authority-based FireFox extension that allows
user construction of petnames for the certified entity. Like the Petname Tool, the
TrustBar has been developed as a defense against phishing. In the 0.1 implementation,
the distinction between a nickname (based on the certificate) and the petname is implied
by the popup of a dialog box when the certificate is first encountered and no petname has
yet been assigned. The petname and the key are not quite fully bidirectional: the key is
properly represented by the petname in user interactions, but the petname cannot be used
to get to the key.

Pet Name Markup Language

PNML is an XML proposal for using petname systems ubiquitously. In a chat system, if
Bob made a reference to “Alice” in the text he wrote to Ted, and if “Alice” is Bob's
petname for a person known to Ted with petname “Carol”, the sent reference to “Alice”
would be converted on transmission to Alice’s key, and then converted on reception into
Ted’s petname “Carol”. It would take significantly more effort to build PNML into an
existing browser than to integrate the Petname Tool.

Conclusions
The informal experiments with petname-like systems identified here suggest that they can
be intuitive and easy to use. A user who understands his petname system and is alert to
the information it conveys can be quite resistant to mimicry, making that user a difficult
target for phishing. Experimentation is required to determine how much less vulnerable
to phishing the typical user would become given a petname system. Experimentation with
petnames for web browsers does not have to be expensive; both the Trustbar and the
Petname Tool are ready now, both for usage and for further experimentation by building
variations derived from their open-source code.

Implementation Notes/Requirements
Following are important features of a petname system. If an implementation of a naming
system does not include these properties, it is not fully following the logic of petnames:

• The key must be resistant enough to forgery to survive in the context of the
application threat model.

 Petnames/14

• The petname binding and its corresponding key should endure and continue to
designate the same entity for as long as that entity exists within the user’s mental
model.

• There can be at most one petname per key per user per application.
• There can be at most one key per petname (per user per application).
• In the application user interface, all references to the key are represented by the

petname.
• The user must be able to assign a private petname to any key.
• The petname must be assigned to the key only by explicit user action.
• The user must be able to repeatedly edit the petname of any key.
• The user interface shall assist the user in assuring that two petnames are not

similar enough to enable mimicry, to the extent necessitated by the complexity of
the application context in which the petnames are selected and manipulated. If the
number of petnames needed by the application is small and they are easily
remembered, no assistance may be required. If the number of petnames is large,
and/or difficult to remember and/or likely to be similar, and the resultant forms of
mimicry, accidental or intentional, leads to vulnerability inside the threat model,
assistance is required.

• Nicknames and alleged names must be unambiguously visually distinct from
petnames.

Nicknames are optional.

Acknowledgements
We thank everyone on the cap-calk mailing list for their help, especially Ian Grigg for his
deliciously relentless criticism, but also notably including David Hopwood, Alan Karp,
Mark Miller, Tyler Close, Trevor Perrin, and Charles Landau, each of whom made
comments that directly caused modification to the early draft. Petnames were invented at
Electric Communities. Tyler Close was the first to recognize their usefulness as a defense
against phishing. Thank you also to Amir Herzberg for his assistance in understanding
the Trustbar.

References

[Zooko] http://zooko.com/distnames.html
[Shirky] http://shirky.com/writings/domain_names.html
[Close] http://www.waterken.com/dev/YURL/Name/
[Trustbar] http://eprint.iacr.org/2004/155/ or
http://www.cs.biu.ac.il/~herzbea//Papers/ecommerce/spoofing.htm
[CapDesk] http://www.skyhunter.com/marcs/CapDeskSpec.html or
http://www.combex.com/tech/edesk.html
[Polaris] http://www.hpl.hp.com/techreports/2004/HPL-2004-221.html

 Petnames/15

[Waterken] http://www.waterken.com/user/PetnameTool/
[PNML] http://www.erights.org/elib/capability/pnml.html

