[

invent

Predicting short-transfer latency from TCP arcana: extended version

Martin Arlitt, Balachander Krishnamurthy?, Jeffrey C. Mogul
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto

HPL-2005-137
September 30, 2005*

TCP latency,
network
performance

In some contexts it may be useful to predict the latency for short TCP
transfers. For example, a Web server could automatically tailor its
content depending on the network path to each client, or an "opportunistic
networking” application could improve its scheduling of data transfers.

Several techniques have been proposed to predict the latency of short
TCP transfers based on online measurements of characteristics of the
current TCP connection, or of recent connections from the same client.
We analyze the predictive abilities of these techniques using traces from
a variety of Web servers, and show that they can achieve useful accuracy
in many, but not all, cases. We also show that a previously-described
model for predicting short-transfer TCP latency can be improved with a
simple modification. Ours is the first trace-based analysis that evaluates
these prediction techniques across diverse user communities.

* Internal Accession Date Only

! AT&T Labs — Research, Florham Park, NJ 07932

This is an extended version of a paper original published in the Proceedings of the Internet Measurement
Conference, 19-21 October 2005, Berkeley, CA, USA

Approved for External Publication

© Copyright 2005 Hewlett-Packard Development Company, L.P.



Predicting short-tra nsfer latency from TCP arcana:
extendal version

Martin Arlitt BalachandeKrishnarrurthy Jefrey C. Mogul
HP LabgUniversty of Calgary AT&T Labs-Reseath HP Labs
Palo Alto, CA 943 Florham Park, NJ 07932 Palo Alto, CA94304
Martin.Arlitt @hpcom bala@esarch.att.om Jef.Mogul@hp.com
Abdir act

In someconiexs it may be useful to predictthe latercy for short TCP trarsfers. For example, a
Web sener could automaticall tailor its contentdepending on the network pathto each client, or an
“opporturistic networking” agplicaton could improve its schedling of data transfers.

Severaltechngueshave beenpropasedto predictthelateng of short TCPtransferdasednonline
meaurenens of characterists of thecurrert TCP connectio, or of recentconnecticsfrom the same
client. We analye the predictive abili ties of thesetechngjuesusing traces from a variety of Web
seners,and show thatthey canachieve usefulaccuracyin mary, but not all, cases. We also shaw that
apreviously-descriled mock! for predicting short-trander TCPlateng can beimproved with a simple
modification. Oursis the first trace-basednalyds that evaluatesthese predction techniquesacros
diverse usercommunites.

1 Intr oduction

It is oftenusefulto predictthelateng (i.e., duration) of a short TCP transferbefore decidingwhen or
whetherto initiateit. Netwak bandwidthsround-tip times(RTTs), andlossrates vary over mary orders
of magntude,andsothetransferlateny for a givendataitem canvary similarly.

Examplesvhere suchpredictionsmight be usefulinclude:

e aWebsener could aubmaticallysded between“low-bandwidh” and“high-bandwidh” versions
of contentwith theaim of kegping the users downloadlateny belov athreshold11, 20].

e A Webserver uangshortes-remaining-procesingtime (SRPT)scheduing [23] couldbetterpredict
overallrespons¢imesif it can predictnework tranderlatency whichin mary caseis the primary
contibutor to responsgime.

¢ An applicationusingopportunisticnetwoking [25] might chooseto schedulewhich datato send
basedon an estimateof the duration of a trander oppotunity andpredctions of which dataitems
canmakethe mog effective use of thatopportunity.

Thereare severalpossible waysto define“short” TCPtransers. Modelsfor TCPperformancetypically
distingush betweerlong flows which have achieved steadystate,andshortflows which do not lastlong
enoughto leave theinitial slow-startphase.Alternatvely, onecoulddefine short in termsof anarbitrary
thredhold on transfer length. While defining “short’ in terns of slow-start behaior is lessarbitrary; it is
alsolesspredctable (beausethe duration of slow-startdependson unpredictabldadors suchascross
traffic and paclet loss), and so for this paperwe usea defintion based on trander length. Similarly,
while transferlength could be defined in terms of the numberof datapaclets sent,this also depends
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on unpredctable factos suchasMTU discowery andthe interactiors betweenappication buffering and
socketlevel buffering. So, for simplicity, in this paperwe define“short’ in terms of the nunber of bytes
transferred.

Several techniguedave previously beenproposedfor autonatedpredction of the trander time for a
short TCP transfer. Someof thes techniquegyleantheir input paametersfrom characteristicof TCP
connectionssuchas roundtrip time (RTT) or congesion window size (cwnd), that are not normally
exposel to the sener application. We call thes charactastics TCP arcana Thesepamameterscanthen
be usedin a previously-describednodelfor predictingshortiransferlateny [2]. Othertechniquesuse
obsenationsof the actuallateny for pasttransferdo the sameclient (or to clientsin a similar location of
thenetwok), andassime thatpag performana is agoodpredictorof future performance.

Inthispaperwe usepadketlevel tracescapturednearavarety of realWebsewversto evaluatetheability
of techniquesbasedn bothTCParcanaandhistoiical obsevatiors to predictshorttransferdatenciesWe
shaw thattheprevioudy-desribedmodeldoesnotquite fit theobsenrations but thatasimplemodification
to themodel greatly improvesthefit. We alsodescrbe anexperimentsuggestingbasel onalimiteddata
set)thatRTT observationscouldbe usedto discriminate,with modestaccurag, betveendialupandnon
dialuppaths.

1.1 Relatedwork

Our work complemertd previous work on predcting the througtput obtainedby long TCP transfers.
He et al. [9] characterizedhesetechniquesas either formula-basedor history-based; our TCP arcana
apprachis formua-basel.

Lakshminarayanarand Padmanabhaifil4] briefly discussedhe relationshipbetweenRTT and TCP
throughput,but for transfer lengthsof 100KB, since ther paperfocuseson peerto-peersystems They
foundapoorcorrelation betweerlateny andthroughputwhichis not surgising, becausefor long trans-
ferstheformula-basdmethodrequiresknowledgeof packetlossrateswhichthey did notmeasure They
did remak that“latencymayin factbeagoodpredictorof throughputwhendial-up hosts ... areincluded;
which agreeswith theresultswe presenin Section 5.

Hall et al. [8] studied the effect of early packetlosson Web pagedownload times As with our work,
they point out that download timesare not always correlatedwith path bandwidth They focused on
packetosssoccuring ealy enoughin the TCPconrectionthat“neitherclientnor senerhasseenenough
packetgo edablish a usale rourd trip time edimation; which leadsto exceswsely long retransmission
timeouts

2 Latency predicion techniques

We start with the assimption thatanapplication wishingto predictthe latencyof a short transfermust
do so asealy as possble, before any datahasbeentransfered. We alsoassumehat predictionis being
doneat the sener end of a connectionthat wasinitiated by a client; althoughthe appioachea could be
extendedo clientsideprediction,we have no datato evaluatethatscenario.

We examnetwo predictionapprachesin this paper:

e Theinitial-RTT appoach: The saver's first possible measurerent of the connectionRTT is
provided by theinterval betweerits initial SYN|ACK packetandthe client's subsequenfCK. For
shorttransfersthis RTT measuremens oftensufficientto predict subsequentlatatrander lateng
to this client. This apprach wasfirst proposel by Mogu andBrakmo[19] anddiscus®din [20].
We descrbeit furtherin Section2.1.

e Therecent-transfersapproachA saver canpredictthe datatranger bandwidth to a given request
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basedn recentlymeasiredtransferbandwidthsto the sameclient. Thisapproachin the contex of
Websenrers, wasproposedin [11]; we deribe it furtherin Section2.2.

2.1 Predictionfrominitial RTTs

Syopoe onewantsto predictthetransferatency, for aresponsef agivenlengthoveraspecific HTTP
connectionwith no prior informationabaut the client andthe network path,andbefore having to make
the very first decision aboutwhat contentto sendto the client. Let us assumethatwe do not wantthe
sener to generateextra network traffic or causeextra delays.Whatinformaton could oneglean from the
TCP connectio beforeit is toolate?

Client Server
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Figure 1: Timeline:typical HTTP connection

Figure 1 shaws a timeline for the packetssentover a typical non-pesistent HTTP connection (We
assimethattheclient TCPimplementatiordoesnotallow theclientapplicationto senddatauntil afterthe
3-way hand#ake; thisis true of mos comnon stacks) In thistimeline theserver hasto make its decision
immediatelyafter seeingthe GET-bearingpacket(P,) from theclient.

It might be possibleto infer network path charactestics from the relaive timing of the client's first
ACK-only (P3) andGET (P,) packets,usingapacketpairmethod13]. However, theinitial-RTT predicto
insteadusesthe path's RTT, as measired between the seners SYN|ACK packet(P,) andthe client's
sub®qient ACK-only paclet (P3). Sincethes two packetsarebothnearminimum length,they provide a
dired measurementdf RTT, in theabsencef pacletloss.

Why mightthis RTT be ausefulpredictorof transfer latency?

e Marny lag-hop network technologes impose both high delay andlow bandwidh. For exampk,
dialup modemsalmostalwaysaddabout100msto the RTT [4, 5] and usually limit bandwidh to
under56KDb/s. If we obsive an RTT muchlower than100ms, we caninfer thatthe pathdoesnot
involve a modem. (SeeSection5 for quanttative evidence.) A similar inferencemight be made
aboutsome(perhapsa all) popularlow-bandwidthwirelessmeda.

¢ Evenwhenthe endto-endbandwidthis large, the total transfer time for short repponsesdepends
mostlyonthe RTT. (Therebre,an HTTP request headerindicating client connedion speedwould
notreliably predictlatencyfor suchtransfes.)

Cardwelletal. [2] showedthatfor transferssmallerthanthelimiting window size,the expectedateny



to transferd segmentsvia TCR, whenthereareno pacletlossesis approximatedby
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y depend®n theclient's delayed-ACK pdlicy; reasonablevaluesare 1.50r 2 (see [2] for detalls).

wy depend®nthesener'sinitial valuefor cwnd; rea®nable valuesare 2, 3, or 4 (see [2] for detalils).
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MSSis the TCP maximumsegnentsizefor theconnection.

NotethatmedianWebresponseaizes(we usethedefinition of “responsé fromtheHTTP specification [6])
aretypically smallerthanthelimiting window size;seeSection3.4.

End-b-endbandwidh limits and packetlossescanonly increasethis latency In otherwords, if we
know theRTT andresponseaize,thenwe canpredictalower boundfor thetransferdateng.

We would like to use the RTT to predct the transfer lateny assoon as possible. Therefore, thefirst
time asenerseesarequesfromagivenclient, it hasonly oneRTT measuremertb use for this puipose
But if the client returnsagain, which RTT measurenent shouldthe sener usefor its predction? It could
usethe mostrecent measrement(thatis, from the curent conrection), asthis is the freshest;it could
usethe meanof all measirementsto dealwith noise;it could use an exponentally smootted mean,to
reducenoisewhile favoring freshvalues;it could usethe minimum measirement,to accountfor variable
gueueingdelays;or it couldusethe maximum measutrement,to be conserative.

“Most recet,” which requres no pekrclient state,is the simplestto implement, and this is the only
varnantwe have evaluated.

2.2 Prediction from previoustransfers

Krishnamurthy andWills originally desribedthenotion of usingmeasurementsom previoustransfers
to edimatetheconnectvity of clients[11]. A prime motivationof thiswork wasto retain poorly connected
clients,who mightavoid a Websiteif its pagedake too longto download.Betterconnectealients could
bepresetedenhancedersionsof thepages

This approachis largely passve: it examinessaver logs to measurethe inter-arrival time between
baseobject(HTML) requeds and the requestdor thefirst andlas embeddedbjects,typically images
Exponentiallysmoothedneansf thesemeasuremenisre thenusedto classify clients.A network-anare
clusteringschemd10] wasusedasaninitial classificaton mechanim, if aclienthadnotbeenseenbefore
but anotherclientfromthesameclusterhadalready usedthesite. Krishnamuthy andWills usedadiverse
collectionof senerlogsfrom multiple sitesto evaluatethedesgn, andKrishnamury et al. presentd an
implementatior{12], usinga modified versionof the Apachesaver, to testthe impactof varioussever
actionson clientswith differentconnectvity.

Therecent-tandersapproachthatwe studyin this paperis a simplification of the Krishnamuthy and
Wills design. Becausetheir measuementsuseWeb senerlogs this gave themenoughinformationabout
pagestructue to invedigatethealgoithm's ability to predictthedownloadtimefor anenire page,includ
ing embeddedobjects. We have not extraded object-elationshipinformationfrom our padet traces so
we only evaluatedperresponsdateng, ratherthanperpagelatengy. Onthe other hand,mostserver logs
provide timing informationwith onesecondresolution,which meanghata log-basel evaluation cannot
providethefine-gainedtiming resoluton thatwe got from our packet traces



2.3 Defining transfer latency

We have sofar beenvagueaboutdefining“tranderlatency’ Onemight defnethis asthetime between
the departire of the first responsebyte from the server and the arrival of the last responsebyte at the
client. However, without perfectclock synchrmizationandpackettracesmadeatevery hostinvolved,this
duration is impossibleto measure.

For this paper we definetransferlatencyasthe time betweenthe departue of the first responsédyte
from the sener andthe arrival at the sewer of the acknavledgmentof the las regorse byte. (Figure 1
depictsthis intenal for the caseof anonpersistentonnectdn.) Thistendsto inflate ourlateny measire-
mentby approximately RTT/2, but becausgathdelayscan be asymmatc we do not atemptto comrect
for thatinflation. We areeffectively measumg anupperboundonthetrander lateng.

2.4 Predicting at the client

This paperfocuseson makinglateny predctionsatthe sener endof aconnection\We believe thatthe
techniquesve describeshould be usableat the client end. For example, Figure 1 shows how the saver
canobtainan RTT samplefrom the timestampf the SYN|ACK packet(P,) andthe ACK-only packet
(Ps). Buttheclientcanalsogetan early RTT samplefromthetimedamgs of theinitial SYN (P,) andthe
SYN|ACK (P).

Similarly, a clientcould maintainhistoiical information to drive a recenttransfes predicta. While a
singleclientwoud not have sufiicient historywith regectto mary serwvers, a pool of clientsmightjointly
obtain enoughhistory (asin the throughputorientedSFAND system [24]). Suchan appoachwould
probablywork beg if theclientsin the pool werelocatednearto eachother, in termsof netwak topology

Unforturately, our sener-centric tracesdo notallow usto evaluateclient-basdlateny prediction.

3 Methodology
We followedthis overall methodolog:

e Step 1: collectpadket tracesnea avariety of Web severswith differentanddiverseuse popua-
tions.

e Step 2: extractthe necesary connectiorpamameters,includingclient IDs, from thes raw tracesto
createntermediatetraces.

e Step 3: evaluatethe predictorsusng simple simulatofs) driven from the intermediag traces.

Althoughthe predction mechanismanalyedin this paperare not necesarily specificto Web traffic,
we limited ourtracebasdstudyto Webtraffic becauswe have not obtanedsignificantanddiversetraces
of othershorttransfer traffic. It might be usefulto capure traffic nearbusy e-mail senersto getanoher
relevantdataset,sincee-mail transfersalsotendto beshort [7, 17].

Giventhatwe are defning“shot” TCPtransfersn termsof the numberof databytessent we analyzed
three plausiblethresholds: 8K bytes, 16K bytes,and 32K bytes this paperfocuseson the 32K byte
thredhold. (Theresponse-sizdistributionsin Figure 3 supportthis chace.)

3.1 Tracesets

We collectedtrace sets from several differentenvironments, all in North America. For reasonsof
confideniality, we identify these setsusng shortnames:

e C2: Collectedonacorpaatenetvork
e U2,U3U4: Collected ata University
e R2: Collectedatacorpomteresarchlab
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In all casesthetraceswerecollected onthe pubic Internet(not on anintrand) andwerecollectedrelat-
ively nearexacty onepublicly-accessibleWebsener.

We collectedfull-packetiracesusingtcpdump,andlimited thetracesto includeonly TCPconnections
to or fromthelocal Websener.

While we wantedto collect traces covering an entire week at eachsite, storagelimits and otherre-
strictions meantthat we hadto collect a series of shortertraces. In orderto cover represntatve perk
odsover the course of a week (May 3-9, 2004) we cho to gathertracesfor two to four hourseach
day: 9:00AM-11:00AM Monday Wedneslay andFriday; 2:00PM-4:00PM Tueslay and Thursday;and
10:00AM-2:00PM Saturdayand Sunday(all are local timeswith repectto the tracesite: MST for C2,
MDT for U2,andPDT for R2). We addtionally gatheredtwo 24-hour(midnightto midnight) tracesatthe
University: U3 on Thursday Aug. 26, 2004,andU4 on Tueslay, Aug. 31,2004.

3.2 Arethesetracesrepresentative?

We certainlywould prefer to have tracesfrom a diverse sanple of sewers, clients,andnetwok paths
but thisis notnecesaryto validateour approach.Our goalis notto predct thelatencieseerby all client
sener pairsin thentemet,but to find amethal for a givenserver to predict thelatencieghatit itself (and
only itself) will encoungrin the nearfuture.

It is true thatsome seaversor client populationsmight differ so much from the onesin our tracesthat
ourredallts do notapply. Althoughlogisticalandprivagy condraintspreventusfrom exploring awider set
of traces,ouranalysidoolsare availableathttp://bro-ids.org/bro-contrib/retwork-aralyss/akmimc05/so
thatotherscan testour analysesontheir own traces

Theresultsin Sectiond.6imply thatour equationbased predictorworkswell for somesitesandnot so
well for others.One coulduseour trace-basedmethoalogyto discowerif asener'sresponséatenciesare
sufficiently predictablebefore decidirg to implementpredictionbasdadaptatioratthatsener.

3.3 Traceanalysistools

We start by processingtheraw (full-packetbinary)tracesto geneateonetupleperHT TPrequest/response
exchange Ratherthanwrite anew progamto procestheraw traceswe took advantageof Bro, apower-
ful tool originally meantfor network intrusiondetedion [21]. Bro includes a pdicy script interpreter for
scriptswrittenin Bro's customscripting languagewhich allowedusto do this procesingwith arelatively
simplepolicy script —about800lines,includingcommens. We currently use version 0.8a74of Bro.

Bro reduceghe network streaminto a series of higherlevel events. Our pdicy script defineshand
lers for the relevant events. We identify four analysisstatesfor a TCP connection: not_egablished,
timing_SYN_ACK, establshed, and error_hasoccurred. We also usefour analysisstatesfor each
HTTP transaction: waiting_for_reply, waiting_for_end_of_reply, waiting_for_ack of_reply, andtrans-
action_complete. (Our scriptfollows existing Bro pradice of usingtheterm*“reply” in lieu of “regpponse”
for statenames)

Progressionthroughthesestates occurs asfollows. Whenthe client's SYN paclet is received, a data
structue is createdto retain information on the connection,which starts in the not_egdablished state.
Whenthe correponding SYN|ACK pacletis recavedfrom the sewver, themodeledconnedion entershe
timing_SYN_ACK state, and thento the estalished statewhenthe clientacknavliedgesthe SYN|ACK.

We thenwait for http_request] eventsto occuron thatconrection. Whenarequesis receved,a data
structue is createdto retan information on thatHTTP transactionwhich startsin thewaiting_for_reply
transactionstate.Onan http _reply() event,thatstatebecomesvaiting _for_end.of reply. Oncethesaver
hasfinishedsending theresponsethe transactiorstate is setto waiting_for _ack of_reply. Oncetheenire
HTTP responseénasbeenacknownledgedby the client, that stateis set to transaction.complete. This



designallows our script to properly handlepersisentandpipelinedHTTP connections.

Our analysisusesan addtional state, error_has occurred, which is used,for example,whena TCP
connections reset,or whenapadetis missng, causingagapin the TCP data.All subsequentacletson
aconnectio in anerror _has occurred state areignored,althoughRTT andbandvidth estimatesre still
recodedfor all HTTP transationsthatcompletedbn the conrection beforethe error occured.

For eachsucessfullycompletedandsuccestully tracedHTTP request/responsexchang, the script
generatesnetuple thatincludes the timestampof the arrival time of the client's acknavledgemenof all
outstandingesponselata;theclient'sIP addresstheresponses length conent-type,andstatus code;the
positionof theresponsen a persistentonnection(if ary); and egimatesof theinitial RTT, the MSS,the
responsdransferlateng, andthe reponsetransferbandwdth. Thelateny is edimatedasdescibedin
Section2.3,andthe bandwdth estimate is then compuéedfrom thelatencyegimateand thelength.

Thes tuplesformanintermediatetrace ,corvenientfor furtheranalysisandsereralordersof magnitude
smallerthanthe original raw packettrace. For almostall of our subsequenanalysis we examineonly
responsewith statuscode= 200,sincetheseare theonly onesthatshouldalwayscarty full-lengthbodies

3.31 Proxiesand robots

Most Webseners receve requess from multi-client proxy servers, andfrom robotssuchas searchengine
crawlers; both kinds of clients tendto make more frequentrequess thansingle-hunan clients. Requets
from proxies and robos skew the referencestream to make the averageconnectiors bandwidh more
predictable,which could biasour resultsin favor of our predictionmechanisms.

Wetherebre“pruned” our tracesto remove apparenproxiesandrobots(identifiedusinga sgarateBro
script) wethenanalyzedoth the prured andunprured traces.

In orderto avoid tediaus, error-prone,and privagy-disrupting techniquesor distinguishingrobots and
proxies we testedafew heuristicso autonatically dete¢ suchclients:

e Any HTTPrequestincluding avia heademprobablycomesfrom a proxy. Thecorverseis nottrue;
someproxiesdo notinsertvia heades.

e Any request including a From healer prokably comesfrom a robot Not all robos insertFrom
headers.

¢ If agiven client|P addresgieneratesequestwith several different User-Agent headersiuring a
shortinterwval, it is probablya proxy server with multiple clientsthatuse more thanonebrowser It
couldalsobe a dynamiclP addresghathasbeenreasignedto a differentclient, so thetime scale
affectsthe acaracy of this heuistic. We ignoreUser-Agent: contype heades, sincethisis an
arifact of aparticular browser[16, 18].

Theresultsof theseteds revealedthatthe From headeis nat widely used butit is area®mnabe method
for identifying robotsin our traces. Our testresultsalsoindicatedthat simply excluding all clientsthat
issuedaVia or User-Agent heademould resultin excesive pruning.

An analysisof the via headerssuggestedhat componentssuch as personalfirewalls also add this
headerto HTTP requess. As aresult,we decidedto only pruneclientsthatincludea via headerthat
canbe autamatically identifiedas a multi-client proxy: for example,thoseaddedby a Squid, NetApp
NetCacheor Inktomi Traffic-Server proxy.

We adoped a similar appoachfor pruningclientsthat sent multiple differentUser-Agent healers.
First, werequire thattheUser-Agent heades be from well-known browses (eg., |E or Mozilla). These
browseastypically form theUser-Agent healerin avery structured format. If we cannotidentify thetype



Tablel: Ovenall tracechamlctelistics

All HTTP status codes status code = 200

Total Total Total Total | meanresp. mean peak Totd Total | meanresp.
Tracename Coms. | Clients || Resp.bytes Resp. | size(bytes) | reqg.rate | req rate || Rep. bytes | Resps. | size(bytes)
Cc2 323141 | 17627 35@M | 1221%1 3005 2.3/sec | 19/sec 3376M | 576887 6136
C2p(prured) | 281375 | 16671 3160M | 1132@0 2935 2.1/sec | 18l/sec 3053V | 533582 5999
R2 33286 7730 167M 50067 35154 | 0.lsec 35/sec 1359M 40011 35616
R2p(pruned) 23296 6732 1319M 38454 35960 0.1/sec 3l/sec 1042V 31413 34766
u2 261531 | 36170 5154M 909442 5942 1.7/sec | 169/sec 4632M | 580715 8363
U2p (prured) | 203055 | 33705 4191M 744181 5904 l4/sec | 152/sec 3754M | 479892 8202
u3 278617 | 29843 5724M 987787 6076 | 1l4/sec | 125/sec 5261IM | 637380 8655
U3p (prured) | 197820 | 26697 4283M 75694 5939 8.8/sec | 117/sec 3940M | 491497 8405
u4 326345 | 32047 6800M | 1182049 6032 | 137/sec | 139/sec 6255V | 763545 8589
U4p (prured) | 230689 | 28628 5104M 90296 5926 | 105/sec | 139/sec 4689M | 588954 8347

of browser, thebrowserversion, andtheclient OS we do notuse theheadein theanalysis.If we thensee
requestsrom two differentbrowsers, browser versionsor client OSscoming fromthe samel P addessin
the limited durationof the trace, we consder this to be a proxy, andexcludethat client from the pruned
trace.

We optedto err (slightly) on the side of excessve pruning, ratherthanstriving for accuracy, in order
to reducethe chance®f biasng our resultsin favor of our predictos. In Section7.1, we discusshow an
actualsenerimplementatiormight detectproxiesandrobots,sincethe critenia could be differentin that
setting.

3.4 Overall trace characteristics

Tablel shows variousaggeaate statisticsfor each traceset, to provide somecontext for thereg of the
results.For rea®ns of spae, we omit day-by-daystatigics for C2,R2,andU2; thes show the usualdaily
varnationsin load,althoughC2 andR2 peakon the weelend, while U2 peaksduring thework week. The
tablealsoshaws totalsfor the prunedversions of eachtraceset. Finally, the table shows total regoonse
bytes,respone count,andmeanresponseaizefor justthe status-200esponsesn whichmostsubsequent
analysesrebased.

We add”p” to thenamesof tracesetsthathave been prured (e.g, a prunedversionof traceset“C2” is
named'C2p’). Pruningreduceshe numberof clients by 5% (for traceC2) to 13% (for R2); the nunber
of HTTPresponsedy 7% (for C2)to 23%(for R2,U3, andU4); andthe peakrequeg rateby 6% (for C2)
to 11%(for R2).

Themeanvaluesin Tablel do not convey thewhole story. In Figures2, 3, and 4, repectiely, we plot
cumulatve distributionsfor requestrate,responseize,andlateny for status-200esponse§The plots
excludethe U3 and U4 traces, sincethese CDFs arenearlyidenticalto thosefor the U2 trace; Figure 4
alsoexcludesC2pandU2p, since theseCDFsare neary idenical to thosefor the unprunedraces)

Figure5 shaws a histogiam of reques countsper client addess. One might expect thatour pruning
would changethes distributions,if the proxiesand robotsremovedby pruning doindeedgeneateanun
usuallyhigh number of requestsHowever, theresultsin Figure5 do not strongly suppot this expectation.
We arenat sure if this reflectsa flaw in our pruningapproachor simply thatmost proxiesandrobotsdo
notvisit thetraced sitesvery often.

Thethreetracesin Figure3 shav quite differentregorse sizedistributions The regorsesin traceC2
sean somewhat smallerthanhastypically beenreportedfor Web traces theresponsgin traceR2 area
lot larger (Thesedifferencesalsoappeain the mean reponse sizesin Tablel.) TraceR2is unusial, in
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part becaise mary uses of the site downloadentiretechnicalreports, which tendto be muchlargerthan
individualHTML or embedéd-imagefiles.

Figure3 includesthreevettical linesindicatingthe 8K byte, 16K byte, and32K byte thresholdsNote
that8K is below the mediansize for R2, but abore the mediansize for C2 andU2, but the medianfor all
tracesis well below 32K bytes

Figure4 shavsthat responselurationsare significantlylongerin theR2tracethanin theothers possibly
becaus of thelongerresponseaizesin R2.

We calculatedfor eachdistinct client, a meanbandwidthacrass all transferdfor that client Figure 6
shavsthedistributions;theprunedraceshadsimilar distributionsandare notshavn. TraceC2hasamuch
largerfractionof low-bandwidh userghanR2or U2. Theappaent slightexcessof high-bandwidh clients
in R2 might resultfrom the largerresponsesn R2; largertrangersgenerallyincrea® TCP's efficiencgy at
usingawailablebandwidth.
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We also looked at the distribution of the TCP Maximum SegmentSize (MSS) valuesin our traces. In
traceR2,virtually all of theMSSvalueswereator closeto thestandardEthernetlimit (about 1460bytes;
in tracesC2 andU2, about95% of the M SS values were nearthe limit, with the res mostly closeto 512
bytes. Figure 3 shaws a vertical line at 1460 bytes,indicating approximately wherethe dominantM SS
valuelies ontherespons-size distribution.

3.5 Traceanomalies

Themonitaing architecturesavailableto usdiffered at eachof the collectionsites.For exampé, atone
of thesitesport mirroring wasusedto copy packetsfromamonitoredlink to themirroredlink. At anoter
site, separatdinks weretappedonefor pacletsbound for the Web sener, the secondfor paclets sentby
thesewver. Thesemonitoring infrastricturesaresubjectto avariety of measuremerdrrors:

¢ Pott mirroring multiplexesbidirectionaltraffic from the monitoredlink ontothe unidirectionalmir-
ror link. This cancause pacletsto appeaiin the tracein a differentorderthanthey arivedon the
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monitoredlink. Such reorderng typically affectspaclets thatoccured close togethernin time. For
example,in theU2 trace, 10%of connectiondiadthe SYN andSYN|ACK pacletsin reverseordet
Our Bro saipt correds for this.

e Pott mirroring tenporaily buffers pacletsfrom the monioredlink until they canbe sent over the
mirroredlink. This buffer canoverflow, causingpacketgo bedropped.

e Several of our ervironmens have multiple network links thattransferpacletsto or from the Web
sener. Since we could not monitor all of these links, we did not captue all of the HTTP re-
guest/responstansactiors. In some caeswe captue only half of the transa&tion (about 48%
of theconnectionare affectedby thisin onetrace.

¢ Ideally, a traced paclet would be timestampedkt the preciseinstantit arrives. However, trace-
collection sygemsbuffer packetsatleastoriefly (oftenin severalplace$ beforeattaching atimestamp,
andpacletsare oftencolleded at several nearbypoints(eg., two paclket monitorson bothmembers
of a pair of simplexlinks), which introducegimestamperrois dueto imperfectclock synchrmiza-
tion. Erroneoustimestampscouldcause errorsin our analysidy affectingeitheror bothof our RTT
estimatesandour lateny estimates.

Table2: Packetossrates

Total Total Measuremet | Retransmied Conrs. w/ | Coms.w/no pkts
Tracename padets Conns. || system lost pkts. padets | retransmited padets in onedirection
C2 40474900 | 118499 17017 (0.049%9 | 114911(0.3% 53906 (4.6%) | 57202 (48.4%
R2 2824548 43023 1238(0.04% 27140(1.0% 4478 (10.4%) 460(1.1%
U2 1133406 | 313462 5611(0.05%9 | 104318(0.9% 26815 (8.6%) 17107(5.5%
U3 11924978 | 328038 2093(0.02% 89178(0.7% 26371 (8.0%) 14975(4.6%
U4 1438790 | 384558 5265(0.049%) | 110641(0.8% 30638 (8.0%) 18602 (4.8%

We estimatedhe nunber of packetslost within our measirementsystemby watching for gapsin the
TCP seguen@ numbers.This couldoveredimatelosses (e g., dueto reordeed packetshput the esimates
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asrepatedin Table2, arequite low.

Table2 alsoshavs our edimates(basdon a separatdro script) for paclet retransmissiomatesonthe
pathbetwea client and sever, implied by pacletsthat cover part of the TCP sequencespacewe have
alreadyseen.Retransmisgons nomally reflect paclet lossesin the Intemet, which would invalidatethe
modelusedin equationl. Knowing theseratescould help understandvheretheinitial-RTT apprachis
applicable.

Notethat Table1 only includescomections with atleag one completeHTTP regponse while Table2
includesall conmnedions, including those thatendin erors. We were only ableto use28% of the con
nectionslisted in Table 2 for C2, partly becaise we only sawpacketsin one direction for 48% of the
connectionsOur analysis scriptfailed to recongruct another~19% of the C2 connectionslueto gapsin
thetracedTCPdata,possbly dueto unknavn problemsin the monitaing infradructure.

All connections in trace

Client-to—server packets only (a) Server—to—client packets only (b)

Packets captured in both directions

SYN Handshake seen Joined in Progress (c)
(SYN handshake not observed)

HTTP Request seen

No HTTP Request
HTTP Response seen

No HTTP Response headers

P Wther 0

Gap (g) Reset (h) Other (i)
No HTTP Response body /\ Lost  Reordered

Lost Reordered
Gap (j) Reset (k) Other (1)

Lost Reordered

Useful trace record (m)

Figure 7: Classificationtree for HTTP transa&tionsin traces

Figure 7 illustratesthe many ways in which we canfail to reconsruct a comgete HTTP reques$
responséransactioriromourtraces We sometime®nly cgpture pacletsin onediredion (client-to-saver
or sewver-to-client) on aconnectionIf we capturepacketsin both directionswe mightfail to obseve the
SYN exchange(perhapsbeausethe connectionstarted before the tracedid). We might fail to seethe
HTTP request mesage,eitherbecaus®f agapin the paclet stream, a TCP Resetor some other rea®n.
If we seethereques we might still fail to seethe HTTP reorse healers, or the HTTP respons body,
for similar rea®ns.

Table 3 quantifiestheseproblemsfor eachof the traces.Note that many of the treenodesin Figure 7
arelabelled with lower-casdettersin parenthesesheseabelsarealsoshavn for rowsin Table3. Major
contibutors to our failure to reconstructonpleteHT TP requesresponsdransationsare showvn in bold.
Thesinclude,asmentionedabove, thelargenumberof connectionsn traceC2 where we sawonly server
to-client packetgrow (b)), andthosewhere we failedto seethe reporse dueto a gapin thetrace(row
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Table3: Classificationof reasondor transactiomeconstructia failures

| Class | Nodelabel | C2 | R2 | u2 | U3 | U4 |

Client-to-sever packets only (a) 0.79% | 0.39% | 3.44% | 3.26% | 342%
Sener-to-client packets only (b) 47.81% | 0.34% | 2.65% | 165% | 1.84%
Jdnedin progress (c) 0.11% | 1.32% | 0.27% | 024% | 0.15%

No HTTP Request
Gap (d) 0.65% | 0.00% | 0.08% | 0.01% | 0.02%
Rest (e) 0.37% | 0.66% | 1.43% | 135% | 149%
Other ® 187% | 0.27% | 0.45% | 047% | 047%

No HTTP Regonseheades
Gap (9) 19.09% | 0.00% | 0.02% | 0.00% | 0.02%
Rest (h) 0.28% | 0.01% | 0.14% | 012% | 0.14%
Other () 0.87% | 0.06% | 0.05% | 005% | 0.04%

No HTTP Respons®&ody
Gap 0) 0.05% | 0.06% | 0.07% | 0.01% | 0.01%
Rest (k) 0.10% | 8.32% | 3.58% | 355% | 3.22%
Other () 0.00% | 0.00% | 0.00% | 0.00% | 0.00%

Usefultracerecord | (m) | 28.01% | 88.57% | 87.82% | 89.29% | 89.18%

(9)).

The R2 trace includesa someavhat elevatednumberof connectios thatappearedn oneof our traces
while the comedionswere alreadyin progress(row (c)). We believe thes eventsresultfrom half-closed
connectionavhere neither the client apgication nor the sener's TCP stackever time out. (This sener's
TCP stackdoes not appear to time out connectionsn the FIN_WAIT _2 state[1].)

4 Predictionsbaseal on initial RTT: results

In this section,we summaize the reaults of our expementson techriquesto predict transferlateng
usingtheinitial RTT. We addresshesequestions:

1. DoesRTT per se correlatewell with lateng?

2. How well doesequationl predictlateng?

3. Canweimprove onequation1?

4. Whatis theeffed of modemconpressn?

5. How sengive are the predictiosto parametechoices?

Thereis no single way to definewhat it meansfor a lateng predictor to provide “good’ predictons
We evaluateprediction methodsusing several criteria, including the correlation between prediced and
measuredhtenciesandthe meanandmedianof the differencebetween theactualandpredictedatencies

4.1 DoesRTT itself correlatewith latency?

Pehapsit is unnecesay to invoke the full compleity of equationl to predictlatencyfrom RTT. To
investigatehis, we examinedthe correlation betweerRTT per seand eitherbandwdth or latency

For example,Figure 8 shaws a scatterplot of bandvidth vs. initial RTT, for all status-200esponss
in traceC2. (In orderto avoid oversatuiating our scatterplots, we rancomly sampledthe actualdata in
eachplot; the samplingratios areshown in the figures) The graphshovs anapparentveakcorrelation
betweeninitial RTT andtransferbandwidth Corespondingscatterplots for R2, U2, U3, andU4 shav
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Figure 9: BW vs.RTT, traceC2,1 MSS< length< 32KB

evenweaker correlations.

Wefoundastrongercorrelationif we focusel ontransfer lengthsabore one MSSandbelav 32K bytes
asshawvn in Figure 9. Ourtechniqudor measiring lateng is probablyleag acaratefor responsgbelow
oneMSS (i.e., thosesentin just onepacket) Also, singlepacketresponesmay suffer exces apparent
delay(as measured by whenthe saver recevesthe final ACK) becauseof ddayed acknavledgmentat
theclient. In our subsequentanaly®s,we excluderesponsewith lenghsof one MSS or lessbecaus of
thesemeasuremertifficulties. The 32KB thresholdepresentsneplausble choicefor defininga“short”
transfer.

For a more quantifiedevaluationof this simplistic appoad, we did a statisticalanalysisusingasimple
R [22] proglam. Theresultsare shown in Tablke 4(a) and(b), for lengthslimited to 8K and 32K bytes
respectrely.
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Table 4: Corrdations: RTT vs. eitherbardwidth or lateng

Trace Sanples Correlation | Corelation
name included || w/bandwdth | w/latency
c2 14023 (24.3%) -0.352 0.511
C2p | 12966l (24.3%) -0.370 0.5(8
R2 7500 (18.7%) -0.112 0.3%4
R2p 5519 (17.6%) -0.054 0.418
U2 21828 (37.6%) -0.163 0.48
U2p | 18118 (37.8%) -0.178 0.43
U3 234591 (36.8%) -0.181 0.421
U3p | 18127 (36.9%) -0.228 0.4z
u4 283938 (37.2%) -0.179 0.3%4
Udp | 219472 (37.3%) -0.233 0.411
(8 1MSS< lengh < 8KB
Trace Sanples Correlation | Corelation
name included || w/bandwdth | w/latency
c2 261931 (45.4%) -0.325 0.4%6
C2p | 23894 (44.8%) -0.339 0.4%6
R2 2054 (51.4%) -0.154 0.38
R2p 15407 (49.0%) -0.080 0.3
U2 31209 (53.7%) -0.165 0.3
U2p | 25808 (53.8%) -0.179 0.40L
U3 336443 (52.8%) -0.162 0.263
U3p | 259038 (52.7%) -0.215 0.2
u4 4142 (54.2%) -0.167 0.28
Udp | 320613 (54.4%) -0.215 0.38

(b) 1 MSS< lengh < 32KB

The tablesshav rows for both prunedand unprunedversionsof the five basictraces. We included
only status-200esponssewhos lengthwasatleastoneMSS; the* samplesncluded”column shavs that
countfor eachtrace. The lag two colunms show thecomputeccorrelation betweennitial RTT andeither
transfer bandwidthor tranderlateng. (Thebandwidh corelatinsarenegative, becausehisis aninverse
relationghip.)

For the datasetincluding reponse lenghs up to 32K bytes, noneof thes correlationsexceed®.426,
andmary are muchlower. If we limit theresponséengthsto 8K bytes,the correlationsimprove, but this
alsoeliminatesmostof the samples.

We tried excludng samplesvith aninitial RTT valueabore somequantile,onthe theorythathighRTTs
correlatewith lossy netwak patts; this slightly improvesRTT vs. bandwidthcorrelatons (for exampk,
excludingrecordswith an RTT above 281 msecreduceshe numtler of 32K-or-shorer sampledor R2 by
10%, andimprovesthat correlationfrom -0.154to -0.302) but it actually worsensthelateng corelations
(for thesameexanple, from 0.348t0 0.214).

Notethat,contaryto ourexpedation thattracegprunedof proxiesandrobotswould belesspredictabé,
in Table4 thisseemdrueonly for theR2trace;in generalpruningseemso slightly improve predictbility .
In fact, while we presentresultsfor both prunedand unprunedtracesthroughout the paper we see no
consigentdifferencein predctability.
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4.2 Doesequation 1 predict latency?

Althoughwe did notexpect RTT to correlatewell with latency, we might expectbetterresultsfromthe
sophisticateanodelderivedby Cardwell etal. [2]. Theyvalidatedtheir model(equationl is a simpified
version)usingHTTP transfersovertheInterret, but appareny usedonly “well-connectedtlientsandso
did not probeits utility for poorly-connectectlients. They alsousedRTT estimateghatincludedmore
sampleghanjusteachconnectiorsinitial RTT.

We therebre analyzed the ability of equaton 1 to predict transferbandwidtls andlatenciesusingonly
theinitial RTT, andwith the beliefthatour tracesincludesomepoorly-connectedlients.
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Figure 10: Realvs. predictedatency traceC2

Figure10shows anexamplescattemplot of measuredatengy vs. predictedatency, for traceC2. Again,
we includeonly status-200egorsesatleag oneMSSin length. We have supeimposedtwo curveson
theplot. (Sincethisis alog-log plot, mostlinearequatioms rewult in curvedlines.) Any pointabove theline
y = x represntsanunderpedictionof latency underpedictionsare generdly worsethanoverpredictons
if (for example)we wantto avoid exposingWebusergo unexpectediylong downloads.Mostof the points
in the plot are aborve thatline, but mostare belov the curve y = x+ 1.0sec, implying that mostof the
overpredctions (in this exampe) arelessthanl secin exces. However, a significant numberaremary
se®ondstoo high.

We extendedour R programto computestatisticsfor the predictve ability of equationl. For each
status-20Qracerecordwith a lengthbetweenone MSS and 32K bytes, we usal the equationto predict
a lateny, andthen comparechis to the lateny recordedin the tracerecord. We then computed the
correlationbetweenthe actualand predictedlatencies.We alsocomputeda residualerror value, as the
difference betweerthe actualandpredictedlatencies.Table5 shavs the resultsfrom this analysis using
y=1.5andw; = 1, aparaneter assignmenthatworkedfairly well acossall five traces

In Table5, themedianresdualsare alwaysneggtive, implying thatequation1 overestimatethetrander
lateny more oftenthanit underedimatest. However, the meanresidualsarealwayspositve, becaus¢he
equations unceredimatesare more wrong (in ablute terms)thanits overestimates The samplesn
Figure 10 generallyfollow a line with a steepeslopethany = x, suggestingthat equatim 1 especially
undeestimateshigherlatencies.
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Table5: Quality of predctionsbasedn equation 1

Trace Sanples | Correktion | Median Mean
name incluced w/latency | residual | residual
C2 261931(45.4%) 0.581| -0.017 0.164
C2p 238948(44.8%) 0.584| -0.015 0.176
R2 20546(51.4%) 0.416| -0.058 0.261
R2p 15407(49.0%) 0.421| -0.078 0.272
U2 312090(53.7%) 0.502| -0.022 0.110
U2p | 258049(53.8%) 0.519| -0.024 0.124
U3 336443(52.8%) 0.334| -0.018 0.152
U3p | 259028(52.7%) 0.353| -0.016 0.156
U4 414209(54.2%) 0.354| -0.013 0.141
Udp | 320613(54.4%) 0.425| -0.010 0.136

Residualvaluesaremeasuredin seonds;1 MSS < lengh < 32KB

Onepossible rea®n is that, for lower-bandwdth links RTT dependson padet size. For a typical
56Kb/smodemlink, a SYN padket will seeanRTT someavhatabove 100 msec, while a 1500byte data
packetwill see anRTT severaltimes larger. This effect could causeequationl to underestimatéranger
latencies.

4.3 Canweimprove on equation 1?

Giventhatequationl seenrs to systematcdly underestimatéigherlatenciesgexactly the eror thatwe
want to avoid, we realizedthatwe could modify the equatia to reducetheseerrors.

We expemmentedwith several madifications,includng alinearmultiplier, but one simpleapproachs:

function ModifiedEqnOne(RT, MSS, Lengthw;, y, CompWeight)
temp= EquationOne(RT, MSS,Length,wy, Y);
return(tenp + (temp*temp*CompVeighd);

Thatis, we“overpredct” by atermproporionalto thesquare of the original prediction. Thisis aheuristic,
notthereault of rigoroustheoy.

We found by trial anderra thata proportionality congant, or “ conpenstion weigh,” CompWeight =
2.25workedbeg for C2, but CompWeigh = 1.75workedbetterfor R2 andU2, andCompWeigh = 1.25
worked bestfor U3 andU4. For all tracesy = 2 got the beg results,andwe setw; = 4 for C2 andU2,
andw; = 3 for R2,U3, andU4. We discussthe sensitvity to thes parameters Sedion 4.5.

Figure 11 shawvs how the modified prediction algorithm systematicallyoverpredcts at higher laten-
cies, while not significantly changingthe acairacy for lower latencies. (For example, in this figure,
CompWeigh = 2.25; if equationl predcts a latencyof 0.100se®nds the modified prediction will be
0.1225seconds)However, eventhe modfied algaithm significanty undepredictsafew sampkes; we do
notbelieve we canavoid this, especiallyfor connectimsthatsuffer pacletloss (seeTable?2).

Table6 shows thatthe modificatiors to equaton 1 generallyworsenthe correbtions,conparedto those
in Table5, but definitely improvesthe regduals — the medianeror is alwayslessthan 100 msec,andthe
meanerror is les than15 msec, exceptfor tracesU3p andU4p (our paraneter choiceswveretunedfor the
unpmunedtraces.
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Figure 11: Modified predction resuts, traceC2
Table6: Predictions basedn modifiedequaion 1
Trace Sanples | Correktion | Median Mean
name incluced w/latency | residual | residual
Cc2 261931(45.4%) 0.417 0.086| -0.002
C2p 238948(44.8%) 0.423 0.092| -0.006
R2 20546(51.4%) 0.278 0.015 0.002
R2p 15407(49.0%) 0.311 0.019 0.013
U2 312090(53.7%) 0.386 0.053 0.010
U2p | 253049(53.8%) 0.402 0.056 0.001
U3 336443(52.8%) 0.271 0.034 0.011
U3p | 259028(52.7%) 0.302 0.036| -0.020
U4 414209(54.2%) 0.279 0.035 0.003
Udp | 320613(54.4%) 0.337 0.038| -0.033

Residualvaluesaremeasuredin seonds;1 MSS < lengh < 32KB

4.4 Text contert and modem compression
Mary peoplestill usedialup modens. It hasbeen obsvedthatto accuratelymodel pathbandwidth,
onemustaccounfor the conpressontypically doneby modemg3]. However, mostimageContentTypes

arealreadycompresse, so this corectionshouldonly be dore for text contenttypes.

HTTPregonsesnormelly carryaMIME ContentTypelabel,whichallowed usto analyzeracesubgts
for “text/*” and“image/*” sub®ts. Table7 shavs the distribution of thes coarse Content-Tpe distinc-

tionsfor thetraces.

We speculatedhatthe lateng/-predictionmodelof equationl, which incorporatesheresponséength,
couldbefurtherimprovedby reducingthis lengthvaluewhencompessionmight be expected(A saver
making predictionsknows the ContentTypesof the reporsesit plansto send. Somesevers might use
a conpresgd contenteoding for text responss,which would obviate the needto correct predrctions for

thoseregporsesfor modemcompiession.We foundno suchresponses our traces)
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Table 7: Couns andfrequencyof conent-types(excuding somerarely-gentypes)

| Conent-type I C2] R2 | u2 | U3 | U4 |
Unknown 3(0.00% 26 (0.06%) 178(0.0%%) 157 (0.02% 144(0.02%)
TEXTH 12286 (21.22% | 23139(57.83%) | 85180 (14.6®6) | 92108 (14.45%) | 107958 (14.14%)
IMA GE* 454458 (78.78% | 13424(33.55%) | 465160 (80.10%) | 50733 (79.60% | 607520(79.57%)
APPLICATION/* 0(0.00% | 3410 (852%) | 29733(5.126) | 37981(5.90% | 47765(6.26%)
VIDEOF 0 (0.00%) 4 (0.01%) 17 (0.00%) 10 (0.00%) 5 (0.00%)
AUDIOM 0(0.00%) 8 (0.02%) 446(0.09%) 194(0.03% 140(0.02%)

We cannot directly predict either the conmpresson ratio (which varies amongresponsesnd among
modens) nor canwe reliably deternine whichclientsin our tracesusedmodems.Therefoe, for feasibility
of analyss our modelassimes a corstantcompressibilityfador for textresponss, and we testedseveral
plausiblevaluesfor this factor Also, we assaimedthatan RTT below 100 msecimplied a non-nodem
connectionandRTTsabove 100mse implied thepossble useof amodem.ln arealsystem,information
derivedfromtheclientaddessmightidentify modemusers morereliably. (In Sections we classifyclients
usinghognanes but this might addtoo muchDNS-lookup delayto be effective for lateny prediction.
Evena cachingsystem suchasRapid DNS [15] prabably would not help with classfication latencyfor
theinitial connection.)

Table8: Prdlictionsfor text conent-typesonly

Trace Sanples | Correktion | Median Mean
name incluced w/latency | residual | residual
C2 118217(96.6%) 0.442 0.142 0.002
C2p 106120(96.4%) 0.449 0.152| -0.003
R2 12558(54.3%) 0.288 0.010 0.066
R2p 8760(50.2%) 0.353 0.017 0.105
U2 70924(83.3%) 0.292 0.100 0.073
U2p 56661 (83.0%) 0.302 0.110 0.066
U3 76714(83.3%) 0.207 0.063| -0.021
U3p 56070(83.2%) 0.198 0.072| -0.099
U4 90416(83.8%) 0.281 0.065| -0.034
Udp 65708(83.8%) 0.359 0.078| -0.122

Residualvaluesaremeasuredin seonds;1 MSS < lengh < 32KB

Table 8 shaws reaults for text contenttypesonly, using the modified prediction algorithm based on
equationl, but without corectingfor possiblemodemcompeession. We sety = 2.0 for C2andU2, and
y= 1.5for R2, U3, andU4; w, = 2 for C2 andw; = 3 for the othertraces;andCompWeigh = 1 for all
traces.(We have nottesgedawide rangeof CompWeigh valuesto seeif textcontent-ypeswould benefit
from a differentCompWeight.) Comparedo the reailts for all contenttypes(seeTable6), theresiduals
for text-only samplesaregenerallyhighet

Table9 shavsresultsfor text contenttypeswhenwe assumedhatmodens compess thes by thefactor
shawvn in thethird column. Notethatfor C2andC2p,we gotthebeg resultsusinga conpresson factorof
1.0—thatis, without correding for compressionkor the othertraces, correctingfor conpresson did give



Table9

. Predttionsfor textwith compres®n

Trace | Samples | Compresion | Correlaton | Median Mean
name | induded factor w/latency | residual | residual
C2 11817 1.0 0.442 0.142 0.002
C2p 106120 1.0 0.449 0.152 | -0.003
R2 12558 4.0 0.281 0.013 0.002
R2p 8760 4.0 0.345 0.021 0.044
U2 70924 3.0 0.295 0.083 0.008
U2p 56661 3.0 0.306 0.096 | -0.004
U3 76714 4.0 0.208| -0.002 0.001
U3p 56070 4.0 0.201 0.003 | -0.063
U4 916 4.0 0.277| -0.000| -0.011
Udp 65708 4.0 0.353 0.007 | -0.083

Residualvaluesaremeasuredin seonds;1 MSS < lengh < 32KB
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betterresults.Herewe set the other paiametersas: y = 2 (exceptfor U3 andU4, wherey = 1.5 worked
best),w; = 1 (exceptfor C2,wherew; = 2 worked best) andCompWeight = 1.0 (exceptfor R2, where
CompWeigh = 2.25workedbest) We expermentedwith assumngthatthepathdid notinvolveamodem
(andthusshould not be corrected for compressionif the initial RTT wasunderl00msec,but for R2 and
U2 it turnedout thatwe gotthe beg resultswhenwe assumedhatall text responssshouldbe corected

for conpresson.

Table9 showsthat,exceptfor trace C2, correctingfor modemcompessionimprovesthemearresiduals
overthosein Table8. We have not evaluatedthe use of conpresson factors otherthanintegersbetweenl
and4, andwe did not evaluatea full rangeof CompWeight valuesfor this section.

Table10: Predictons for imagecontert-types only

Trace Sanples | Correktion | Median Mean
name incluced w/latency | residual | residual
C2 143714(31.6%) 0.332 0.040 0.066
C2p 132828(31.4%) 0.329 0.041 0.067
R2 6259(46.6%) 0.275 0.017 0.046
R2p 5096(46.0%) 0.315 0.018 0.032
U2 216590(46.6%) 0.445 0.040 0.023
U2p | 181447(46.9%) 0.459 0.041 0.019
U3 228097(45.0%) 0.336 0.025| -0.008
U3p | 178861(45.2%) 0.377 0.026| -0.028
U4 283029(46.6%) 0.308 0.026| -0.012
Udp | 223721(47.2%) 0.339 0.027| -0.035

Residualvaluesaremeasuredin seonds;1 MSS < lengh < 32KB

Imagecontent As shawvn in Table7, imagecornent-types dominatemos of the traces,exceptfor R2.
Also, Website designeraremorelikely to have choiceshetweerrich andsimple contentfor imagetypes
thanfor text types (Dedgners ofteninclude optioral “Flash” animations,but we foundalmostno Flash
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contentin C2 andR2, andrelatively little in U2, U3, andU4.) We therefore conparedthe predictabiity
of trander latenciesfor image content-ypes but found no clear differenceconparedto the reaults for
all contentin general. Table 10 shaws the resultsfor image contenttypes,usng the samey, wy, and
CompWeigh settingsas usedfor Table 6. We have not evaluatedwhethera different setof pammeter
valueswould give betterresultsfor imagecontent-ypes

4.5 Senstivity to parameters

How sensitve is predictionperformanceo the parametes'y, w;, andCompWeight? Thatquestioncan
beframedin severalways how do thereaults for onesener vary with parametewvalues?If parameters
arechose basedntracesfrom sener X, dothey work well for senerY? Are theoptimal valuesconstant
overtime?Do opimal parametevaluesdependnthe peformancemetic? (We have not evaluatedother
similarquegions suchaswhethertheopimal valuesareconstanbver clientsubpopulation cortent-tye,
or responséengh.)
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Figure 12 shows how the absolutevalues of the meanand median residualsvary with y, wy, and
CompWeight for tracesC2, R2, andU2. The optimal parametecchoicedependsn whetheronewants
to minimizethemeanor themedian; for example for R2,y = 2.0, w; = 3, andCompWeight = 1.75yields
anoptmal meanof 1.5 msec(andamedianof 15 msec) The mediancanbe furtherreducedo 0.2 mse¢
but atthe costof increagng the meanto over half a second.

Figure 12 also shavs how the optimal parametes vary acioss several traces. (Resultsfor tracesU3
andU4 are similar to thosefor U2, andare omitted to reduceclutter) It appgears thatno single choiceis
optimal acrossall traces althoughsomechoies yield relatively smallmean and mediandor mary traces
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For example,y = 2, w; = 3, and CompWeigh = 1.25yields optimal or nearoptimal meanresidualsor
U2, U3, andU4, anddecentreaults for C2.
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Figure 13 Sendiivity of correlaton valuesto paraneters (largeris beter)

Ingeadof optimizing the parameterchoicesfor lowestmeanor medianresidualsonecould optimize
for highest correlation betweerpredictedandactuallatencies Figure 13 shovs how the corelationsvary
with y, wy, andCompWeight for traces C2, R2, and U2. As we mentonedin Sedion 4.3, a nonzeo
CompWeigh improvestheresidualsbut generallyworsensthe correlatons, this effect on correlationsis
obviousin Figure 13. The corelations arena patticular sensitve to changs in the otherparametes, y
andws.

4.6 Training and testing on different data

The resultswe hawe presnid so far usedpammeterchoices “trained” on the same datasetsas our
resultswere testedon. Sinceary real prediction systemrequiresadvancetraining, we also evaluated
predictionswith trainingandtestingon differentdatasets.

Our trace callection was not carefully desgnedin this regad; we have no pairsof datasetsthatare
completly identicalandadjacet in time. For the C2, R2,andU2 datasets we chosethefirst threedays
asthetraining dataset, andthelas four days asthe testing dataset. However, becaus we collecteddata
at differenthours on eachday, andbecaus thereare day-d-week differences betweenthe training and
testingsets(theteding sds includeswo weekenddays) we sugect thatthesepairsof datasetsmight not
besufficienty similar. We alsousedthe U3 datasetto train parameterghatwe thentegsedonthe U4 data
set;thesetwo tracesare more similar to eachother.

Table11 shaws resultsfor trainingvs. testing.We teded andtrainedwith 96 parametecombinatons
basel on thetwo possible chdces for y, the four chaces for wy, andtwelve equallyspacedchoicesfor
CompWeight. Thetrain ed parameters arethosethatminimize the absolué value of the meanresidual
in training. The columnsundertesting resultsshon how the reailts usng the trainedparametergank
amongall of the testingreaults, the mean residualwhenusingthoseparametes, andthe residualfor the
bestpossibleparametecombiretion for theteding data.

Thes resultssuggesthatthe degree to which training cansuccessully sded pamametervaluesmight
vary significantly from site to site. Basedon our traces, we would have hadthe most succes making
usefulpredictonsatthe University site(U3-U4), andthelead sucessatthe Reseech site (R2).

However, thedifferencein “trainability” thatwe obsevedmightinsteadoetheresultof themuchcloser
matchbetweenthe U3 and U4 datasets,conparedto the time-of-day and day-ofweekdiscrepanciefn



23

Table11: Training andtestng on different data

Trained parameers Resdual Testirg results
Tracename| y | wy; | CompWeight | intraining | Rank (of 96) | Meanresidualw/thoseparans. | Bestreddual
C2 2.0 4 2.50 -0.000 15 -0.098 -0.004
C2p 2.0 3 1.75 -0.004 12 -0.089 -0.002
R2 1.5 4 1.50 -0.004 20 0.13%6 0.000
R2p 1.5 3 1.00 0.003 16 0.125 0.003
U2 1.5 4 1.50 0.001 10 -0.072 0.012
Uz2p 2.0 2 0.75 -0.004 9 -0.081 -0.002
U3u4 2.0 2 0.75 -0.007 3 -0.013 0.003
U3U4p 2.0 1 0.25 0.000 2 -0.013 -0.010

Residualvaluesaremeasuredin seonds;1 MSS < lengh < 32KB

Table12: Training andtesting on differentdata (Tuesdayvs. Wednesday)

Trained parameers Resdual Testirg results
Tracename| y | wi; | CompWeight | intraining | Rank (of 96) | Meanresidualw/thoseparans. | Bestreddual
C2 1.5 4 1.75 -0.008 8 0.037 0.001
C2p 1.5 4 1.75 -0.001 7 0.033 -0.001
R2 2.0 2 1.25 0.000 15 0.093 0.003
R2p 2.0 4 2.50 0.009 24 0.169 0.000
U2 2.0 4 2.00 0.006 6 -0.028 -0.001
Uz2p 2.0 4 2.00 0.000 6 -0.035 -0.004

Residualvaluesaremeasuredin seonds;1 MSS < lengh < 32KB

the othertrain/testcomparisons.For C2, R2, and U2, we tried training just on one day (Tue., May 4,
2004)andtestingonthenext day;seeTable12 for thereaults. Theseshaw significanty beter trainabilty
(exceptfor R2p, which wasslightly worse)thanin Table 11, which suppots the needto matchtraining
andteding datasets morecarefuly.

4.7 Predictionsvs. athreshold

Statidical analysisgivesintuition into the numerc accurag of our model,but it doesnot answer the
guestion“will a sener usingthis model makethe right decisions?”We therefore testedthe predction
accurayg by choosng avarety of lateny thresholds, andthensimulatingthe modified equaion 1 model
to seeif it comrectly predictedwhethera measuredrialue was above or below the threshold. Figure 14
shaws the resultsusingthe samey, wy, andCompWeigh settingsasusedfor Table6.

In eachgraph in Figure 14, the x-axis shavs a rangeof thredhold values,andthe y-axis shavs the
percentag®f accuratgredictions. Thethreecuvesshaw (1) the succesgatefor all predictions, (2) the
sucessratefor predictions where the true (measuredyaluewasabove the threshold and(3) the succes
ratefor predictionswherethetrue valuewas below thethreshold.

As we arguedealier, a server probablywantsto er on the sideof sendingsmaller responss(to avoid
forcing auserto wait), so we focusonthe “truelateny wasabove threshdd” curve. For smallthreshdds,
suchpredictionsare goodfor all threetracege.g., atathresholdof 100 msec predictonsrangefrom 69%
correctfor U2 to 92% correctfor R2). At higherthresholdspredictionqudity drops(e.g, atathreshold
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of 1 sec.,predictionsrangefrom 53% correct for U2 to 80% correctfor R2). However, the graphs shav
thatcertainthresholdgield lower accuraciesdependingn the trace.

Predictionsfor thefirst contactwith any givenclient areslightly more accuatethanthe predictionsfor
all trangers,ascanbe seenby comparingthe“true lateny was above threshold”curvesin Figure 14 with

thosein Figurel8.

Ourapproachalmostalwaysyieldsaccuegte predictionsfor responeswhosetruelateny wasbelow the
thredhold — alwaysbetterthan92%correctin thesethreeexamples.

4.8 A serwer'sdecision algorithm

To undestandhow a sener might usetheinitial-RTT appoachin practice,Figure 15 presentpseudoe
codefor generatig predictions.(This exanpleis in the context of a Webserver adaptingts contentbased
on predicted transferlatency, but the basicideashould apply to othercontexs.) If theserverhasN > 1
choicesof responsdengthfor a givenrequestjt would invoke PredictLatencyN — 1 times, starting with
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the larges canddate and moving down in size, until it either finds one with a smallenoughpredicted
lateng, or hasonly onechoiceleft. Thefirst threeargumentdo the PredictLatencyfunction (RTT, MSS,
andclient IP address) areknown assoon asthe connections open. Thelasttwo (responseontenttype
andlength)arespecific to a candidite responséhat the server might send.

1. function
PredctLateng/(RTT, MSS Client P, CortentType,Lengh)

2. if (ProbabyDialup(ClientIP, RTT)
and (ConentType == TEXT)) then

3. effectiveLengh := Length/TextCompresgnFactor;
4. else

5 effectiveLengh := Length;

6 end

7. if (length > maxPredictal@Lengh) then

8. return(NQPREDICTION);/* probablyleavesslow-start */
9. elseif (length < MSS) then

10. return(NQPREDICTION);/* only ore datapaclet to send*/
11. end

12. return(ModfiedEqrOne(RI'T, MSS Lengh, wy, ,
CompWeight);

TextCompressonFactor is anestmate of the mear compres®n ratio for modemsn text files;
CompWeight. wy, ard y could themselesvary basedn the sener's obrvation of recenthistory, the ConentType,
etc.

Figure 15: Pseudo-cod®or thedecison algorithm

The function ProbablyDialup nat shavn here, is a heuristic to gues whethera client is connected
via amodem(which would probably compresgext reponses). It could simply assumehatRTTs above
100msecare from dialups or it coulduseadditionalinformationbasdon theclient's DNS name or AS
(AutonomousSystemnumberto identify likely dialups.

5 Deteding dialups

We speculatedhata server could discrimnate betwee dialups andnon-delupsusingcluesfrom the
client's “fully-qualifieddomainname”(FQDN). We obtainedFQDNSs for about75% of the clientsin the
U4 trace,and then groupedthemacarding to cluesin the FQDNSs thatimplied geogaphyandnetwok
technolog. Note that many could not be categoized by this method, andsomecaegoizationsare cer
tainly wrong.

Table13 shavs how initial RTTsvary by geographyandconnectiortype. For the connectionghat we
couldcateyorize, atleast95%of “dialup” connectionhave RTTs abase 100msec,andmost“cable” and
“DSL” connectionhave RTTs belov 200 msec. Theseresultsseemunaffeded by further geogaphical
subdvision, andsupporthehypotess thatathresholdRTT betweerl00and200msecwould discrimin
atefairly well betweerdialupandnon-dalup connectons We do notknow if these resultsapplyto other
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Table 13: RTTs by geograpk andconnectiortype

| Categry | Conrections | 5th perenile | median| mean | 95th percantile |
By geogephy
All 32639 0.008 0.069 | 0.172 0.680
N. America 35972 0.003 0.068 | 0.124 0.436
S.America 2372 0.153 0.229 | 0.330 0.882
Europe 1219 0.131 0.169 | 0.262 0.717
Asia-Pacific 9176 0.165 0.267 | 0.373 0.885
Africa 2027 0.206 0.370 | 048 1.312
"Dialup” in FQDN
All 11478 0.144 0.350 | 0.664 2.275
Regbnal 5977 0.133 0.336 | 0.697 2.477
Canala 1205 0.208 0.460 | 0.751 2.060
us 575 0.189 0.366 | 0.700 2.210
Europe 566 0.183 0.216 | 0.313 0.861
"DSL” in FQDN
All 59211 0.003 0.023 | 0.060 0.210
Local 1816 0.011 0.022 | 0.04 0.085
Regbnal 47600 0.009 0.018 | 0.032 0.079
us 1063 0.071 0.085 | 0.117 0.249
Europe 118 0.148 0.162 | 0.178 0.313
"Cable” in FQDN
All 6599 0.039 0.077 | 0.132 0.338
Canaa 2741 0.039 0.055 | 0.088 0.222
us 585 0.072 0.086 | 0.04 0.127
Europe 600 0.143 0.155 | 0.176 0.244

Timesin secondspold entiesare> 0.1 sec

traces.

Previously, Wei et al. [26] classifiedacessnetwork types usinginterarival timesfrom paclet pairs.
They concludedthat it is hardto distinguish betweendialupsand other “low-bandwidth, nonAWLAN”
connectionsHowever, becaus¢heyusedone-way probesthey had no RTT information and sowould not
have seerthe charactestic 100-2@® msecRTT signaturewe identified.

6 Predictionsfrom previousbandwidths: results
In this sectionwe compare how well predictionbasdon vanantsof equationl compaes with predic-
tionsfrom the olderrecenttransfers apprach. We addresshesequestions:

1. How well canwe predictlateng from previous bandwdth measirements?
2. Doesacombinatiam of thetwo appioachesmprove on eitherindividual predictof?

Notethattherecent-tansfersapproachcanrot specificallypredictthe lateng for the very first tranger
to agivenclient, becausthesenerhasno histoly for thatclient. Thisis aproblem if thegoalisto provide
thebeg userexpeiiencefor aclient'sinitial contactwith aWebsite. For initial contactsa serverusingthe
recenttransfes approacho predictlateny hasseveraloptions,including:

¢ Makeno prediction.
¢ “Predict” thelatencybasel on history acossall previousclients; for example,useanexponenially
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smoothedneanof all previoustransferbandwidhs.

¢ Assumethatclientswith similar network locations pasdonroutinginformation,have similar band-
widths; if anew client belongsto “cluster” of clientswith knovn bandwidths usehistory from that
clusterto makea predition. Krishnamuthy andWang[10] descrbeatechniqueto discoverclusters
of client IP addesses Krishnamurtty andWills [11] thenshawved, usinga setof chosenWeb pages
with various chagrcteristics that clusteringpaysoff in predictionaccuacy improvementsranging
up to about 50%. We speculatehatthis appioachwould also work for our traces

e Usetheinitial-RTT techniqueto predicta client s first-contad lateng, anduse therecenttransfers
technige to predictsubgquentatenciedor ead client. We call this the hybrid technique.

We first analyzethe pured form of recenttransfes (making no predictionfor first-contact clients), and
thenconsderthe meanef-all-clients andhybrid techniqes.

6.1 Doespreviousbandwidth predict latency?

Table 14: Corrdations: measureds. recent bandwiths

Carelation with

most mean| weighed
Trace Samples recent previous mean
name included || bandwdth | bandwdth | bandwith
c2 262165(45.4%) 0.674 0.72 0.7%
C2p 238957(44.8%) 0.658 0.7 0.73
R2 24163(60.4%) 0.58 0.6% 0.66
R2p 17741(56.5%) 0.522 0.58 0.5®
U2 310496(53.5%) 0.527 0.65L 0.6%4
U2p || 254024(52.9%) 0.437 0.5%8 0.56L
U3 341968(53.7%) 0.4% 0.6Z 0.638
U3p || 260470(53.0%) 0.508 0.6 0.65
u4 421867(55.3%) 0.521 0.690 0.647
Udp | 323811(55.0%) 0.551 0.690 0.6%

Bed correlation for each trace shavn in bold

We did a statistical analysisof the predictionability of several vanantsof the purerecent-tanfess tech-
nique. In eachcase we madepredctions and maintainechistory only for transferlengthsof atleastone
MSS. Table 14 shaws theresults. Thefirsttwo columnsshawv the tracenameandthe number of samples
actuallyusedin the analysis.The next threecolumrs shawv the correlationsbetweernthe bandvidth (not
lateny) in atracerecordand, respectrely, themostrecentbandwdth for the sameclient, themeanof pre-
viousbandwidthsfor the client, and theexpmentialweightedmeanX; = o - X_1 + (1 — a)measurematt;.
We followed Krishnamuthy et al. [12] in usng a = 0.7, although other values might work betterfor
spedfic traces

The® resultssuggesthatsomeform of meanis the bestvariantfor this predrction techrique;although
thechoicebetween simplemeansandweightd means/ariesbetweertracesthesealwaysoutperbrm pre-
dictionsbasedon just the mog previoustransfer Since Krishnanurthy etal. [12] preferredtheweighted
meanwe follow theirleadfor thered of this paper

Pruningthetraces,aswe hadexpecteddoesseemto decreasehe predictability of bandwidth values
except for the U3 andU4 traces This effect might be magnifiedfor the recent-tangerstechniquesince
(unlike theinitial-RTT technigue)it reliesegecially onintra-clientpredictability.
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Table15: Latency predction via weighied meanbandwdth

Trace Sanples || Correlaton | Median Mean
name incluced w/latency | residud | residwal

c2 262165(45.4%) 0514 | -0.042 | -0.502
C2p 238957(44.8%) 0515 | -0.046 | -0.529
R2 24163(60.4%) 0525 | -0.066 | -4.100
R2p 17741(56.5%) 0560 | -0.140 | -5.213
U2 310496(53.5%) 0475| -0.028| -1.037
U2p 254024(52.9%) 0460 | -0.033| -1.142
U3 341968(53.7%) 0330 | -0.05| -1.138
U3p 260470(53.0%) 0374 | -0.020 | -1.288
u4 421867(55.3%) 0222 | -0.021| -0.957
Udp 323811(55.0%) 0251 -0.024| -1.111

(2) 1 MSS< length

Trace Sanples || Correlaton | Median Mean

name incluced w/latency | residud | residwal

c2 256943(44.5%) 0516 | -0.038 | -0.485
C2p 234160(43.9%) 0516 | -0.043 | -0.512
R2 17445(43.6%) 0317 | -0.018| -0.779
R2p 12741(40.6%) 0272 | -0.054| -0.959
U2 287709(49.5%) 0256 | -0.020 | -0.407
U2p 235481(49.1%) 0247 | -0.024 | -0.454
U3 314965(49.4%) 0447 | -0.017 | -0.300
U3p 230843(48.8%) 0484 | -0.020 | -0.336
u4 390981(51.2%) 0338 | -0.015| -0.274
Udp 299905(50.9%) 0312 | -0.017 | -0.314

(8) 1L MSS< length < 32KB

Table 14 showved correlations betweerbandwidh measurementsandpredictions.To predicta repon
se’s latency one can combinea bandwdth predictionwith the knovn responsdength. Table 15 showvs
how well theweightedmeanbandwdth technque predictslatencies.Table15(@) includesresponsewith
lengthatleastoneMSS Table15() excludesregponsedongerthan32 Kbytes. Becauseshot responses
andlongregponsesmaybelimitedby differentparaneters(RTT andbotiene& bandwidth respectrely),
we hypoheszedthatit might not makeseng to predictshort-respons latenciedbasdon long-reonse
histoly. Indeedtheresidualsn Tablel5(b)arealwaysbetterthanthecorespondingaluesin Tablel5(a),
althoudh the correlationsare not alwaysimproved.

Thecorrelationsin Table15(a)arebetterthanthase from the modified equationl asshawvn in Table6,
except for trace U4. However, themeanresidualsn Tablel5aremuchlargerin magntudethanin Table6;
it mightbe possibleto correct thebandwidthbasedpredtctor to fix this.

The previous-bandwdth approachcorsistently overpredcts lateng, which in someapplicationsmight
bebetterthanundepredicton. Figure 16 shows an exanple scatterplot, for R2. In theWeb-serercontent
adaptatiorapplication.excesive overpredictionincreagsthe chancesthata well-conneded use will fail
to receverich contentalthoughthis is less harmful than sendingexcessve conent to a poorly-connected
user
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Figure 16: Realvs. bandwith-predictedatency, traceR2

6.2 Predictionsvs. athreshold

Justaswe did for theinitial-RTT approachyve evaluatedthe recent-trangersappoachagainsta setof
lateny thresholds Figure 17 shows the reaults for tracesC2, R2, andU2. Comparedo Figure 14, the
recenttransfes appoad is usuallymore accuratewhenthe true lateng is above the threshold (71% or
betterfor C2, R2, and U2) but someavhatlessaccuratewhenthetruelateng is beow the threshold.

However, our original goalwas to predictlateng for a client's first contactwith a sener. In this case
the recent-tansfersapproachmustrevert to a heurstic. We simulateda version usingthe exponentally
smoothednean(a = 0.7) of all previoustransferbandwidhs andmeasiredits accuacyfor first-contact
transfers only.

Figure 18 plots the resultsfor first-contacttransfersonly, for all threetraces,andfor boththe recent
transfers andinitial-RTT approachesThis figure shows only the reaults for transfers whosetrue lateng
was above thethreshold.For eachof thetraces,therecent-tansferss more accurag for thresholdselow
about700msecs,andtheinitial-RTT approachs mare accuate for higherthresholds.

For first-contacttransferswith true latengy below the thredhold, the initial-RTT predictoris comrectat
least92% of the time, andusually more often, but the recenttransferspredictions arefrequenty wrong
for thresholddelon afew hundedmsec.

6.3 Combining predictors

Giventhattheinitial-RTT appoachseens more accurateat predictingfirst-conact latenciesfor mary
thresholds, than the recenttransfes appioach, we speculatedhat a hybrid of the two predictas might
yield the bestresults. This hybrid would use the modified equationl predictorfor a client's first-contact
transfer, andthe smootled meanof the client's previousbandwdthsfor its subsguenttranders.

We foundthatthe overall (all-trangers)accurag of this hybnd is neary indistingushabk from the
overall acaracy of the recenttransfes approactbecaus, asthe statigics in Table1 imply, only a small
fractionof transfes in our tracesarefirst contacts.
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7 Implementation issues
In this section,we cover a few issuesrelatedto implementng our predicton appoadies in an actual
Websener. Note thata versionof therecent-tansfersapgoachhas previoudy beenimplemenéd [12].

7.1 Identifying proxiesand robots

In Sedion 3.3.1, we explainedhow we prunedour tracesto excludelikely proxies androbots. An
actualimplementationof our techniquesvould probaby not apply themto requess from proxies, since
the sener-to-proxy bandwidthmight be muchhigherthanthe proxy-to-client bandwidh. We would not
want a Web sener to select‘fat” conent to sendvia a well-connectegroxy to a poorly-connectediser.
Robots,however, probaby are almostall well-conrected,anda sener might not careif they receve a
high-bandwidthvanant.

How would a sener decidenot to sendfat contentto a proxy? In anideal world, whereall clients
and proxiescomply with the HTTP/1.1specification6]), the sener could just look for Via heades to
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identify proxies,althaughit might make anexceptionfor a known setof personafirewalls (sinceif these
proxies are well-connectedso are their end users). But the world is nat ided, and so a sener might
needto supportothermeansof proxy detection. Krishnamuthy andWang[10] describeseveralplausible
techniquesjncludng looking for multiple UserAgent fields from the sameclient IP addressduring a
shorttime interval (aswe did in Section3.31), or inferring from the arrival rate of requess thatthey are
multiplexed from several humansources.

In ary case,we would not demandhat a real saver achieve perfect sgoaration betweenproxiesand
otherhods. Notonly is thislikely to beimpossble, but becaus®ur prediction techniquesirenot entirely
accurateit malkesno senseto strive for perffectionin decidingwhich clientsto applythemto.

7.2 DHCP clients

Onemight supposehata setof clientssharinga pool of IP addessesallocated by DHCP would cor-
fuse a sener usingthe recent-tansfertechnique.Thatis, the sener would apply, to a given IP address
predictionsbasedn a previoususer of thataddressHowever, we beleve this is nota problemin practice,
becaus clients sharinga pool of DHCP-assigne@ddresssarelikely to hase similar connectvity. For
example,they would all be usingthe samemodempool or wirelessnetwork.

7.3 API support

Boththeinitial-RTT techniqueandtherecet-trangerstechniqe requre minorchangeso a Websever
application. The initial-RTT techniaqie also requres minor kernel changes;t could also use the API
proposdin [20], whichis intendedo provide portableaccesto TCP connectiorparametes, suchasthe
RTT estimae.

8 Futurework
We seenumerousvaysin whichthis work couldbe extendedincluding:

¢ Re-e/aluatingtherecenttransferstechniqee usingtheaddess-clustenngtechngueof Krishnamurthy
andWang[10] to keephistoryfor clusters,notjustindividual addresss. This may provide useful
predictionsfor previoudy unseerhosts thatbelong to clusterspreviously seenandidentified.

¢ Evaluatingthevalue of other“early” connectiormetiics aspredictors. Thesencludethe apparent
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bandwidh seenfor the client's reques messageor the inteval betweenthe sener's SYNJACK
paclet andtheclient's first request packet.

¢ Attempting to defineatime window over which the predction from pastbehavor remainsvalid.

¢ Attemptingto usepag histoty (petagps with addess clustering)to edimatethefrequency of packet
loss,andincludethatin amodel-basedgredictor

¢ Extendingtheanalyssto traffic otherthanWebtrangers,suchasemail,where a significantfraction
areshort TCPtransfes.

¢ Evaluatingthepossibility for aWebseverto self-adaptits choiceof parametergy, w;, CompWeight,
andthe assamedtext-compressioriactol), ratherthanrequring theseparaneters to be established
a priori. A sewer couldinclude a sdf-adapation module, which would contirually updatethe
paraneters by training on all (or recent) previousrequests.

Onemightalsostudycertainhumanfadorsissuessuchas:

e How doesuserbehaior changaf theseneris autormatically adgting the conent richnes?

¢ Givena maximumthreshdd for overall pagedownload lateng, are existing sites respectinghat
threshold? If they are below that threshold, how muchrichercoud their contentbewithoutviolating
thethreshold?

9 Summary and condusions

We condueted a study basedon tracesfrom sereral differentuser communiies, to demonstratdnow
well two differentappioachescanpredictthe lateny of short TCP transfers. We found that by making
a minor modification to a previoudy-describedormula, we could greatlyreduceits ablute predction
errors. We shaved that predictionsbasd on obsenation of pasthistory generallyyield better overall
correlationsthanour formula-basd predictor but theformula-basegbredctor haslower meanpredction
errors. We also show thattheformula-basdpredictorcouldbeimprovedto handlethe specificcaseof text
contentwheremodembasdconpresson canaffectlateng. Finally, we reportedreaults from a studyon
therelationship betweenround-tip time andthe useof modems,suggestinghatthis relatiorship might
beexpldted to improve predictionacairacy.
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