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Abstr act

In somecontexts it may be useful to predictthe latency for short TCP transfers. For example, a
Webserver could automatically tailor its contentdepending on thenetwork pathto each client,or an
“opportunistic networking” application could improve its scheduling of data transfers.

Several techniqueshavebeenproposedto predictthelatency of short TCPtransfersbasedononline
measurementsof characteristicsof thecurrent TCPconnection, or of recentconnectionsfrom thesame
client. We analyze the predictive abili ties of thesetechniquesusing traces from a variety of Web
servers,and show thattheycanachieve usefulaccuracyin many, but not all, cases. We also show that
apreviously-described model for predictingshort-transfer TCPlatency can beimproved with asimple
modification. Ours is the first trace-basedanalysis that evaluatesthese prediction techniquesacross
diverse usercommunities.

1 Intr oduction
It is oftenusefulto predict the latency (i.e., duration)of a short TCP transferbeforedecidingwhen or

whetherto initiateit. Network bandwidths,round-trip times(RTTs),andlossratesvaryovermany orders
of magnitude,andsothetransferlatency for a givendataitemcanvary similarly.

Exampleswhere suchpredictionsmightbeusefulinclude:� a Webserver could automaticallyselect between“low-bandwidth” and“high-bandwidth” versions
of content,with theaimof keeping theuser's downloadlatency below athreshold[11, 20].� A Webserver usingshortest-remaining-processing-time(SRPT)scheduling [23] couldbetterpredict
overall responsetimesif it can predictnetwork transfer latency, which in many cases is theprimary
contributor to responsetime.� An applicationusingopportunisticnetworking [25] might chooseto schedulewhich datato send
basedon anestimateof thedurationof a transfer opportunity andpredictionsof which dataitems
canmakethemost effective useof thatopportunity.

Thereareseveralpossiblewaysto define“short” TCPtransfers. Modelsfor TCPperformancetypically
distinguish betweenlong flows which have achievedsteadystate,andshortflows which do not last long
enoughto leave theinitial slow-startphase.Alternatively, onecoulddefineshort in termsof anarbitrary
threshold on transfer length. While defining “short” in terms of slow-start behavior is lessarbitrary, it is
alsolesspredictable(becausethe duration of slow-startdependson unpredictablefactors suchascross
traffic and packet loss), andso for this paperwe usea definition based on transfer length. Similarly,
while transferlength could be defined in terms of the numberof datapackets sent,this also depends
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on unpredictable factors suchasMTU discovery andthe interactions betweenapplication bufferingand
socket-level buffering. So, for simplicity, in this paperwe define“short” in termsof thenumberof bytes
transferred.

Several techniqueshave previously beenproposedfor automatedprediction of the transfer time for a
shortTCP transfer. Someof these techniquesgleantheir input parametersfrom characteristicsof TCP
connections,suchas round-trip time (RTT) or congestion window size (cwnd), that are not normally
exposed to theserver application. We call these characteristics TCP arcana. Theseparameterscanthen
be used in a previously-describedmodelfor predictingshort-transferlatency [2]. Othertechniquesuse
observationsof the actuallatency for pasttransfersto thesameclient (or to clientsin asimilar location of
thenetwork), andassume thatpast performance is agoodpredictorof future performance.

In thispaper, weusepacket-level tracescapturednearavariety of realWebserversto evaluatetheability
of techniquesbasedonbothTCParcanaandhistorical observations to predictshorttransferlatencies.We
show thatthepreviously-describedmodeldoesnotquitefit theobservations,but thatasimplemodification
to themodel greatly improvesthefit. We alsodescribeanexperimentsuggesting(based ona limiteddata
set)thatRTT observationscouldbeusedto discriminate,with modestaccuracy, betweendialupandnon-
dialuppaths.

1.1 Relatedwork
Our work complements previous work on predicting the throughput obtainedby long TCP transfers.

He et al. [9] characterizedthesetechniquesas either formula-basedor history-based;our TCP arcana
approach is formula-based.

LakshminarayananandPadmanabhan[14] briefly discussedthe relationshipbetweenRTT andTCP
throughput,but for transfer lengthsof 100KB, since their paperfocuseson peer-to-peersystems. They
founda poorcorrelation betweenlatency andthroughput,which is not surprising,becausefor long trans-
fers theformula-basedmethodrequiresknowledgeof packet lossrates,which they did notmeasure.They
did remark that“latencymayin factbeagoodpredictorof throughputwhendial-uphosts... areincluded,”
whichagreeswith theresultswepresentin Section 5.

Hall et al. [8] studied theeffect of earlypacketlosson Webpagedownload times. As with our work,
they point out that download timesare not always correlatedwith path bandwidth. They focused on
packetlossesoccurring early enoughin theTCPconnectionthat“neitherclientnor serverhasseenenough
packetsto establish a usable round trip time estimation,” which leadsto excessively long retransmission
timeouts.

2 Latencyprediction techniques
We start with the assumption thatanapplication wishingto predictthelatencyof a short transfermust

do so asearly as possible, beforeanydatahasbeentransferred. We alsoassumethatpredictionis being
doneat the server end of a connectionthat wasinitiated by a client; althoughthe approaches could be
extendedto client-sideprediction,wehave nodatato evaluatethatscenario.

Weexaminetwo predictionapproachesin this paper:� The init ial-RTT approach: The server's first possible measurement of the connectionRTT is
providedby theinterval betweenits initial SYN

�
ACK packetandtheclient's subsequentACK. For

shorttransfers,this RTT measurementis oftensufficientto predict subsequentdatatransfer latency
to this client. This approach wasfirst proposed by Mogul andBrakmo[19] anddiscussedin [20].
We describeit furtherin Section2.1.� Therecent-t ransfersapproach:A server canpredictthedatatransfer bandwidth to a given request
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basedon recentlymeasuredtransferbandwidthsto thesameclient. Thisapproach,in thecontext of
Webservers, wasproposedin [11]; wedescribe it furtherin Section2.2.

2.1 Prediction from initia l RTTs
Supposeonewantsto predictthetransferlatency, for a responseof agivenlengthoveraspecific HTTP

connection,with no prior informationabout theclient andthenetwork path,andbeforehaving to make
the very first decision aboutwhat content to sendto the client. Let us assumethat we do not want the
server to generateextra network traffic or causeextra delays.Whatinformation couldoneglean from the
TCPconnection beforeit is too late?

SYN (P1)

SYN|ACK (P2)

ACK (P3)

HTTP GET (P4)

ACK (P5)

HTTP REPLY (P6)

HTTP REPLY (P7)

FIN (P8)

ACK (P9)

1 RTT

Client Server

T
ransfer latency

Figure 1: Timeline:typicalHTTPconnection

Figure1 shows a timeline for the packetssentover a typical non-persistent HTTP connection. (We
assumethattheclient TCPimplementationdoesnotallow theclientapplicationto senddatauntil after the
3-wayhandshake; this is trueof most commonstacks.) In this timeline,theserverhasto makeits decision
immediatelyafterseeingtheGET-bearingpacket(P4) from theclient.

It might be possibleto infer network path characteristics from the relative timing of the client's first
ACK-only (P3) andGET(P4) packets,usingapacket-pairmethod[13]. However, theinitial-RTT predictor
insteadusesthe path's RTT, as measured between the server's SYN �ACK packet(P2) and the client's
subsequent ACK-only packet (P3). Sincethese two packetsarebothnear-minimumlength,they providea
direct measurementof RTT, in theabsenceof packet loss.

Why might this RTT be a usefulpredictorof transfer latency?� Many last-hop network technologies impose both high delay and low bandwidth. For example,
dialupmodemsalmostalwaysaddabout100msto the RTT [4, 5] and usually limi t bandwidth to
under56Kb/s. If we observe anRTT muchlower than100ms, we caninfer that thepathdoesnot
involve a modem. (SeeSection5 for quantitative evidence.) A similar inferencemight be made
aboutsome(perhapsnot all) popularlow-bandwidthwirelessmedia.� Evenwhenthe end-to-endbandwidthis large, the total transfer time for short responsesdepends
mostlyon theRTT. (Therefore,anHTTP request headerindicating client connection speedwould
not reliably predictlatencyfor suchtransfers.)

Cardwelletal. [2] showedthatfor transferssmallerthanthelimit ing window size,theexpectedlatency
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to transferd segmentsvia TCP, whenthereareno packet losses, is approximatedby

E � latency��� RTT 	 logγ 
 d 
 γ � 1 �
w1



1� (1)

where�
γ dependson theclient's delayed-ACK policy; reasonablevaluesare 1.5or 2 (see [2] for details).�
w1 dependsontheserver'sinitial valuefor ������� ; reasonable valuesare2,3,or 4 (see [2] for details).�
d ��� l en

MSS��
len is thenumberof bytessent.�
MSS is theTCPmaximumsegmentsizefor theconnection.

NotethatmedianWebresponsesizes(weusethedefinition of “response” fromtheHTTPspecification [6])
aretypically smallerthanthelimiting window size;seeSection3.4.

End-to-endbandwidth limits andpacketlossescanonly increasethis latency. In otherwords, if we
know theRTT andresponsesize,thenwe canpredicta lower boundfor thetransferlatency.

We would like to use theRTT to predict the transfer latency assoonas possible.Therefore, thefirst
time a serverseesa request from agivenclient, it hasonly oneRTT measurementto use for this purpose.
But if the client returnsagain, which RTT measurement shouldtheserver usefor its prediction? It could
usethe most recent measurement(that is, from the current connection), asthis is the freshest; it could
usethe meanof all measurements,to dealwith noise;it could use an exponentially smoothed mean,to
reducenoisewhile favoring freshvalues;it couldusetheminimum measurement,to accountfor variable
queueingdelays;or it couldusethe maximum measurement,to beconservative.

“Most recent,” which requires no per-client state,is the simplestto implement, and this is the only
variant wehave evaluated.

2.2 Prediction from previous transfers
Krishnamurthy andWills originally describedthenotion of usingmeasurementsfromprevioustransfers

to estimatetheconnectivity of clients[11]. A primemotivationof thiswork wasto retain poorly connected
clients,whomightavoid a Websiteif its pagestake too long to download.Betterconnectedclients could
bepresentedenhancedversionsof thepages.

This approachis largely passive: it examinesserver logs to measurethe inter-arrival time between
base-object(HTML) requests and the requestsfor thefirst andlast embeddedobjects,typically images.
Exponentiallysmoothedmeansof thesemeasurementsare thenusedto classifyclients.A network-aware
clusteringscheme[10] wasusedasaninitial classificationmechanism, if aclienthadnotbeenseenbefore
but anotherclient fromthesameclusterhadalready usedthesite.Krishnamurthy andWills usedadiverse
collectionof server logsfrommultiple sitesto evaluatethedesign,andKrishnamurthy et al. presented an
implementation[12], usinga modifiedversionof theApacheserver, to testthe impactof variousserver
actionson clientswith differentconnectivity.

Therecent-transfersapproachthatwe studyin this paperis a simplification of theKrishnamurthy and
Wills design.Becausetheir measurementsuseWebserver logs, this gave themenoughinformationabout
pagestructureto investigatethealgorithm'sability to predictthedownloadtimefor anentire page,includ-
ing embeddedobjects.We have not extractedobject-relationshipinformationfrom our packet traces, so
we only evaluatedper-responselatency, ratherthanper-pagelatency. On theother hand,mostserver logs
provide timing informationwith one-secondresolution,which meansthata log-based evaluation cannot
providethefine-grainedtiming resolution thatwegot from ourpacket traces.
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2.3 Defining transfer latency
Wehave sofarbeenvagueaboutdefining“transfer latency.” Onemight definethis asthetimebetween

the departure of the first responsebyte from the server and the arrival of the last responsebyte at the
client. However, withoutperfectclock synchronizationandpacket tracesmadeateveryhostinvolved,this
duration is impossibleto measure.

For this paper, we definetransferlatencyasthe time betweenthedeparture of the first responsebyte
from theserver andthe arrival at theserver of theacknowledgmentof the last response byte. (Figure1
depictsthis interval for thecaseof anon-persistentconnection.) This tendsto inflateour latency measure-
mentby approximatelyRTT/2, but becausepathdelayscanbe asymmetric we do not attemptto correct
for thatinflation. Weareeffectively measuring anupperboundon thetransfer latency.

2.4 Predicting at the client
Thispaperfocusesonmakinglatency predictionsat theserverendof aconnection.Webelieve thatthe

techniqueswe describeshould be usableat the client end. For example, Figure1 shows how theserver
canobtainanRTT samplefrom the timestampsof theSYN �ACK packet(P2) andtheACK-only packet
(P3). But theclientcanalsogetan early RTT sample,from thetimestamps of theinitial SYN (P1) andthe
SYN �ACK (P2).

Similarly, a client couldmaintainhistorical information to drive a recent-transfers predictor. While a
singleclientwould nothavesufficienthistorywith respectto many servers,a pool of clientsmight jointly
obtain enoughhistory (as in the throughput-orientedSPAND system [24]). Suchan approachwould
probablywork best if theclientsin thepool werelocatednearto eachother, in termsof network topology.

Unfortunately, ourserver-centric tracesdonotallow usto evaluateclient-basedlatency prediction.

3 Methodology
Wefollowedthis overall methodology:� Step 1: collectpacket tracesnear a varietyof Web serverswith differentanddiverseuser popula-

tions.� Step 2: extract thenecessary connectionparameters,includingclient IDs, from these raw tracesto
createintermediatetraces.� Step3: evaluatethepredictorsusing simple simulator(s)driven fromtheintermediate traces.

Althoughtheprediction mechanismsanalyzedin this paperare not necessarily specificto Webtraffic,
welimitedourtrace-basedstudyto Webtraffic becausewehavenotobtainedsignificantanddiversetraces
of othershort-transfer traffic. It might beusefulto capture traffic nearbusy e-mail serversto getanother
relevantdataset,sincee-mail transfersalsotendto beshort [7, 17].

Giventhatwearedefining“short” TCPtransfersin termsof thenumberof databytessent, weanalyzed
three plausiblethresholds:8K bytes,16K bytes,and 32K bytes; this paperfocuseson the 32K byte
threshold. (Theresponse-sizedistributionsin Figure 3 support this choice.)

3.1 Tracesets
We collectedtracesets from several differentenvironments, all in North America. For reasonsof

confidentiality, we identify thesesetsusing shortnames:� C2: Collectedona corporatenetwork� U2,U3,U4: Collected ata University� R2: Collectedat acorporateresearchlab
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In all cases, thetraceswerecollected on thepublic Internet(not on anIntranet) andwerecollectedrelat-
ively nearexactly onepublicly-accessibleWebserver.

Wecollectedfull-packettraces,usingtcpdump,andlimited thetraces to includeonly TCPconnections
to or fromthelocalWebserver.

While we wantedto collect tracescovering an entire weekat eachsite, storagelimits andother re-
strictionsmeantthat we hadto collect a series of shortertraces. In order to cover representative peri-
odsover the course of a week(May 3–9, 2004), we chose to gathertracesfor two to four hourseach
day: 9:00AM-11:00AM Monday, Wednesday, andFriday; 2:00PM-4:00PM Tuesdayand Thursday;and
10:00AM-2:00PMSaturdayand Sunday(all are local timeswith respectto the tracesite: MST for C2,
MDT for U2, andPDTfor R2). Weadditionally gatheredtwo 24-hour(midnightto midnight) tracesat the
University: U3 onThursday, Aug. 26, 2004,andU4 onTuesday, Aug. 31,2004.

3.2 Ar e these tracesrepresentative?
We certainlywould prefer to have tracesfrom a diverse sample of servers, clients,andnetwork paths,

but this is notnecessaryto validateourapproach.Our goalis not to predict thelatenciesseenby all client-
serverpairs in theInternet,but to find amethod for a givenserver to predict thelatenciesthatit itself (and
only itself) will encounter in the nearfuture.

It is true thatsome serversor client populationsmight differ somuch from theonesin our tracesthat
our results do notapply. Althoughlogisticalandprivacy constraintspreventusfromexploring awiderset
of traces,ouranalysistoolsareavailableathttp://bro-ids.org/bro-contrib/network-analysis/akm-imc05/so
thatotherscan testour analyseson theirown traces.

Theresultsin Section4.6 imply thatourequation-basedpredictorworkswell for somesitesandnot so
well for others.Onecoulduseour trace-basedmethodologyto discover if aserver'sresponselatenciesare
sufficientlypredictablebefore deciding to implementprediction-basedadaptationat thatserver.

3.3 Traceanalysis tools
Westart byprocessingtheraw(full-packetbinary)tracesto generateonetupleperHTTPrequest/response

exchange.Ratherthanwrite anew programto process theraw traces,wetookadvantageof Bro, apower-
ful tool originally meantfor network intrusiondetection [21]. Bro includes a policy script interpreter for
scriptswrittenin Bro'scustomscripting language,which allowedusto do thisprocessingwith arelatively
simplepolicy script – about800lines,includingcomments. Wecurrently useversion 0.8a74of Bro.

Bro reducesthe network streaminto a series of higher level events. Our policy script defineshand-
lers for the relevant events. We identify four analysisstatesfor a TCP connection:not established,
timing SYN ACK, established, and error has occurred. We also use four analysisstatesfor each
HTTP transaction: waiting for reply, waiting for end of reply, waiting for ack of reply, andtrans-
action complete. (OurscriptfollowsexistingBro practice of usingtheterm“reply” in lieu of “ response”
for statenames.)

Progressionthroughthesestates occurs asfollows. Whenthe client's SYN packet is received, a data
structure is createdto retain information on the connection,which starts in the not established state.
WhenthecorrespondingSYN �ACK packet is receivedfrom theserver, themodeledconnection entersthe
timing SYN ACK state, and thento theestablishedstatewhentheclientacknowledgestheSYN �ACK.

We thenwait for http request() eventsto occuron thatconnection. Whena requestis received,a data
structure is createdto retain information on thatHTTP transaction,which startsin thewaiting for reply
transactionstate.Onan http reply() event,thatstatebecomeswaiting for end of reply. Oncetheserver
hasfinishedsending theresponse,the transactionstate is setto waiting for ack of reply. Oncetheentire
HTTP responsehasbeenacknowledgedby the client, that stateis set to transaction complete. This
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designallowsourscript to properlyhandlepersistentandpipelinedHTTPconnections.
Our analysisusesan additional state, error has occurred, which is used,for example,whena TCP

connectionis reset,or whenapacket ismissing, causingagapin theTCPdata.Al l subsequentpacketson
a connection in anerror has occur redstate areignored,althoughRTT andbandwidth estimatesare still
recordedfor all HTTPtransactionsthatcompletedon theconnection beforetheerror occurred.

For eachsuccessfullycompletedandsuccessfully tracedHTTP request/responseexchange, the script
generatesonetuple thatincludes thetimestampof thearrival time of theclient's acknowledgementof all
outstandingresponsedata;theclient'sIP address; theresponse's length, content-type,andstatuscode;the
positionof theresponsein a persistentconnection(if any); and estimatesof theinitial RTT, theMSS,the
responsetransferlatency, andthe responsetransferbandwidth. The latency is estimatedasdescribed in
Section2.3,andthebandwidth estimate is then computedfromthelatencyestimateand thelength.

Thesetuplesformanintermediatetrace,convenientfor furtheranalysisandseveralordersof magnitude
smallerthanthe original raw packettrace. For almostall of our subsequentanalysis, we examineonly
responseswith statuscode� 200,sincethesearetheonly onesthatshouldalwayscarry full-lengthbodies.

3.3.1 Proxiesand robots

Most Webservers receiverequests from multi-clientproxy servers, andfromrobotssuchassearch-engine
crawlers;bothkindsof clients tendto make more frequentrequests thansingle-human clients. Requests
from proxies androbots skew the referencestream to make the averageconnection's bandwidth more
predictable,whichcould biasour resultsin favor of ourpredictionmechanisms.

Wetherefore“pruned”our tracesto removeapparentproxiesandrobots(identifiedusingaseparateBro
script); wethenanalyzedboth thepruned andunpruned traces.

In order to avoid tedious, error-prone,and privacy-disruptingtechniquesfor distinguishingrobotsand
proxies, wetesteda few heuristicsto automaticallydetect suchclients:� Any HTTP request including a ���! headerprobablycomesfrom a proxy. Theconverseis not true;

someproxiesdonot insert ���� headers.� Any request including a "$#&%(' header probably comesfrom a robot. Not all robots insert "$#�%)'
headers.� If a given client IP addressgeneratesrequestswith severaldifferent *,+$-.#0/�1$2�-(3&4 headersduring a
shortinterval, it is probablya proxy server with multiple clientsthatuse more thanonebrowser. It
couldalsobea dynamicIP addressthathasbeenreassignedto a differentclient, so thetime scale
affectstheaccuracyof this heuristic. We ignore *5+�-�#�/.162�-.3�487 9$%�3&46:�;,- headers, sincethis is an
artifact of aparticularbrowser[16, 18].

Theresultsof thesetests revealedthatthe "<#&%.' headeris not widely used,but it is a reasonable method
for identifying robotsin our traces. Our testresultsalsoindicatedthat simply excluding all clientsthat
issueda ���! or *,+$-�#�/�162�-.3=4 headerwould resultin excessivepruning.

An analysisof the �0�� headerssuggestedthat componentssuch as personalfirewalls also add this
headerto HTTP requests. As a result,we decidedto only pruneclientsthat includea ���� headerthat
canbe automatically identifiedasa multi-client proxy: for example,thoseaddedby a Squid,NetApp
NetCache,or Inktomi Traffic-Serverproxy.

We adopted a similar approachfor pruningclients that sent multiple different *5+$-.#0/�1$2�-(3&4 headers.
First, we require thatthe *>+$-.#0/.1&20-)3=4 headers befrom well-known browsers (e.g., IE or Mozilla). These
browsers typically form the *>+�-�#�/.162�-.3=4 headerin avery structured format. If wecannot identify thetype



8

Table1: Overall tracecharacteristics

All HTTPstatus codes statuscode ? 200
Total Total Total Total meanresp. mean peak Total Total meanresp.

Tracename Conns. Clients Resp.bytes Resps. size(bytes) req.rate req. rate Resp. bytes Resps. size(bytes)

C2 323141 17627 3502M 1221961 3005 2.3/sec 193/sec 3376M 576887 6136
C2p(pruned) 281375 16671 3169M 1132030 2935 2.1/sec 181/sec 3053M 533582 5999
R2 33286 7730 1679M 50067 35154 0.1/sec 35/sec 1359M 40011 35616
R2p(pruned) 23296 6732 1319M 38454 35960 0.1/sec 31/sec 1042M 31413 34766
U2 261531 36170 5154M 909442 5942 1.7/sec 169/sec 4632M 580715 8363
U2p (pruned) 203055 33705 4191M 744181 5904 1.4/sec 152/sec 3754M 479892 8202
U3 278617 29843 5724M 987787 6076 11.4/sec 125/sec 5261M 637380 8655
U3p (pruned) 197820 26697 4288M 756994 5939 8.8/sec 117/sec 3940M 491497 8405
U4 326345 32047 6800M 1182049 6032 13.7/sec 139/sec 6255M 763545 8589
U4p (pruned) 230589 28628 5104M 902996 5926 10.5/sec 139/sec 4689M 588954 8347

of browser, thebrowserversion, andtheclientOS, wedonotusetheheaderin theanalysis.If we thensee
requestsfromtwo differentbrowsers, browserversions,or clientOSscoming fromthesameIPaddressin
the limited durationof the trace,we consider this to bea proxy, andexcludethat client from thepruned
trace.

We opted to err (slightly) on the side of excessive pruning, ratherthanstriving for accuracy, in order
to reducethechancesof biasing our resultsin favor of our predictors. In Section7.1, we discusshow an
actualserver implementationmight detectproxiesandrobots,sincethecriteria could bedifferentin that
setting.

3.4 Overall trace characteristics
Table1 shows variousaggregate statisticsfor each traceset, to provide somecontext for therest of the

results.For reasonsof space,weomit day-by-daystatistics for C2,R2,andU2; theseshow theusualdaily
variationsin load,althoughC2 andR2 peakon theweekend, while U2 peaksduring thework week.The
tablealsoshows totalsfor the prunedversions of eachtraceset. Finally, the tableshows total response
bytes,responsecount,andmeanresponsesizefor just thestatus-200responsesonwhichmostsubsequent
analysesarebased.

We add“p” to thenamesof tracesetsthathave been pruned (e.g., a prunedversionof traceset“C2” is
named“C2p” ). Pruningreducesthenumberof clients by 5% (for traceC2) to 13%(for R2); thenumber
of HTTPresponsesby 7%(for C2) to 23%(for R2,U3, andU4); andthepeakrequest rateby 6%(for C2)
to 11%(for R2).

Themeanvalues in Table1 donot convey thewhole story. In Figures2, 3, and 4, respectively, we plot
cumulative distributionsfor request rate,responsesize,andlatency for status-200responses(These plots
excludethe U3 andU4 traces,sincethese CDFs arenearlyidenticalto thosefor the U2 trace; Figure4
alsoexcludesC2pandU2p, since theseCDFsare nearly identical to thosefor theunprunedtraces.)

Figure5 shows a histogram of request countsper client address. Onemight expect that our pruning
wouldchangethesedistributions,if theproxiesand robotsremovedby pruningdo indeedgenerateanun-
usuallyhighnumber of requests.However, theresultsin Figure5 donotstronglysupport thisexpectation.
We arenot sure if this reflectsa flaw in our pruningapproach,or simply thatmost proxiesandrobotsdo
notvisit thetraced sitesveryoften.

Thethreetracesin Figure3 show quite differentresponse sizedistributions. The responsesin traceC2
seem somewhatsmallerthanhastypically beenreportedfor Web traces; the responses in traceR2 area
lot larger. (Thesedifferencesalsoappearin the mean response sizesin Table1.) TraceR2 is unusual, in
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part, because many users of thesite downloadentiretechnicalreports,which tendto bemuchlargerthan
individualHTML or embedded-imagefiles.

Figure3 includesthreevertical linesindicatingthe8K byte, 16K byte, and32K bytethresholds.Note
that8K is below themediansize for R2,but above themediansize for C2 andU2, but themedianfor all
tracesis well below 32K bytes.

Figure4 showsthat responsedurationsaresignificantlylongerin theR2tracethanin theothers,possibly
becauseof thelongerresponsesizesin R2.

We calculated,for eachdistinct client, a meanbandwidthacross all transfersfor that client. Figure6
showsthedistributions;theprunedtraceshadsimilar distributionsandarenotshown. TraceC2hasamuch
largerfractionof low-bandwidth usersthanR2or U2. Theapparent slightexcessof high-bandwidth clients
in R2 might resultfrom the largerresponsesin R2; largertransfersgenerallyincrease TCP's efficiency at
usingavailablebandwidth.
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We also lookedat thedistribution of theTCPMaximumSegmentSize (MSS) valuesin our traces. In
traceR2,virtually all of theMSSvalueswereator closeto thestandardEthernetlimit (about1460bytes);
in tracesC2 andU2, about95% of theMSS values were nearthelimit, with therest mostlycloseto 512
bytes. Figure 3 shows a vertical line at 1460 bytes,indicatingapproximately wherethe dominantMSS
valuelies on theresponse-sizedistribution.

3.5 Traceanomalies
Themonitoring architecturesavailableto usdiffered at eachof thecollectionsites.For example,atone

of thesitesportmirroring wasusedto copy packetsfromamonitoredlink to themirroredlink. At another
site,separatelinks weretapped,onefor packetsbound for theWebserver, thesecondfor packets sentby
theserver. Thesemonitoring infrastructuresaresubjectto avarietyof measurementerrors:D Port mirroringmultiplexesbidirectionaltraffic from themonitoredlink ontotheunidirectionalmir-

ror link. This cancause packetsto appearin the tracein a differentorder thanthey arrivedon the
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monitoredlink. Such reordering typically affectspackets thatoccurredclose togetherin time. For
example,in theU2 trace,10%of connectionshadtheSYN andSYN FACK packetsin reverseorder.
OurBro script corrects for this.G Port mirroring temporarily buffers packetsfrom themonitoredlink until they canbesent over the
mirroredlink. This buffer canoverflow, causingpacketsto bedropped.G Several of our environments have multiple network links that transferpacketsto or from the Web
server. Since we could not monitor all of these links, we did not capture all of the HTTP re-
quest/responsetransactions. In some cases we capture only half of the transaction (about 48%
of theconnectionsare affectedby this in onetrace).G Ideally, a traced packet would be timestampedat the preciseinstant it arrives. However, trace-
collection systemsbufferpacketsatleastbriefly (oftenin severalplaces) beforeattaching atimestamp,
andpacketsareoftencollected at several nearbypoints(e.g., two packetmonitorsonbothmembers
of a pair of simplex links), which introducestimestamperrors dueto imperfectclock synchroniza-
tion. Erroneoustimestampscouldcauseerrors in ouranalysisby affectingeitheror bothof ourRTT
estimatesandour latency estimates.

Table2: Packetlossrates

Total Total Measurement Retransmitted Conns. w/ Conns.w/no pkts
Tracename packets Conns. system lost pkts. packets retransmittedpackets in onedirection

C2 40474900 1182499 17017 (0.04%) 114911(0.3%) 53906 (4.6%) 572052 (48.4%)
R2 2824548 43023 1238 (0.04%) 27140(1.0%) 4478 (10.4%) 460(1.1%)
U2 11335406 313462 5611 (0.05%) 104318(0.9%) 26815 (8.6%) 17107(5.5%)
U3 11924978 328038 2093 (0.02%) 89178(0.7%) 26371 (8.0%) 14975(4.6%)
U4 14393790 384558 5265 (0.04%) 110541(0.8%) 30638 (8.0%) 18602(4.8%)

We estimatedthenumberof packetslost within our measurementsystemby watching for gapsin the
TCPsequencenumbers.Thiscouldoverestimatelosses (e.g.,dueto reorderedpackets)but theestimates,
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asreportedin Table2, arequite low.
Table2 alsoshowsourestimates(basedona separateBro script) for packet retransmissionrateson the

pathbetween client and server, implied by packetsthat cover part of the TCP sequencespacewe have
alreadyseen.Retransmissions normally reflect packet lossesin the Internet, which would invalidatethe
modelusedin equation1. Knowing theseratescould helpunderstandwheretheinitial-RTT approach is
applicable.

Notethat Table1 only includesconnectionswith at least onecompleteHTTP response,while Table2
includesall connections, including those that endin errors. We were only ableto use28%of the con-
nectionslisted in Table 2 for C2, partly because we only sawpacketsin onedirection for 48% of the
connections.Ouranalysis scriptfailed to reconstruct anotherH 19%of theC2 connectionsdueto gapsin
thetracedTCPdata,possibly dueto unknown problemsin themonitoring infrastructure.

No HTTP Request

Reset (e)

Lost Reordered

Gap (d) Other (f)

(SYN handshake not observed)

Client−to−server packets only (a) Server−to−client packets only (b)

Packets captured in both directions

Joined in Progress (c)SYN Handshake seen

HTTP Request seen

HTTP Response seen

No HTTP Response body

Useful trace record (m)

ReorderedLost

Gap (j) Other (l)Reset (k)

All connections in trace

ReorderedLost

Gap (g) Other (i)Reset (h)

No HTTP Response headers

Figure7: Classificationtree for HTTPtransactionsin traces

Figure 7 illustratesthe many ways in which we can fail to reconstruct a complete HTTP request-
responsetransactionfromourtraces. Wesometimesonly capturepacketsin onedirection (client-to-server
or server-to-client) on aconnection.If we capturepacketsin both directions,we might fail to observe the
SYN exchange(perhapsbecausethe connectionstarted before the tracedid). We might fail to seethe
HTTP request message,eitherbecauseof a gapin thepacket stream, a TCP Reset,or some other reason.
If we seethe request, we might still fail to seetheHTTP response headers, or theHTTP response body,
for similar reasons.

Table3 quantifiestheseproblemsfor eachof the traces.Note thatmanyof the treenodesin Figure 7
arelabelled with lower-caselettersin parentheses; theselabelsarealsoshown for rows in Table3. Major
contributors to our failure to reconstructcompleteHTTPrequest-responsetransactionsareshown in bold.
Theseinclude,asmentionedabove,thelargenumberof connectionsin traceC2 wherewesawonly server-
to-client packets(row (b)), andthosewhere we failed to seethe response dueto a gapin the trace(row
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Table3: Classificationof reasonsfor transactionreconstruction failures

Class Nodelabel C2 R2 U2 U3 U4

Client-to-serverpackets only (a) 0.79% 0.39% 3.44% 3.26 % 3.42%
Server-to-client packets only (b) 47.81% 0.34% 2.65% 1.65 % 1.84%

Joinedin progress (c) 0.11% 1.32% 0.27% 0.24 % 0.15%

No HTTPRequest
Gap (d) 0.65% 0.00% 0.08% 0.01 % 0.02%

Reset (e) 0.37% 0.66% 1.43% 1.35 % 1.49%
Other (f) 1.87% 0.27% 0.45% 0.47 % 0.47%

No HTTPResponseheaders
Gap (g) 19.09% 0.00% 0.02% 0.00 % 0.02%

Reset (h) 0.28% 0.01% 0.14% 0.12 % 0.14%
Other (i) 0.87% 0.06% 0.05% 0.05 % 0.04%

No HTTPResponseBody
Gap (j) 0.05% 0.06% 0.07% 0.01 % 0.01%

Reset (k) 0.10% 8.32% 3.58% 3.55 % 3.22%
Other (l) 0.00% 0.00% 0.00% 0.00 % 0.00%

Useful trace record (m) 28.01% 88.57% 87.82% 89.29 % 89.18%

(g)).
TheR2 trace includesa somewhatelevatednumberof connections thatappearedin oneof our traces

while the connectionswere alreadyin progress(row (c)). We believe these eventsresultfrom half-closed
connectionswhere neither theclient application nor theserver's TCPstackever time out. (This server's
TCPstackdoesnot appear to time outconnectionsin the FIN WAIT 2 state[1].)

4 Predictionsbased on initia l RTT: results
In this section,we summarize the results of our experimentson techniquesto predict transferlatency

usingtheinitial RTT. Weaddressthesequestions:

1. DoesRTT persecorrelatewell with latency?
2. How well doesequation1 predictlatency?
3. Canweimproveonequation1?
4. Whatis theeffect of modemcompression?
5. How sensitive are thepredictionsto parameterchoices?

Thereis no single way to definewhat it meansfor a latency predictor to provide “good” predictions.
We evaluatepredictionmethodsusingseveral criteria, including the correlation between predicted and
measuredlatencies, andthemeanandmedianof thedif ferencebetween theactualandpredictedlatencies.

4.1 DoesRTT itself correlatewith latency?
Perhapsit is unnecessary to invoke the full complexity of equation1 to predict latencyfrom RTT. To

investigatethis,we examinedthecorrelation betweenRTT perseand eitherbandwidthor latency.
For example,Figure 8 shows a scatterplot of bandwidth vs. initial RTT, for all status-200responses

in traceC2. (In order to avoid oversaturatingour scatterplots,we randomly sampledthe actualdata in
eachplot; the samplingratios areshown in the figures.) Thegraphshows anapparentweakcorrelation
betweeninitial RTT andtransferbandwidth. Correspondingscatterplots for R2, U2, U3, andU4 show
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Figure 8: Scatter plot of bandwidth vs.RTT, traceC2
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Figure 9: BW vs.RTT, traceC2,1 MSS J length J 32KB

evenweakercorrelations.
Wefoundastrongercorrelationif wefocused ontransfer lengthsaboveoneMSSandbelow 32K bytes,

asshown in Figure9. Our techniquefor measuring latency is probablyleast accuratefor responses below
oneMSS(i.e., thosesentin just onepacket). Also, single-packetresponsesmay suffer excess apparent
delay(asmeasured by whenthe server receivesthe final ACK) becauseof delayed acknowledgmentat
theclient. In our subsequentanalyses,we excluderesponseswith lengthsof oneMSSor lessbecause of
thesemeasurementdifficulties.The32KB thresholdrepresentsoneplausiblechoicefor defininga“short”
transfer.

For a morequantifiedevaluationof this simplistic approach, wedid a statisticalanalysisusingasimple
R [22] program. The resultsare shown in Table 4(a) and(b), for lengths limited to 8K and32K bytes,
respectively.
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Table 4: Correlations: RTT vs. eitherbandwidth or latency

Trace Samples Correlation Correlation
name included w/bandwidth w/latency
C2 140234 (24.3%) -0.352 0.511
C2p 129661 (24.3%) -0.370 0.508
R2 7500 (18.7%) -0.112 0.364
R2p 5519 (17.6%) -0.054 0.418
U2 218280 (37.6%) -0.163 0.448
U2p 181180 (37.8%) -0.178 0.458
U3 234591 (36.8%) -0.181 0.421
U3p 181276 (36.9%) -0.228 0.427
U4 283993 (37.2%) -0.179 0.364
U4p 219472 (37.3%) -0.233 0.411

(a) 1 MSS K length K 8KB

Trace Samples Correlation Correlation
name included w/bandwidth w/latency
C2 261931 (45.4%) -0.325 0.426
C2p 238948 (44.8%) -0.339 0.426
R2 20546 (51.4%) -0.154 0.348
R2p 15407 (49.0%) -0.080 0.340
U2 312090 (53.7%) -0.165 0.392
U2p 258049 (53.8%) -0.179 0.401
U3 336443 (52.8%) -0.162 0.263
U3p 259028 (52.7%) -0.215 0.276
U4 414209 (54.2%) -0.167 0.287
U4p 320613 (54.4%) -0.215 0.343

(b) 1 MSS K length K 32KB

The tablesshow rows for both prunedandunprunedversionsof the five basictraces. We included
only status-200responseswhose lengthwasat leastoneMSS;the“samplesincluded”column shows that
countfor eachtrace. The last two columnsshow thecomputedcorrelation betweeninitial RTT andeither
transfer bandwidthor transfer latency. (Thebandwidth correlationsarenegative,becausethis is aninverse
relationship.)

For thedatasetincluding response lengthsup to 32K bytes, noneof these correlationsexceeds0.426,
andmany are muchlower. If we limit theresponselengthsto 8K bytes,thecorrelationsimprove,but this
alsoeliminatesmostof thesamples.

Wetriedexcludingsampleswith aninitial RTT valueabovesomequantile,onthetheorythathighRTTs
correlatewith lossy network paths; this slightly improvesRTT vs. bandwidthcorrelations (for example,
excludingrecordswith an RTT above 281 msecreducesthenumber of 32K-or-shorter samplesfor R2 by
10%,andimprovesthat correlationfrom-0.154to -0.302)but it actually worsensthelatency correlations
(for thesameexample, from0.348to 0.214).

Notethat,contraryto ourexpectation thattracesprunedof proxiesandrobotswould belesspredictable,
in Table4 thisseemstrueonly for theR2trace;in general,pruningseemsto slightly improvepredictability .
In fact, while we presentresultsfor both prunedandunprunedtracesthroughout the paper, we seeno
consistentdifferencein predictability.
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4.2 Doesequation 1 predict latency?
Althoughwe did notexpect RTT to correlatewell with latency, we might expectbetterresultsfrom the

sophisticatedmodelderivedby Cardwell et al. [2]. Theyvalidatedtheir model(equation1 is a simplified
version)usingHTTPtransfersover theInternet, but apparently usedonly “well-connected”clientsandso
did not probeits utility for poorly-connectedclients. They alsousedRTT estimatesthat includedmore
samplesthanjust eachconnection's initial RTT.

We thereforeanalyzed theability of equation 1 to predict transferbandwidths andlatenciesusingonly
theinitial RTT, andwith thebelief thatour tracesincludesomepoorly-connectedclients.
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Figure 10: Realvs. predictedlatency, traceC2

Figure10showsanexamplescatterplot of measuredlatency vs. predictedlatency, for traceC2. Again,
we includeonly status-200responsesat least oneMSSin length. We have superimposedtwo curveson
theplot. (Sincethis is alog-logplot,mostlinearequationsresult in curvedlines.) Any pointabovetheline
y M x representsanunderpredictionof latency; underpredictionsaregenerally worsethanoverpredictions,
if (for example)wewantto avoid exposingWebusersto unexpectedlylong downloads.Mostof thepoints
in the plot are above that line, but mostarebelow the curve y M x O 1 N 0sec, implying that mostof the
overpredictions (in this example) arelessthan1 secin excess. However, a significant numberaremany
secondstoohigh.

We extendedour R programto computestatisticsfor the predictive ability of equation1. For each
status-200tracerecordwith a lengthbetweenoneMSSand32K bytes, we used theequationto predict
a latency, and then comparedthis to the latency recordedin the tracerecord. We then computed the
correlationbetweenthe actualand predictedlatencies.We alsocomputeda residualerror value,as the
difference betweentheactualandpredictedlatencies.Table5 shows theresultsfrom this analysis, using
γ M 1 N 5 andw1 M 1, a parameter assignmentthatworkedfairly well acrossall five traces.

In Table5, themedianresidualsarealwaysnegative,implying thatequation1 overestimatesthetransfer
latency moreoftenthanit underestimatesit. However, themeanresidualsarealwayspositive,becausethe
equation's underestimatesare more wrong (in absolute terms)than its overestimates. The samplesin
Figure 10 generallyfollow a line with a steeperslopethany M x, suggestingthat equation 1 especially
underestimateshigherlatencies.
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Table5: Quality of predictionsbasedonequation 1

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 261931(45.4%) 0.581 -0.017 0.164
C2p 238948(44.8%) 0.584 -0.015 0.176
R2 20546(51.4%) 0.416 -0.058 0.261
R2p 15407(49.0%) 0.421 -0.078 0.272
U2 312090(53.7%) 0.502 -0.022 0.110
U2p 258049(53.8%) 0.519 -0.024 0.124
U3 336443(52.8%) 0.334 -0.018 0.152
U3p 259028(52.7%) 0.353 -0.016 0.156
U4 414209(54.2%) 0.354 -0.013 0.141
U4p 320613(54.4%) 0.425 -0.010 0.136

Residualvaluesaremeasuredin seconds;1 MSS P length P 32KB

Onepossible reason is that, for lower-bandwidth links, RTT dependson packet size. For a typical
56Kb/smodemlink, a SYN packet will see anRTT somewhatabove 100 msec,while a 1500bytedata
packetwill see anRTT several times larger. This effect couldcauseequation1 to underestimatetransfer
latencies.

4.3 Can we improve on equation 1?
Giventhatequation1 seems to systematically underestimatehigherlatencies,exactly theerror thatwe

want to avoid, werealizedthatwe couldmodify theequation to reducetheseerrors.
Weexperimentedwith several modifications,including a linearmultiplier, but onesimpleapproachis:

function ModifiedEqnOne(RTT, MSS,Length,w1, γ, CompWeight)
temp= EquationOne(RTT, MSS,Length,w1, γ);
return(temp + (temp*temp*CompWeight));

Thatis,we“overpredict” by atermproportional to thesquareof theoriginalprediction.Thisis aheuristic,
not theresult of rigoroustheory.

We foundby trial anderror thata proportionality constant, or “compensation weight,” CompWeight Q
2 R 25workedbest for C2,butCompWeight Q 1 R 75workedbetterfor R2 andU2, andCompWeight Q 1 R 25
workedbestfor U3 andU4. For all traces, γ Q 2 got the best results,andwe setw1 Q 4 for C2 andU2,
andw1 Q 3 for R2,U3, andU4. We discussthesensitivity to theseparametersin Section 4.5.

Figure11 shows how the modified predictionalgorithm systematicallyoverpredicts at higher laten-
cies, while not significantly changingthe accuracy for lower latencies. (For example, in this figure,
CompWeight Q 2 R 25; if equation1 predicts a latencyof 0.100seconds, the modified prediction will be
0.1225seconds).However, eventhemodified algorithm significantly underpredictsa few samples;we do
notbelievewe canavoid this, especiallyfor connectionsthatsuffer packet loss (seeTable2).

Table6 showsthatthemodifications to equation1 generallyworsenthecorrelations,comparedto those
in Table5, but definitely improvestheresiduals – themedianerror is alwayslessthan100 msec,andthe
meanerror is less than15msec,exceptfor tracesU3pandU4p(ourparameter choicesweretunedfor the
unprunedtraces).
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Figure 11: Modifiedprediction results, traceC2

Table6: Predictionsbasedonmodifiedequation 1

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 261931(45.4%) 0.417 0.086 -0.002
C2p 238948(44.8%) 0.423 0.092 -0.006
R2 20546(51.4%) 0.278 0.015 0.002
R2p 15407(49.0%) 0.311 0.019 0.013
U2 312090(53.7%) 0.386 0.053 0.010
U2p 258049(53.8%) 0.402 0.056 0.001
U3 336443(52.8%) 0.271 0.034 0.011
U3p 259028(52.7%) 0.302 0.036 -0.020
U4 414209(54.2%) 0.279 0.035 0.003
U4p 320613(54.4%) 0.337 0.038 -0.033

Residualvaluesaremeasuredin seconds;1 MSS U length U 32KB

4.4 Text content and modemcompression
Many peoplestill usedialupmodems. It hasbeen observed that to accuratelymodel pathbandwidth,

onemustaccountfor thecompressiontypically doneby modems[3]. However, mostimageContent-Types
arealreadycompressed, so this correctionshouldonly bedone for textcontent-types.

HTTPresponsesnormally carryaMIME Content-Typelabel,whichallowed usto analyzetracesubsets
for “text/*” and“image/*” subsets. Table7 shows thedistribution of these coarse Content-Typedistinc-
tionsfor thetraces.

Wespeculatedthatthelatency-predictionmodelof equation1, which incorporatestheresponselength,
couldbefurther improvedby reducingthis lengthvaluewhencompressionmight beexpected.(A server
makingpredictionsknows theContent-Typesof the responsesit plansto send. Someservers might use
a compressedcontent-coding for text responses,which would obviatetheneedto correctpredictions for
thoseresponsesfor modemcompression.Wefoundnosuchresponsesin our traces.)
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Table 7: Countsandfrequencyof content-types(excludingsomerarely-seentypes)

Content-type C2 R2 U2 U3 U4

Unknown 3 (0.00%) 26 (0.06%) 178(0.03%) 157 (0.02%) 144(0.02%)
TEXT/* 122426 (21.22%) 23139(57.83%) 85180 (14.67%) 92108 (14.45%) 107958(14.14%)
IMAGE/* 454458 (78.78%) 13424(33.55%) 465160 (80.10%) 507330 (79.60%) 607520(79.57%)
APPLICATION/* 0 (0.00%) 3410 (8.52%) 29733(5.12%) 37581 (5.90%) 47765(6.26%)
VIDEO/* 0 (0.00%) 4 (0.01%) 17 (0.00%) 10 (0.00%) 5 (0.00%)
AUDIO/* 0 (0.00%) 8 (0.02%) 446(0.08%) 194 (0.03%) 140(0.02%)

We cannot directly predict either the compression ratio (which varies amongresponsesand among
modems) nor canwereliablydeterminewhichclientsin our tracesusedmodems.Therefore,for feasibility
of analysis our modelassumes a constantcompressibilityfactor for text responses,and we testedseveral
plausiblevaluesfor this factor. Also, we assumedthat an RTT below 100 msecimplied a non-modem
connection,andRTTsabove100msec implied thepossibleuseof amodem.In arealsystem,information
derivedfromtheclientaddressmight identify modem-usersmorereliably. (In Section5 weclassifyclients
usinghostnames; but this might addtoo muchDNS-lookup delayto be effective for latency prediction.
Evena cachingsystemsuchasRapidDNS [15] probably would not help with classification latencyfor
theinitial connection.)

Table8: Predictionsfor text content-typesonly

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 118217(96.6%) 0.442 0.142 0.002
C2p 106120(96.4%) 0.449 0.152 -0.003
R2 12558(54.3%) 0.288 0.010 0.066
R2p 8760(50.2%) 0.353 0.017 0.105
U2 70924(83.3%) 0.292 0.100 0.073
U2p 56661(83.0%) 0.302 0.110 0.066
U3 76714(83.3%) 0.207 0.063 -0.021
U3p 56070(83.2%) 0.198 0.072 -0.099
U4 90416(83.8%) 0.281 0.065 -0.034
U4p 65708(83.8%) 0.359 0.078 -0.122

Residualvaluesaremeasuredin seconds;1 MSS V length V 32KB

Table 8 shows results for text content-typesonly, using the modified predictionalgorithm based on
equation1, but without correctingfor possiblemodemcompression.We set γ W 2X 0 for C2 andU2, and
γ W 1 X 5 for R2, U3, andU4; w1 W 2 for C2 andw1 W 3 for theother traces;andCompWeight W 1 for all
traces.(We have not testeda wide rangeof CompWeight valuesto seeif textcontent-typeswouldbenefit
from a differentCompWeight.) Comparedto the results for all contenttypes(seeTable6), the residuals
for text-only samplesaregenerallyhigher.

Table9 showsresultsfor text content-typeswhenweassumedthatmodemscompresstheseby thefactor
shown in thethird column. Notethatfor C2andC2p,wegot thebest resultsusingacompression factorof
1.0– thatis, withoutcorrecting for compression.For theothertraces,correctingfor compression did give
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Table9: Predictions for textwith compression

Trace Samples Compression Correlation Median Mean
name included factor w/latency residual residual

C2 118217 1.0 0.442 0.142 0.002
C2p 106120 1.0 0.449 0.152 -0.003
R2 12558 4.0 0.281 0.013 0.002
R2p 8760 4.0 0.345 0.021 0.044
U2 70924 3.0 0.295 0.083 0.008
U2p 56661 3.0 0.306 0.096 -0.004
U3 76714 4.0 0.208 -0.002 0.001
U3p 56070 4.0 0.201 0.003 -0.063
U4 90416 4.0 0.277 -0.000 -0.011
U4p 65708 4.0 0.353 0.007 -0.083

Residualvaluesaremeasuredin seconds;1 MSS Y length Y 32KB

betterresults.Herewe set theother parametersas: γ Z 2 (exceptfor U3 andU4, whereγ Z 1 [ 5 worked
best),w1 Z 1 (exceptfor C2,wherew1 Z 2 workedbest), andCompWeight Z 1 [ 0 (exceptfor R2, where
CompWeight Z 2 [ 25workedbest). Weexperimentedwith assumingthatthepathdid notinvolveamodem
(andthusshould notbecorrected for compression)if the initial RTT wasunder100msec,but for R2 and
U2 it turnedout thatwe got thebest resultswhenwe assumedthatall text responsesshouldbecorrected
for compression.

Table9 showsthat,exceptfor traceC2,correctingfor modemcompressionimprovesthemeanresiduals
over thosein Table8. Wehavenotevaluatedtheuseof compression factors otherthanintegersbetween1
and4, andwedid notevaluatea full rangeof CompWeight valuesfor this section.

Table10: Predictions for imagecontent-typesonly

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 143714(31.6%) 0.332 0.040 0.066
C2p 132828(31.4%) 0.329 0.041 0.067
R2 6259(46.6%) 0.275 0.017 0.046
R2p 5096(46.0%) 0.315 0.018 0.032
U2 216590(46.6%) 0.445 0.040 0.023
U2p 181447(46.9%) 0.459 0.041 0.019
U3 228097(45.0%) 0.336 0.025 -0.008
U3p 178861(45.2%) 0.377 0.026 -0.028
U4 283029(46.6%) 0.308 0.026 -0.012
U4p 223721(47.2%) 0.339 0.027 -0.035

Residualvaluesaremeasuredin seconds;1 MSS Y length Y 32KB

Imagecontent As shown in Table7, imagecontent-types dominatemost of the traces,exceptfor R2.
Also, Website designersaremorelikely to havechoicesbetweenrich andsimplecontentfor imagetypes
thanfor text types. (Designers often include optional “Flash” animations,but we foundalmostno Flash
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contentin C2 andR2, andrelatively litt le in U2, U3, andU4.) We therefore comparedthepredictability
of transfer latenciesfor imagecontent-types, but foundno clear dif ferencecomparedto the results for
all contentin general. Table 10 shows the resultsfor image content-types,using the sameγ, w1, and
CompWeight settingsasusedfor Table6. We have not evaluatedwhethera different setof parameter
valueswouldgivebetterresultsfor imagecontent-types.

4.5 Sensitiv ity to parameters
How sensitive is predictionperformanceto theparameters γ, w1, andCompWeight? Thatquestioncan

be framedin severalways: how do the results for oneserver vary with parametervalues?If parameters
arechosen basedontracesfrom serverX, dothey work well for serverY? Are theoptimal valuesconstant
over time?Do optimal parametervaluesdependontheperformancemetric? (Wehavenot evaluatedother
similarquestions, suchaswhethertheoptimal valuesareconstantoverclientsub-population,content-type,
or responselength.)
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Figure12: Sensitivity of residual absolute valuesto parameters(smaller isbetter)

Figure 12 shows how the absolutevalues of the meanand median residualsvary with γ, w1, and
CompWeight for tracesC2, R2, andU2. The optimal parameterchoicedependson whetheronewants
to minimizethemeanor themedian;for example,for R2,γ \ 2 ] 0, w1 \ 3, andCompWeight \ 1 ] 75yields
anoptimal meanof 1.5 msec(andamedianof 15 msec). The mediancanbefurtherreducedto 0.2 msec,
but at thecostof increasing the meanto overhalf a second.

Figure12 also shows how the optimal parameters vary across several traces. (Resultsfor tracesU3
andU4 are similar to thosefor U2, andare omitted to reduceclutter.) It appears thatno singlechoice is
optimal acrossall traces, althoughsomechoicesyield relatively smallmean andmediansfor many traces.
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For example, γ _ 2, w1 _ 3, and CompWeight _ 1 ` 25 yieldsoptimal or near-optimal meanresidualsfor
U2, U3, andU4, anddecentresults for C2.
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Figure 13: Sensitivity of correlationvaluesto parameters (largerisbetter)

Insteadof optimizing theparameterchoicesfor lowestmeanor medianresiduals,onecouldoptimize
for highest correlation betweenpredictedandactuallatencies. Figure 13 showshow thecorrelationsvary
with γ, w1, andCompWeight for traces C2, R2, and U2. As we mentionedin Section 4.3, a non-zero
CompWeight improvestheresidualsbut generallyworsensthecorrelations; this effect on correlationsis
obvious in Figure13. Thecorrelations arenot particular sensitive to changes in theotherparameters, γ
andw1.

4.6 Training and testing on different data
The resultswe have presented so far usedparameterchoices“trained” on the same datasetsas our

resultswere testedon. Sinceany real prediction systemrequiresadvancetraining, we also evaluated
predictionswith trainingandtestingondifferentdatasets.

Our trace collection wasnot carefully designedin this regard; we have no pairsof datasetsthat are
completely identicalandadjacent in time. For the C2,R2,andU2 datasets, we chosethefirst threedays
asthetraining dataset,andthelast four days asthetesting dataset. However, because we collecteddata
at differenthours on eachday, andbecause thereareday-of-week differencesbetweenthe training and
testingsets(thetestingsets includestwo weekenddays),wesuspect thatthesepairsof datasetsmightnot
besufficiently similar. WealsousedtheU3 dataset to train parametersthatwethentestedon theU4 data
set;thesetwo tracesare more similar to eachother.

Table11 shows resultsfor trainingvs. testing.We testedandtrainedwith 96 parametercombinations,
based on the two possible choices for γ, the four choices for w1, andtwelve equally-spacedchoicesfor
CompWeight. The train ed parameters arethosethatminimize theabsolute valueof themeanresidual
in trai ning. Thecolumnsundertesting resultsshow how the results using the trainedparametersrank
amongall of the testingresults, themean residualwhenusingthoseparameters, andthe residualfor the
bestpossibleparametercombination for thetesting data.

These resultssuggestthat thedegree to which training cansuccessfully select parametervaluesmight
vary significantly from site to site. Basedon our traces, we would have hadthe mostsuccess making
usefulpredictionsat theUniversity site(U3-U4), andtheleast successat theResearch site(R2).

However, thedifferencein “ trainability” thatweobservedmight insteadbetheresultof themuchcloser
matchbetweenthe U3 andU4 datasets,comparedto the time-of-day andday-of-weekdiscrepanciesin
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Table11: Trainingandtesting ondif ferent data

Trained parameters Residual Testing results
Tracename γ w1 CompWeight in training Rank (of 96) Meanresidualw/thoseparams. Bestresidual

C2 2.0 4 2.50 -0.000 15 -0.098 -0.004
C2p 2.0 3 1.75 -0.004 12 -0.089 -0.002
R2 1.5 4 1.50 -0.004 20 0.136 0.000
R2p 1.5 3 1.00 0.003 16 0.125 0.003
U2 1.5 4 1.50 0.001 10 -0.072 0.012
U2p 2.0 2 0.75 -0.004 9 -0.081 -0.002
U3U4 2.0 2 0.75 -0.007 3 -0.013 0.003
U3U4p 2.0 1 0.25 0.000 2 -0.013 -0.010

Residualvaluesaremeasuredin seconds;1 MSS b length b 32KB

Table12: Training andtestingondifferentdata (Tuesdayvs. Wednesday)

Trained parameters Residual Testing results
Tracename γ w1 CompWeight in training Rank (of 96) Meanresidualw/thoseparams. Bestresidual

C2 1.5 4 1.75 -0.008 8 0.037 0.001
C2p 1.5 4 1.75 -0.001 7 0.033 -0.001
R2 2.0 2 1.25 0.000 15 0.093 0.003
R2p 2.0 4 2.50 0.009 24 0.169 0.000
U2 2.0 4 2.00 0.006 6 -0.028 -0.001
U2p 2.0 4 2.00 0.000 6 -0.035 -0.004

Residualvaluesaremeasuredin seconds;1 MSS b length b 32KB

the other train/testcomparisons.For C2, R2, andU2, we tried training just on one day (Tue.,May 4,
2004)and testingon thenext day;seeTable12 for theresults. Theseshow significantly better trainability
(exceptfor R2p, which wasslightly worse)thanin Table11, which supports the needto matchtraining
andtesting datasets morecarefully.

4.7 Predictionsvs. a threshold
Statistical analysisgivesintuition into the numeric accuracy of our model,but it doesnot answer the

question“will a server usingthis model makethe right decisions?”We therefore testedthe prediction
accuracy by choosing a variety of latency thresholds,andthensimulatingthemodifiedequation 1 model
to seeif it correctly predictedwhethera measuredvalue wasabove or below the threshold. Figure 14
shows the results,usingthesameγ, w1, andCompWeight settingsasusedfor Table6.

In eachgraph in Figure 14, the x-axis shows a rangeof threshold values,and the y-axis shows the
percentageof accuratepredictions. Thethreecurvesshow (1) thesuccessratefor all predictions,(2) the
successratefor predictionswhere thetrue(measured)valuewasabove thethreshold,and(3) thesuccess
ratefor predictionswherethetruevaluewasbelow thethreshold.

As we arguedearlier, a server probablywantsto err on thesideof sendingsmaller responses(to avoid
forcingauserto wait), so wefocuson the“ truelatency wasabove threshold” curve. For smallthresholds,
suchpredictionsaregoodfor all threetraces(e.g.,ata thresholdof 100msec,predictionsrangefrom 69%
correct for U2 to 92%correct for R2). At higherthresholds,predictionquality drops(e.g., at a threshold
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Figure 14: Predictionsvs. threshold, modifiedeqn.1

of 1 sec.,predictionsrangefrom 53% correct for U2 to 80%correct for R2). However, thegraphsshow
thatcertainthresholdsyield loweraccuracies, dependingon the trace.

Predictionsfor thefirst contactwith any givenclient areslightly moreaccuratethanthepredictionsfor
all transfers,ascanbeseenby comparingthe“true latency wasabove threshold”curvesin Figure14with
thosein Figure18.

Ourapproachalmostalwaysyieldsaccuratepredictionsfor responseswhosetruelatency wasbelow the
threshold – alwaysbetterthan92%correct in thesethreeexamples.

4.8 A server'sdecision algorithm
To understandhow a server might usetheinitial-RTT approachin practice,Figure15 presentspseudo-

codefor generating predictions.(Thisexample is in thecontext of aWebserveradaptingits contentbased
on predicted transferlatency, but the basicideashould apply to othercontexts.) If theserver has N d 1
choicesof responselengthfor a givenrequest,it would invokePredictLatencyN e 1 times,starting with
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the largest candidateandmoving down in size,until it either finds one with a small-enoughpredicted
latency, or hasonly onechoiceleft. Thefirst threeargumentsto thePredictLatencyfunction (RTT, MSS,
andclient IP address) areknown assoon astheconnectionis open.Thelast two (responsecontenttype
andlength)arespecific to a candidate responsethat theserver might send.

1. function
PredictLatency(RTT, MSS, ClientIP, ContentType,Length)

2. if (ProbablyDialup(ClientIP, RTT)
and (ContentType fgf TEXT)) then

3. effectiveLength : f Length/TextCompressionFactor;
4. else
5. effectiveLength : f Length;
6. end

7. if (length h maxPredictableLength) then
8. return(NOPREDICTION);/* probablyleavesslow-start */
9. elseif (length i MSS) then
10. return(NOPREDICTION);/* only one datapacket to send*/
11. end

12. return(ModifiedEqnOne(RTT, MSS, Length, w1, γ,
CompWeight));

TextCompressionFactor is anestimate of the mean compression ratio for modemson text files;
CompWeight. w1, and γ could themselvesvary basedon theserver'sobservation of recenthistory, theContentType,
etc.

Figure15: Pseudo-codefor thedecision algorithm

The functionProbablyDialup, not shown here, is a heuristic to guess whethera client is connected
via a modem(which would probably compresstext responses). It couldsimply assumethatRTTs above
100msecare from dialups, or it coulduseadditionalinformationbasedon theclient's DNS name or AS
(AutonomousSystem)numberto identify likely dialups.

5 Detecting dialups
We speculatedthata server coulddiscriminatebetween dialups andnon-dialupsusingcluesfrom the

client's “f ully-qualifieddomainname”(FQDN). We obtainedFQDNs for about75%of theclientsin the
U4 trace,and then groupedthemaccording to cluesin the FQDNs that implied geographyandnetwork
technology. Note that many couldnot becategorizedby this method,andsomecategorizationsare cer-
tainly wrong.

Table13 shows how initial RTTs vary by geographyandconnectiontype. For theconnectionsthat we
couldcategorize,at least95%of “dialup” connectionshave RTTs above 100msec,andmost“cable” and
“DSL” connectionshave RTTs below 200msec. Theseresultsseemunaffected by further geographical
subdivision, andsupportthehypothesis thatathresholdRTT between100and200msecwoulddiscrimin-
atefairly well betweendialupandnon-dialup connections. We donotknow if theseresultsapplyto other
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Table 13: RTTsby geography andconnectiontype

Category Connections 5th percentile median mean 95th percentile
By geography

All 326359 0.008 0.069 0.172 0.680
N. America 35972 0.003 0.068 0.124 0.436
S.America 2372 0.153 0.229 0.339 0.882
Europe 12019 0.131 0.169 0.262 0.717
Asia-Pacific 9176 0.165 0.267 0.373 0.885
Afri ca 2027 0.206 0.370 0.486 1.312

”Dialup” in FQDN
All 11478 0.144 0.350 0.664 2.275
Regional 5977 0.133 0.336 0.697 2.477
Canada 1205 0.208 0.460 0.751 2.060
US 575 0.189 0.366 0.700 2.210
Europe 566 0.183 0.216 0.313 0.861

”DSL” in FQDN
All 59211 0.003 0.023 0.060 0.210
Local 1816 0.011 0.022 0.034 0.085
Regional 47600 0.009 0.018 0.032 0.079
US 1053 0.071 0.085 0.117 0.249
Europe 118 0.148 0.162 0.178 0.313

”Cable” in FQDN
All 6599 0.039 0.077 0.132 0.338
Canada 2741 0.039 0.055 0.088 0.222
US 585 0.072 0.086 0.094 0.127
Europe 600 0.143 0.155 0.176 0.244

Timesin seconds;bold entriesare j 0 k 1 sec.

traces.
Previously, Wei et al. [26] classifiedaccessnetwork types usinginterarrival timesfrom packet pairs.

They concludedthat it is hard to distinguishbetweendialupsandother “low-bandwidth, non-WLAN”
connections.However, becausetheyusedone-wayprobes,they had noRTT informationand sowould not
have seenthe characteristic 100–200 msecRTT signaturewe identified.

6 Predictions fr om previousbandwidths: results
In this section,we compare how well predictionbasedon variantsof equation1 compares with predic-

tionsfrom theolderrecent-transfers approach. Weaddressthesequestions:

1. How well canwepredictlatency frompreviousbandwidth measurements?
2. Doesacombination of thetwo approachesimproveon eitherindividualpredictor?

Notethattherecent-transfersapproachcannot specificallypredictthe latency for thevery first transfer
to agivenclient, becausetheserverhasnohistory for thatclient. This is aproblem if thegoalis to provide
thebest userexperiencefor aclient's initial contactwith aWebsite.For initial contacts, aserverusingthe
recent-transfers approachto predictlatency hasseveraloptions,including:l Makeno prediction.l “Predict” thelatencybased onhistory acrossall previousclients; for example,useanexponentially
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smoothedmeanof all previoustransferbandwidths.m Assumethatclientswith similarnetwork locations,basedonroutinginformation,havesimilar band-
widths; if a new client belongsto “cluster” of clientswith known bandwidths, usehistory fromthat
clusterto makeaprediction. Krishnamurthy andWang[10] describeatechniqueto discoverclusters
of client IP addresses. Krishnamurthy andWills [11] thenshowed, usinga setof chosenWebpages
with various characteristics,that clusteringpaysoff in predictionaccuracy improvementsranging
up to about 50%. Wespeculatethatthis approachwouldalso work for our traces.m Usetheinitial-RTT techniqueto predicta client's first-contact latency, anduse therecent-transfers
technique to predictsubsequentlatenciesfor each client. We call this thehybrid technique.

We first analyzethe purest form of recent-transfers (making no predictionfor first-contact clients), and
thenconsiderthemean-of-all-clients andhybrid techniques.

6.1 Doespreviousbandwidth predict latency?

Table 14: Correlations: measuredvs. recent bandwidths

Correlationwith
most mean weighted

Trace Samples recent previous mean
name included bandwidth bandwidth bandwidth

C2 262165(45.4%) 0.674 0.742 0.752
C2p 238957(44.8%) 0.658 0.732 0.737
R2 24163(60.4%) 0.589 0.655 0.666
R2p 17741(56.5%) 0.522 0.543 0.579
U2 310496(53.5%) 0.527 0.651 0.654
U2p 254024(52.9%) 0.437 0.593 0.561
U3 341968(53.7%) 0.495 0.627 0.638
U3p 260470(53.0%) 0.508 0.659 0.625
U4 421867(55.3%) 0.521 0.690 0.647
U4p 323811(55.0%) 0.551 0.690 0.656

Best correlation for each traceshown in bold

We did astatistical analysisof thepredictionability of several variantsof thepurerecent-tranfers tech-
nique. In eachcase,we madepredictionsand maintainedhistory only for transferlengthsof at leastone
MSS.Table14 shows theresults.Thefirst two columnsshow thetracenameandthenumberof samples
actuallyused in theanalysis.Thenext threecolumns show thecorrelationsbetweenthebandwidth (not
latency) in atracerecordand, respectively, themostrecentbandwidth for thesameclient,themeanof pre-
viousbandwidthsfor theclient, and theexponentialweightedmeanXi n α o Xi p 1 qsr 1 t α u measurementi .
We followed Krishnamurthy et al. [12] in using α n 0 v 7, althoughother valuesmight work betterfor
specific traces.

Theseresultssuggestthatsomeformof meanis thebestvariantfor this prediction technique;although
thechoicebetween simplemeansandweighted meansvariesbetweentraces, thesealwaysoutperformpre-
dictionsbasedon just themost previoustransfer. SinceKrishnamurthy et al. [12] preferredtheweighted
mean,wefollow their leadfor therest of thispaper.

Pruningthe traces,aswe hadexpected,doesseemto decreasethepredictability of bandwidth values,
except for theU3 andU4 traces. This effect might bemagnifiedfor the recent-transferstechnique,since
(unlike theinitial-RTT technique)it reliesespecially on intra-clientpredictability.
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Table15: Latency prediction via weightedmeanbandwidth

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 262165(45.4%) 0.514 -0.042 -0.502
C2p 238957(44.8%) 0.515 -0.046 -0.529
R2 24163(60.4%) 0.525 -0.066 -4.100
R2p 17741(56.5%) 0.560 -0.140 -5.213
U2 310496(53.5%) 0.475 -0.028 -1.037
U2p 254024(52.9%) 0.460 -0.033 -1.142
U3 341968(53.7%) 0.330 -0.025 -1.138
U3p 260470(53.0%) 0.374 -0.029 -1.288
U4 421867(55.3%) 0.222 -0.021 -0.957
U4p 323811(55.0%) 0.251 -0.024 -1.111

(a) 1 MSS w length

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 256943(44.5%) 0.516 -0.038 -0.485
C2p 234160(43.9%) 0.516 -0.043 -0.512
R2 17445(43.6%) 0.317 -0.018 -0.779
R2p 12741(40.6%) 0.272 -0.054 -0.959
U2 287709(49.5%) 0.256 -0.020 -0.407
U2p 235481(49.1%) 0.247 -0.024 -0.454
U3 314965(49.4%) 0.447 -0.017 -0.300
U3p 239843(48.8%) 0.484 -0.020 -0.336
U4 390981(51.2%) 0.338 -0.015 -0.274
U4p 299905(50.9%) 0.312 -0.017 -0.314

(a) 1 MSS w length w 32KB

Table14 showedcorrelationsbetweenbandwidth measurementsandpredictions.To predicta respon-
se's latency, one can combinea bandwidth predictionwith the known responselength. Table15 shows
how well theweightedmeanbandwidth techniquepredictslatencies.Table15(a) includesresponseswith
lengthat leastoneMSS; Table15(b) excludesresponseslongerthan32 Kbytes.Becauseshort responses
andlongresponsesmaybelimitedby differentparameters(RTT andbottleneck bandwidth,respectively),
we hypothesizedthat it might not makesense to predictshort-response latenciesbasedon long-response
history. Indeed,theresidualsin Table15(b)arealwaysbetterthanthecorrespondingvaluesin Table15(a),
although thecorrelationsare notalwaysimproved.

Thecorrelationsin Table15(a)arebetterthanthose from themodified equation1 asshown in Table6,
except for traceU4. However, themeanresidualsin Table15aremuchlargerin magnitudethanin Table6;
it mightbepossibleto correct thebandwidth-basedpredictor to fix this.

Theprevious-bandwidth approachconsistentlyoverpredicts latency, which in someapplicationsmight
bebetterthanunderprediction. Figure16 showsan examplescatterplot, for R2. In theWeb-servercontent
adaptationapplication,excessive overpredictionincreasesthechancesthata well-connecteduser will fail
to receiverich content,althoughthis is less harmful than sendingexcessive content to apoorly-connected
user.
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Figure16: Realvs.bandwidth-predictedlatency, traceR2

6.2 Predictionsvs. a threshold
Justaswe did for theinitial-RTT approach,we evaluatedtherecent-transfersapproachagainsta setof

latency thresholds; Figure 17 shows the results for tracesC2, R2, andU2. Comparedto Figure 14, the
recent-transfers approach is usuallymore accuratewhenthe true latency is above the threshold (71%or
betterfor C2, R2, andU2) but somewhatlessaccuratewhenthetruelatency is below thethreshold.

However, our original goalwas to predict latency for a client's first contactwith a server. In this case,
the recent-transfersapproachmustrevert to a heuristic. We simulateda version usingthe exponentially
smoothedmean(α z 0 { 7) of all previoustransferbandwidths, andmeasuredits accuracyfor first-contact
transfers only.

Figure18 plots the resultsfor first-contacttransfersonly, for all threetraces,andfor both the recent-
transfers andinitial-RTT approaches.This figureshows only the results for transfers whosetrue latency
wasabove thethreshold.For eachof thetraces,therecent-transfersis more accurate for thresholdsbelow
about700msecs,andtheinitial-RTT approachis more accurate for higherthresholds.

For first-contacttransferswith true latency below the threshold, the initial-RTT predictoris correctat
least92%of the time, andusually more often,but the recent-transferspredictions arefrequently wrong
for thresholdsbelow afew hundredmsec.

6.3 Combining predictors
Giventhattheinitial-RTT approachseems moreaccurateat predictingfirst-contact latencies, for many

thresholds, than the recent-transfers approach, we speculatedthat a hybrid of the two predictors might
yield the bestresults.This hybrid would use themodified equation1 predictorfor a client's first-contact
transfer, andthesmoothed meanof theclient's previousbandwidthsfor its subsequenttransfers.

We found that the overall (all-transfers)accuracy of this hybrid is nearly indistinguishable from the
overall accuracyof the recent-transfers approachbecause, asthestatistics in Table1 imply, only a small
fractionof transfers in our tracesarefirst contacts.
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Figure17: Predictionsvs. threshold, using prev. bandwidths

7 Implementation issues
In this section,we cover a few issuesrelatedto implementing our prediction approaches in an actual

Webserver. Note thata versionof therecent-transfersapproachhaspreviously beenimplemented [12].

7.1 Identi fying proxiesand robots
In Section 3.3.1, we explainedhow we prunedour tracesto exclude likely proxies androbots. An

actualimplementationof our techniqueswould probably not apply themto requests from proxies,since
theserver-to-proxy bandwidthmight bemuchhigherthantheproxy-to-client bandwidth. We would not
want a Webserver to select“f at” content to sendvia a well-connectedproxy to a poorly-connecteduser.
Robots,however, probably arealmostall well-connected,anda server might not careif they receive a
high-bandwidthvariant.

How would a server decidenot to sendfat content to a proxy? In an ideal world, whereall clients
andproxiescomply with the HTTP/1.1specification[6]), the server could just look for }�~!� headers to
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Figure18: Predictionsvs. thresholdfor first-contact transfers

identify proxies,althoughit might make anexceptionfor a known setof personalfirewalls (sinceif these
proxies arewell-connected,so are their endusers). But the world is not ideal, andso a server might
needto supportothermeansof proxy detection. Krishnamurthy andWang[10] describeseveralplausible
techniques,including looking for multiple User-Agent fields from the sameclient IP addressduring a
shorttime interval (aswe did in Section3.3.1), or inferring from thearrival rate of requests thatthey are
multiplexed fromseveral humansources.

In any case,we would not demandthat a real server achieve perfect separation betweenproxiesand
otherhosts. Not only is this likely to beimpossible,but becauseourprediction techniquesarenotentirely
accurate,it makesnosenseto strive for perfectionin decidingwhich clientsto applythemto.

7.2 DHCP clients
Onemight supposethata setof clientssharinga pool of IP addressesallocated by DHCPwould con-

fuse a server usingthe recent-transfertechnique.That is, the server would apply, to a given IP address,
predictionsbasedonaprevioususerof thataddress. However, webelieve this is notaproblemin practice,
because clients sharinga pool of DHCP-assignedaddressesarelikely to have similar connectivity. For
example,they wouldall beusingthesamemodempoolor wirelessnetwork.

7.3 API support
Boththeinitial-RTT techniqueandtherecent-transferstechniquerequire minorchangesto aWebserver

application. The initial-RTT technique also requires minor kernel changes;it could also use the API
proposedin [20], which is intendedto provide portableaccess to TCPconnectionparameters, suchasthe
RTT estimate.

8 Future work
Weseenumerouswaysin which this work couldbeextended,including:� Re-evaluatingtherecent-transferstechniqueusingtheaddress-clusteringtechniqueof Krishnamurthy

andWang[10] to keephistory for clusters,not just individual addresses. This mayprovide useful
predictionsfor previously unseenhosts thatbelong to clusterspreviously seenandidentified.� Evaluatingthevalue of other “early” connectionmetrics aspredictors.Theseincludetheapparent
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bandwidth seenfor the client's request message, or the interval betweenthe server's SYN �ACK
packet andtheclient's first requestpacket.� Attempting to defineatimewindow over which the prediction from pastbehavior remainsvalid.� Attempting to usepast history (perhaps with addressclustering)to estimatethefrequency of packet
loss,andincludethatin a model-basedpredictor.� Extendingtheanalysis to traffic otherthanWebtransfers,suchasemail,whereasignificantfraction
areshort TCPtransfers.� Evaluatingthepossibility for aWebserverto self-adaptitschoiceof parameters(γ, w1,CompWeight,
andtheassumedtext-compressionfactor), ratherthanrequiring theseparameters to beestablished
a priori . A server could include a self-adaptation module,which would continually updatethe
parameters by training onall (or recent) previousrequests.

Onemightalsostudycertainhuman-factorsissues, suchas:� How doesuserbehavior changeif theserver is automaticallyadapting thecontent richness?� Given a maximumthreshold for overall pagedownloadlatency, areexisting sites respectingthat
threshold? If they arebelow that threshold, how muchrichercould their contentbewithoutviolating
thethreshold?

9 Summary and conclusions
We conducted a study, basedon tracesfrom several differentuser communities, to demonstratehow

well two differentapproachescanpredict the latency of short TCP transfers. We found that by making
a minor modification to a previously-describedformula,we couldgreatlyreduceits absolute prediction
errors. We showed that predictionsbased on observation of pasthistory generallyyield better overall
correlationsthanour formula-basedpredictor, but theformula-basedpredictor haslowermeanprediction
errors.Wealso show thattheformula-basedpredictorcouldbeimprovedto handlethespecificcaseof text
content,wheremodem-basedcompression canaffect latency. Finally, we reportedresults fromastudyon
the relationship betweenround-trip time andtheuseof modems,suggestingthat this relationship might
beexploited to improve predictionaccuracy.

Acknowledgments
Wewouldliketo thank VernPaxson, for hishelpwith Bro andespeciallyfor writing thefirst draft of our

Bro scriptand for improving Bro to meetour needs; Jerry Shan, for lotsof helpwith statistical analysis;
andMike Rodriquez,Oliver Spatscheck,andothersfor theirhelpin supportof datacollection. We thank
Rick Jones, ZhuoqingMorley Mao, DejanMilojicic, Mehul Shah,Chris Tuttle, Carey Williamson,and
theanonymousreviewers for theirhelpful comments.

References
[1] ApacheSoftwareFoundation. Connectionsin theFIN WAIT 2 stateandApache.

http://httpd.apache.org/docs/1.3/misc/fin wait 2.html.
[2] N. Cardwell, S.Savage,andT. Anderson. Modeling TCPlatency. In Proc INFOCOM (3), pages1742–1751,

Tel Aviv, Mar. 2000.
[3] Y.-C. Cheng, U. Hölzle, N. Cardwell, S. Savage,andG. M. Voelker. Monkey See,Monkey Do: A Tool for

TCPTracingandReplaying. In Proc.USENIX Annual Tech. Conf., pages87–98, Boston,MA, June 2004.
[4] S.Cheshire. Latency and thequestfor interactivity, Nov. 1996.

http://www.stuartcheshire.org/papers/LatencyQuest.ps.
[5] S.Cheshire. Latency survey results (for “I t's the Latency, Stupid”).



33

http://www.stuartcheshire.org/rants/LatencyResults.html, 1996.
[6] R. Fielding, J.Gettys,J. Mogul, H. Frystyk, L. Masinter, P. Leach,andT. Berners-Lee.RFC 2616: Hypertext

transferprotocol—HTTP/1.1, June1999.
[7] L. Gomes,F. Castro, V. Almeida,J. Almeida,R. Almeida,and L. Bettencourt.Improvingspamdetectionbased

onstructuralsimilarity. In Proc. SRUTI, pages85–91, Cambridge,MA, July 2005.
[8] J.Hall, I. Pratt, I. Leslie, andA. Moore.Theeffectof early packetlossonWebpagedownload times.In Proc.

Passive andActiveMeasurement Workshop, La Jolla,CA, April 2003.
[9] Q. He, C. Dovrolis, and M. Ammar. On the Predictability of Large TransferTCP Throughput. In Proc.

SIGCOMM, Philadelphia, PA, Aug 2005.
[10] B. Krishnamurthy and J. Wang. On network-awareclustering of Webclients. In SIGCOMM, pages97–110,

Stockholm, Aug. 2000.
[11] B. Krishnamurthy andC. E. Wills. Improving Webperformanceby clientcharacterization drivenserveradapt-

ation. In Proc.WWW2002, pages305–316, Honolulu, HI, May 2002.
[12] B. Krishnamurthy, C. E. Wills, Y. Zhang,and K. Vishwanath. Design, implementation, andevaluation of a

client characterizationdrivenwebserver. In Proc.WWW2003, pages138–147,Budapest, May 2003.
[13] K. Lai and M. Baker. Nettimer: A tool for measuring bottlenecklink bandwidth. In Proc. USITS, pages

123–134, SanFrancisco,CA, Mar 2001.
[14] K. LakshminarayananandV. N. Padmanabhan.Somefindingson thenetwork performanceof broadbandhosts.

In Proc. 3rd InternetMeasurementConf., pages45–50,Oct. 2003.
[15] W. LeFebvre andK. Craig. RapidReverseDNS Lookups for Web Servers. In Proc. USITS, pages 233–242,

Boulder, CO, Oct.1999.
[16] MicrosoftCorp. KnowledgeBase Article 254337: InternetExplorer SendsTwo GET Requestsfor theSame

DataWhentheMIME Handler Is anActiveX Control, 2000.
http://support.microsoft.com/default.aspx?scid=kb;en-us;254337.

[17] MicrosoftCorp. Exchange 2003Design and Architecture atMicrosoft.
http://www.microsoft.com/technet/itsolutions/msit/deploy/ex03atwp.mspx, Aug2003.

[18] MicrosoftCorp. KnowledgeBaseArticle 293792: ThreeGETRequests Are SentWhenYouRetrieve Plug-in
ServedContent, 2003.
http://support.microsoft.com/default.aspx?scid=kb;en-us;293792.

[19] J. Mogul andL. Brakmo. Methodfor dynamically adjusting multimedia contentof a webpageby a server in
accordanceto network pathcharacteristicsbetweenclient andserver. U.S. Patent6,243,761,June 2001.

[20] J. Mogul, L. Brakmo,D. E. Lowell, D. Subhraveti, andJ. Moore. Unveiling the transport API. In Proc. 2nd
Workshopon Hot Topicsin Networks, Cambridge, MA, November 2003.

[21] V. Paxson. Bro: A systemfor detectingnetwork intrudersin real-time. ComputerNetworks, 31(23-24):2435–
2463, Dec.1999.

[22] R DevelopmentCoreTeam. R: A language and environmentfor statistical computing. R Foundation for
Statistical Computing, Vienna, Austria, 2003. ISBN 3-900051-00-3.

[23] B. Schroederand M. Harchol-Balter. Webserversunder overload:How scheduling canhelp. ACM Trans. on
InternetTechologies, 6(1),Feb. 2006.

[24] S.Seshan,M. Stemm, andR. Katz. SPAND: Sharedpassive network performancediscovery. In Proc.USITS,
Monterey, CA, Dec.1997.

[25] J.Su,A. Chin,A. Popivanova,A. Goel,andE. deLara.Usermobility for opportunistic ad-hocnetworking. In
Proc. WMCSA, pages41–50,LakeDistrict, UK, Dec2004.

[26] W. Wei, B. Wang,C. Zhang, J. Kurose, and D. Towsley. Classification of Access Network Types: Ethernet,
WirelessLAN, ADSL, CableModemor Dialup? In Proc.IEEEInfocom, pages1060–1071,Miami, FL, March
2005.


