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Abstract

An architecture and theory are provided for tracking many thousands of people with a large scale network
of cameras. Cameras are not used to identify individuals; instead they generate a robust and characteristic
visual signature, and probabilistic techniques derived from air and naval theatre tracking are used to con-
struct maximum likelihood tracks. A novel feature of the system is that the topology of the camera network
is deduced from very noisy data, and the system performs deductively without an explicit a priori represen-
tation of the camera network. Detailed simulation confirms the theoretical analysis and shows the algorithms
can perform well. Applications are likely to include reconstructive analysis of criminal acts in public places,
route analysis in commercial zones, and security in transport termini.
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1. Introduction

This paper describes how a large-scale network of video cameras can be used to track the move-
ments of pedestrians through a connected mesh of public spaces, such as might be found in a
city centre, a mass transit system, or an air terminal. The ambition is to use hundreds of cameras
to track thousands of people.

This kind of ambition causes feelings of unease, but the level of public surveillance in the UK
has already reached a point where the average person can expect to appear on camera dozens of
times each day. Video tapes from surveillance cameras are routinely used by police in the fo-
rensic analysis of serious crimes. What is missing is the means to carry out intelligent recon-
struction, as the effort currently required to comb through potentially relevant video recordings
is enormous.

The problem is to correlate observations of people across a large, spatially extended system of
cameras. “Large” means the number of cameras could vary from hundreds to many thousands.
“Spatially extended” means a city centre, or a mass transit system such as London Underground.
There could be thousands of people within view of at least one camera. It is possible that the

fields-of-view of some cameras will overlap, so that people could be tracked camera-to-camera
using known techniques, but this is not assumed, and in general, fields-of-view will not overlap.

The scale of this problem is atypical for coordinated surveillance involving multiple cameras.

A more typical scenario is where several cameras with overlapping fields-of-view are monitor-
ing a limited area such as a car park [14]. The problem described more closely resembles multi-
sensor tracking situations with military applications, such as ballistic missile tracking, air thea-
tre tracking, and naval theatre tracking, in particular, submarine tracking. These applications are
characterised by many targets, many sensor types, and the need to fuse data from multiple sen-
sors into coherent observations, and so create accurate target tracks [18]. A key step in making
large-scale camera tracking possible is not to think of a camera as an observing “eye”, capable



of high-level visual semantic processing, but as a sensor capable of originating simple observa-
tions in much the same way as radar or sonar.

2. Solution Outline

A track consists of a sequence of observations derived from the same person made by different
cameras at different locations. One would expect the track to form a piecewise approximation

to the actual physical path of a pedestrian within the spatial region monitored by the camera net-
work.

If each person passing a camera could be identified using a unique visual signature, then the
tracking problem becomes trivial. A batch of observations taken from many cameras would be
partitioned according to signature, Each observation of a signature corresponds to an element
of the track of a single person. When multiple observations of a signature are time-ordered, they
constitute the track of a person.

This method is complicated by the fact that signatures will not be unique. This is outlined in
section 8. In summary, current visual processing techniques are not adequate to provide a
unique visual signature, and so it is necessary to live with the fact that the same person may pro-
duce a range of visual signatures according to how the person is presented to a camera, and mul-
tiple people may generate signatures that overlap, and cannot be disambiguated using purely
visual means.

The first step is to generate a batch of observations. These are partitioned by clustering in sig-
nature space. This is described in more detail in Section 4. A subset of observations, comprising
a cluster in signature space, is referred to as a primary track. A primary track consists of obser-
vations that could belong to a single individual, but will more likely consist of observations be-
longing to many individuals. These observations are disambiguated by using spatial and
temporal information about the camera network in the form of a Transit Graph. The Transit
Graph contains the likelithood that a person at location i will appear at location j after a time Az.
Bayesian techniques, and a probability maximisation algorithm, are used to disambiguate a pri-
mary track into a set of refined tracks. Refined tracks are a best-fit to the raw data, and consti-
tute, with some level of confidence, a possible set of movements for a single person.

The Transit Graph is the key to disambiguating (or refining) primary tracks into refined tracks.
A system of N cameras will have a Transit Graph with N° elements, and when N = 100 this re-
quires O(10000) parameters to be acquired to a statistical level of significance. A unique and
innovative feature of the approach described in this paper is that the Transit Graph is acquired
in real time and is bootstrapped using observations in a process of mutual refinement - raw ob-
servations are used to construct a Transit Graph, and the Transit Graph is used to refine the raw
observations, which in turn are used to construct a more accurate Transit Graph. After a number
of iterations the bootstrapped Transit Graph is capable of refining observations to a high level
of accuracy. A rationale for why this works is given is Section 6.

There are scaling limits to this bootstrapping approach. These are discussed in Section 9.

3. Solution Architecture

The functional components in the solution architecture are shown in Figure 1.
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Figure 1: Solution Architecture
Cameras & Signature Generation.

Images from a distributed array of cameras are processed to extract relevant targets' (i.e. peo-

ple) and each target observation is associated with a farget signature. An observation is added

to a central Observation Database. Each observation contains a target signature, a camera iden-
tifier, a location, a time/timecode, and a Video Repository reference.

Ina practical implementation, observations are communicated to the observation database in the
form of observation event messages, using some form of networking such as TCP/IP,

Portions of the raw video from each camera are compressed and forwarded to a Video Reposi-
tory. The Video Repository reference and observation timecode provides a way to access the
raw video (and possibly some processed video) associated with each observation.

Observation Database

All observations events generated by the distributed camera system are held in an Observation
Database.

1. An unfortunate term used in tracking literature.



Track Database

Observations are organised into tracks. Tracks can be primary tracks or refined tracks. Obser-
vations are clustered into primary tracks using signature information. Primary tracks are refined
using information contained in the Transit Graph.

Transit Graph

Each camera is identified using a unique integer id. If there are V cameras the transit graph is
an N x N matrix with each cell containing accumulated information about the likelihood that a
target which appears at camera i will appear some time later at camera j. Although the Transit
Graph can be initialised using off-line measurements, it can also be constructed in real time us-
ing observations, as described in more detail later in this document.

Track & Transit Graph Refinement

Primary tracks are refined using bootstrapped or a priori information about movements between
cameras. The Transit Graph is refined using the observations in refined tracks. The iterative
bootstrapping method used to generate the Transit Graph is one of the features of the algorithm
described later in this document.

Video Repository

The Video Repository contains raw video from each camera indexed by camera and timecode,
and the portion corresponding to an observation event is capable of being accessed remotely us-
ing a reference.

4. Signature Classification

The tracking system described in Section 5 requires visual signatures capable of classification.
This means that when the signatures generated by the same individual are plotted in an appro-
priate high-dimensional space, then all the signatures should be ‘close’ according to some meas-
ure. It would be impossible to carry out meaningful classification if signatures generated by
appearances that were perceptually similar appeared in very ‘distant’ parts of classification
space.

It is assumed that a visual signature is a finite bitstring of some kind. Itis also assumed that this
bitstring can be mapped into a high-dimensional metric space with the property that visually
similar appearances map into signatures that are close in metric space. Signatures can then be
grouped into clusters using well-known techniques. A considerable literature on clustering/clas-
sification is reviewed in [7].

The signature clustering algorithm is not described, as it depends on the specific method of sig-
nature generation, For the remainder of this paper it is assumed that signatures can be generated
and classified. There are many technical difficulties involved in achieving this and these are dis-
cussed later in Section 8.

5. Tracking

A track consists of an ordered sequence of observations related to a single target. Given a set of
observations involving several targets, there are many possible ways to sequence the observa-
tions into tracks. The number of ways a set of N observations can be partitioned into tracks is



the same as the number of partitions of a set of size V into non-empty subsets, and is given by
Bell(N), where Bell(N) is the Bell number for integer N. This is the sequence (1, 2, 5, 15, 52,
203, 877, 4140, 21147, 115975, 678570, 4213597, ...) for N=(1, 2,3 ...).

The 52 partitions of a set of 5 elements are shown in Figure 2 below'. The visual representation
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Figure 2:Partitions of a set of cardinality 5

employed in the diagram is highly appropriate and shows how a set of observations can be in-
terpreted as a set of tracks. Note that tracks must begin and end, so a single point in a set above
would correspond to a track with a single observation event.

One way to group and order observations into individual tracks is to enumerate all possible par-
titions of a set of observations, interpret each partition as a track hypothesis, and grade each set
of tracks using a priori probabilities to determine the likelihood of each hypothesis. The parti-
tion with the greatest likelihood would then be used as the best track hypothesis for that set of
observations, Unfortunately the combinatorics work against this approach - after as few as 12
observations there are 4,213,597 competing hypotheses to consider. This approach (“track split-
ting” or “multiple hypothesis tracking” is one of the standard approaches described in the liter-
ature [18][1], but it is not well suited to sitnations where large numbers of observations are
involved. Simulation of the problem (see section 7.) routinely deals with set sizes of several
hundred observations, and even when low probability hypotheses are culled, the combinatorial
explosion is too severe for a practical implementation using this technique.

1. Robert M. Dickau, http://mathforum.org/advanced/robertd/bell.html, used with per-
mission.



The approach used in this document is influenced by tracking techniques developed for air traf-
fic control, missile tracking and submarine tracking, with a clear bias towards military applica-
tions using radar and sonar [18][1]. The data association techniques used have substantial
generality, and the specific approach employed uses the assignment problem formulation de-
scribed by Poore [15], and explicitly adapted to visual tracking by Kettnaker and Zabih [9][8].

The following presentation is based on that given by Poore, which should be consulted for back-
ground.

Given a set Z of N observations, let I™ be the collection of all partitions of Z and let I be a
discrete random element defined on I'* . Then a partition Y€ I'* represents a specific hypothe-
sis about how the observations can be grouped into tracks, and the problem of organising the set
of observations into tracks can be stated as

maximise{ P((T=v) | Z) | ye T'*}

That is, given the set of observations Z, find the track hypothesis with the greatest probability.
This formula can be expanded using Bayes Theorem to give

PZ|T=y)-PT=y) r*}

max1mlse{ P(Z)

where the first term in the numerator is the /ikelihood of the observations given a specific track
hypothesis, and the second term in the numerator is the prior, the a priori probability for the
specific track hypothesis being true. The term in the denominator is constant across all track hy-
potheses and can be ignored in the maximisation procedure.

It is normal to continue the analysis by decomposing the likelihood in terms of the specifics of
the actual problem, and both Poore [15] and Kettnaker [8] provide examples of this. Kettnaker
provides a highly elaborate Bayesian analysis down to the frame level of individual cameras,
but the simplifying assumptions used means that the likelihood information factors out, and
only the prior terms remain. The key architectural separation made in this document between
signature generation and tracking exposes the intuition behind this result more clearly.

Suppose that we have a set of observations that are consistent with many possible track hypoth-
eses. The likelihood term encodes the fact that while all hypotheses are possible, some are more
likely than others. If one were to exhibit a specific track hypothesis, on could say whether the
observations were more or less likely given that hypothesis.

S1 52

51 52

& oe

Figure 3: Signature confusion & Likelihood



Consider the situation in Figure 3. Assume signature S/ is very different from signature §2, and
the probability that §7 could be confused with S2 very small. Then all other things being equal,
one would prefer to believe that the signatures were generated by the track hypotheses (i.e. un-
derlying object movements) 1,3,4 and 2,3,5 rather than 1,3,5 and 2,3,4. If S1 was similar to S2
(signature confusion) then both hypotheses would be viable, and we would have to depend on
additional (e.g. prior) information to choose one hypothesis over the other.

Let ¢; be a track in the partition ye I'*, and let #; consist of the observations 0, 0, .. 0,, which
in turn contain the signature values s, s, .. s, Then the contribution of ¢; to the overall likeli-
hood of the partition ye I'" is the probability that s}, s, .. s, are generated by the successive
appearances of the same individual. If s}, 5, .. 5,,are identical or similar, we would be inclined
to assign a high likelihood to #;, but if 54, 55, .. 5, are very different then we would assign a low
likelihood.

It is unclear that identifying a quantitative measure for the likelihood of 54, 55, .. 5, being the
successive appearances of same individual is a meaningful procedure. The difficulty is that the
system in question, a large-scale visual tracking system for use in public spaces, has a non-sta-
tionary population of observed subjects. The visual appearance of subjects may be moderately
constant over short periods of time (e.g. hours), but certainly not days. Each collection of ob-
servations/signatures needs to be considered as unique, and this is consistent with the underly-
ing situation, a changing population of individuals with constantly changing appearances.

An alternative procedure is to use a signature classifier to partition a set of observations Z into
subsets. Any signature that is “sufficiently like” another signature is collected into the same sub-
set. Track hypotheses are only considered within each subset. In this way the collection of par-
titions considered in the maximisation procedure is drastically culled; it is equivalent to
assigning many partitions a likelihood of zero, and the remainder a likelihood of one.

LetZ=2Z, v Z,.. U Zy;, where Z;..Zy are non-empty subsets of Z generated by a signature clas-
sifier suchthat Z; N Z; = & foralli j, i #j.Let I be the collection of all partitions of Z; and
let

7 = 1™ g

Then 1“+ c I'* and the likelihood can be defined as
P(Z| (T=v) = 1lif(yeD")

P(Z| (T=7)) = 0if (ye [*=T")

An advantage of this approach is that the design of a suitable signature classifier is orthogonal
to the design of the tracking system. There is also a considerable computational advantage. A
set of 12 observations has 4213597 partitions as potential hypothesis, but two sets of 6 observa-
tions have 406 partitions. The advantage in pre-partitioning the set Z increases as the size of the
set increases.

This is the approach used in this work. Rather than try to estimate a function that yields the like-
lihood that a collection of signatures comes from the same observed subject, a function that will
almost certainly vary for every subject, the assumption is made that signatures can be projected
into a high dimensional signature space, and that the camera/signature generation system is

well-behaved in the sense that successive appearances of the same subject produces signatures



that occupy a “well-defined region™ in this space. It is also assumed that it is possible to devise
a classifier which can divide the signature space into regions such that each region contains sig-
natures corresponding to all the observations of a single subject. It is not the case that each re-
gion contains signatures for only one subject - if that was possible, each subject would be
uniquely identified, and the tracking algorithm described below would be redundant.

These are strong assumptions, perhaps unrealistic, as they imply that the output from each cam-
era can be normalised with respect to positioning, scaling, lighting, environment, internal set-

tings and manufacturing tolerances. However, in a network consisting of hundreds or thousands
of cameras, this is an important architectural separation - cameras do camera things, and track-
ing does tracking. We do not know in advance what people will lock like, what they will wear,
how they will move. The best we can do is demand that the camera subsystem produce signa-

tures that are localised in a metric space such that it is possible for a classifier to find well-de-

fined clusters. This assumption is revisited in more detail in Section 8.

The prior probability P(I" = y) can be expressed using the following definitions. Let

Ppix,1) : the prior probability density that a new object appears (becomes visible) in location
x at time £.

Pp(x,t) : the prior probability density that an object disappears at location x and time 7.

Pioreei(x, x') : prior probability that an object at location x will select location x" as a next
destination.

Ppeay(X, £, X', At) : prior probability density that an object moving at time ¢ from x to x'
will reappear after a delay of Ar.

Py x,t,x', ') :the prior probability density that an object last visible at location x and
time t moves to location x' and becomes visible at time ¢ after an interval # —¢ = Af

The situation is shown in Figure 4, The hypothesis is that a new observed subject appears in

Figure 4: Track Hypothesis

location 1, moves through locations 2, 3 and 4, and disappears at location 4. The appearance of
a new subject (from some notional location N “offstage™) marks the initiation of a track, and
the disappearance of the subject (to some notional location D “offstage”) marks the termination
of the track. An alternative hypothesis - 4 singleton tracks - consistent with the same observa-
tions is shown in Figure 5..

Thus we have thatP, (x, 1, X', ') = Pg.pee(X, X') * Ppoa(x, 1, X, ' = 1)



Figure 5: Alternative Track Hypothesis - Singleton Tracks

Note that the priors Ps,,,., and Pp,,, can be continuously estimated from high-confidence
tracks using standard estimation techniques [1].

For any hypothesised track consisting of K consecutive locations in the location graph, we can
order the locations using integer numbering from 1 .. K, where an object appears in location 1
and disappears in location X.

The probability of a given track hypothesis 1T is

P(T) = Py(1,1)dl, - H PSetect® ¥+ 1) Ppy g (6t 0+ Lacyde |- PRV, t)dty
x=1.K-1

The probability of a partition is the product of the probabilities of each track in the partition:

P(C=y) = [[P(®) | tey

T

where P (7) is a probability density

\
Ppm =Pyt | T Psctect®+ 1 Ppyjg sty x+ 1,m_()J PRV, 1)
x=1.N-1

Itis possible to factor out the differentials d#; because for any partition, each observation appears
exactly once in exactly one track, and so the product will always contain dt,;dt, .. dtyyexactly
once. Absolute probabilities are not required for the maximisation procedure, and we are at lib-
erty to divide by an arbitrary scaling factor G - dt, - dt, - dt5 .. dty,, so that the weight W(y) as-
signed to a partition is

W(y) = é«HPD(r) | Tey



Given the preceding discussion, the solution to the tracking problem can now be given as

maximise{P(I' =v) | ye I'*}
= maximise{ W(y) | ye T}

Emaximise{ZlogPD('c) | Te v, ye r+}

T

The final step can be justified by the fact that the partition for which the product is maximised
is the same partition that maximises the sum over all tracks of the logarithm of Pp(t) . Refram-
ing the problem in terms of maximising a sum of terms is convenient because there are powerful
algorithms for solving problems of this kind.

The maximisation procedure over all partitions and tracks is the heart of the tracking algorithm.
Poore [15] shows how data association problems of this type can be solved as multi-dimensional
assignment problems, and the solution adopted here is inspired by Kettnaker & Zabih [9], who
approach the problem as a two-dimensional assignment using a solution to the weighted match-
ing (assignment) problem in bipartite graphs.

A bipartite graph is a graph which can be partitioned into two sets X and Y of vertices such that
there are no edges between vertices within each set. A matching is a subset of the edges between
Xand Y such that each vertex is attached to only one edge. A perfect matching between two sets
of equal size is a matching that connects every vertex in X to a vertex in ¥ and forms a one-to-
one and onto mapping between the two sets. If each edge in the graph has an associated weight,
then a maximum weighted matching is a perfect matching that maximises the edge weights.

An advantage of formulating the tracking problem in terms of weighted matching on a bipartite
graph is that a solution can be found in polynomial time: if the cardinality of X is | X], then solu-
tions exist that execute in O(|X]®) time. This is a considerable improvement on Bell(|X]).

Let Z be a sequence of observations z;, z, z3, .. zy sorted in time-ascending order. Let X = ¥ =
Z, so that the bipartite graph is a mapping from Z to itself. A vertex z, € X can only have an
edge connecting to a vertex z, € Y if i < k, because observations are temporally ordered - that
is, early observations must precede later observations. Let the weight associated with edge e be
Wie,) =

(Lky-P

De!’ay”’ 1y K, Ari)

PSefec:‘

A complete matching of maximum weight on this graph will result in every z; € X being linked
toa z, € Y such that i <k (temporal order preserved) in such a way that the overall likelihood
is maximised - this is exactly what is needed to find the partition with the greatest likelihood.

Unfortunately this is insufficient. The sequence of observations Z contains the interleaved
tracks of several observed subjects, and each track must be initiated at some point in the se-
quence, and must terminate at some point in the sequence. The scheme just described provides
no way for tracks to initiate or terminate; indeed, the condition i < k& guarantees that no perfect
matching is even possible, as there is always an observation z; which precedes all and cannot



be matched, and an observation z which has no observation following it, and it also cannot be
matched.

To represent track beginnings and ends it is necessary to add another N vertices {N;} to X to
represent track initiation (“new”), and another IV vertices {D;} to Y to represent track termina-
tion (“disappeared”). The new vertices follow the z; in the bipartite graph as shown in Figure 6 .
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Figure 6: Bipartite Graph perfect matching
Figure 6 represents the following situation:

» atrack (Ns, zy, z3, z,4 Dg) that is initiated in location 1, transits locations 3 and 4, then termi-
nates.

* asingleton track (Ng, 25, Dg) that is initiated in location 2, and terminates in location 2.
The edges N, -> z; represent tracks which begin in location 7, and the edges z; -> D, yrrepre-
sent tracks which terminate in location i. The edges N; ->D, represent nothing. A complete

matching is always possible because:

» the start of a track leaves an unmatched D; in Y.

» the end of a track leaves an unmatched N in X.



* there is exactly one unmatched N for each unmatched D;.

Edges between all N and D; are given low (negative) weights, so that they are never considered
in favour of a legitimate (positively weighted) edge, and are only used to complete the maxi-
mum weight matching. The edge from N;,y to z; is given a weight proportionate to Py (i, ) , the
likelihood that a new subject will appear at location i and time #;. The edge from z; to D,y is
given a weight proportionate to P(i, ) , the likelihood that an observed subject will disappear
from location i at time #;.

The fact that this method can find a maximum weighted partition of N observations in O(N°)
steps, and can represent explicitly all the relevant a priori likelihoods, including the initiation
and termination of tracks, is remarkable given Bell(N), the number of partitions of N observa-
tions. The method used differs from that described in Kettnaker [8] in that track termination is
represented explicitly, using a location-dependent likelihood, and so the assignment problem
formulation is similar in spirit but different in detail.

In the implementation of this method a maximum weighted matching was found using the
Kuhn-Munkres algorithm [11][13]. In this algorithm the vertices of a bipartite graph are given
a feasible labelling, an equality subgraph is found, and the equality subgraph is extended using
the augmenting path method until it forms a complete matching.

6. Transit Graph Refinement

If a system contains ¥ cameras, then movements between cameras can be characterised by a
Transit Graph with ¥ vertices and at most /2 edges. This in turn can be represented bya V' x ¥
matrix, where each entry represents the a priori knowledge about the relative frequency and du-
ration of transitions from camera m to camera n, with 1 <m, n< V.

The Transit Graph can be created using an off-line method. For example, a small group of indi-
viduals with a distinctive appearance and an independent method of recording location (cell-
phone, GPS recorder etc.) could be used to prime the Transit Graph with transit data. The
difficulty with this method is that it is not responsive to changing traffic flows and transition
durations. It would be more satisfying to have a method which did not depend on off-line knowl-
edge, and which updated the Transit Graph continuously using observed traffic.

The difficulty is that in order to produce a Transit Graph, accurate track data is required. In order
to refine accurate track data from observations we need the a priori likelihood information con-
tained in the Transition Graph. Starting with an uninitialised Transition Graph, and some obser-
vation events, it is not obvious that anything can be deduced, because there are many possible
track hypotheses, and there is no @ priori knowledge that would prefer one hypothesis over an-
other. One of the contributions of the work described in this paper is an iterative refinement al-
gorithm that enables a Transit Graph to be initialised and deduced purely from observation
events, while simultaneously refining observations into tracks.

The reason that such an algorithm should exist can be deduced intuitively by considering how
observation events are used to update the Transit Graph. This is presented as an informal argu-
ment.

Consider a network with /" vertices and assume that the Transit Graph is regular, and that each
vertex has valency C. The Transit Graph, considered as a matrix, will have V? entries, but only
E=V*C of these entries will represent genuine edges in the transit graph, the remainder (ideally)



being null. Assume also a population of NV signature-identical individuals where each individual
causes observation events at a rate of m events/sec, and that the traffic flow is uniformly distrib-
uted among all £ edges (ignoring any global flow problems that might arise).

Consider an event e(i) that occurs when an individual is observed at location i. If this event is
followed in the event stream by an event e(j) we might deduce that there is an edge between
locations 7 and j, and update the Transit Graph entry 7G(i,j) with information about this transi-
tion. In most cases this deduction will be incorrect, because the event e(j) could be caused by
any individual being observed at j, and not just the individual previously observed at i - this fol-
lows from the fact that individuals present identical signatures and cannot be distinguished from
information in the observation event. In this case the Transit Graph will contain some spurious
information. On the other hand, if there is a genuine path from 7 to /, and the transition at j is
caused by the same individual that caused the transition at 7, then correct information will have
been added to the Transit Graph.

It is useful to compare the quantity of correct information added to the Transit Graph compared
to the quantity of incorrect information. Although it is not entirely justifiable, one can assume
that en-masse, observation events are not correlated and so one can can use the Poisson distri-
bution to calculate probabilities. When an event e(i) occurs, on average it will take //m seconds
for the individual at i to cause another event e(j} at location . During that time, (N - m)/m
events could occur at any of the other vertices. The probability P(r = 0} that no other event oc-
curs, and the event e(j) will correctly follow e(i) is

P(n=0)=¢e"

and the probability that some other unconnected eventefk) | <}i< | occursis

Pn>0)=1-¢"

During some time interval a total of M events occur, and each time this happens an entry in the
Transit Graph is incremented. A total of

M-1—a

events will be incorrectly assigned to any one of the V2 entries in the transition graph matrix, so

that each entry will receive
M-1-&"
2

e

counts. A total of

N



events will be correctly assigned to one of the £ entries in the Transit Graph matrix correspond-
ing to an edge, so that each edge entry will receive a total of

M-e‘N+M-1—e“""

s v

counts (which includes its share of the incorrect counts).

A measure of how successfully the Transit Graph is being updated is the ratio of incorrect up-
dates to correct updates for each real edge in the graph. Ideally this ratio would be << 1. If this
ratio is >> 1 then it would be difficult to bootstrap the Transit Graph using nothing more than
primary observation events.

The ratio of incorrect to correct counts in an edge entry is

Bl

)
Pog®

For a fixed value of N, this ratio will be < 1 for sufficiently large graphs of small valence. For
example, if there are 100 vertices, and the valence is 4, then £ is 0.04. Set against this is the
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exponential sensitivity on the number of signature-identical individuals in the network.

A measure of N can be found by ignoring the exponential term in the numerator and setting
£ _
N 1
e
72
N=Ih=—
"E

If V=100 and each vertex has 4 edges, then N=3.2. If V= 1000 then N = 5.5. This extreme
sensitivity to the number of identical individuals means the goal of bootstrapping a transit graph
in a single system that observes a population of many tens of thousands is likely to be unach-
ievable - even with a signature uniqueness of 99%, there would be too many ambiguous obser-
vation events. It should be noted that four heuristics are described later that greatly improve on
this worst-case estimate - in particular, updating the transit graph using a subset of the observed
population by ranking signature clusters in terms of quality.

The technique used to bootstrap the Transit Graph is to weight each entry in the Transit Graph
matrix 7G(i,j) according to the number of times an observation event e(j) follows an event e(i),
where each event falls into the same signature cluster. These weights are used for refining tracks
using the weighted assignment algorithm. Even when the quality of the data in the matrix is
poor, the weighted assignment algorithm is a powerful method for extracting whatever informa-
tion is there, and the refined tracks are then used to rebuild the Transit Graph. This procedure is
repeated for many iterations. The quality of the Transit Graph information improves with each
refinement, which in turn leads to better refined tracks, which in turn yields a more accurate
Transit Graph, as illustrated in Figure 7.

A useful measure of refinement progress is the track purity. Because signatures are not unique,
any track one assembles may contain observations from several individuals sequenced together.
Although the assembled track may not be an accurate representation of the movements of any
one individual, it may contain subsequences of observations which are subsequences from ideal
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Figure 7: Refinement process

correct tracks. The more correct subsequences the track contains, the more “pure” it is. The
Track Purity is the percentage of observations in a track which correctly follow a preceding ob-
servation. A track which is 100% pure is a subsequence of a correct track. A track which is 0%
pure contains no subsequences from a correct track.

The result of applying the refinement procedure displayed in Figure 7 to a sequence of obser-
vations generated by a city simulation (Section 7.) is shown below in Figure 8 . The iteration
process is repeated 30 times for a population of 1000 individuals with a signature uniqueness of
98% and 99%. When the signature uniqueness is 98%, the primary/unrefined track purity is
about 6%, and the refined track purity begins at 36% and rises to 88%. When the signature
uniqueness is 99%, the primary track purity is a higher 22%, and the refined track purity begins
at 67% and rises to 95%.

This simulation demonstrates the extremely sensitive dependence on signature uniqueness, and
also the relative ease with which it is possible to deduce a useful Transit Graph capable of
refining tracks to high levels of purity from nothing more than very noisy input observations.
The refinement process operates with no knowledge whatsoever of the camera graph topology.

7. Implementation

An implementation of a tracking system was built that conforms closely to the solution archi-
tecture described in Section 3. A key aspect was the architectural separation between the cam-
era/signature generation sub-system that generates observation event messages, and the
subsystem that organises the observations into tracks, constructs a Transit Graph, and uses the
Transit Graph to process primary tracks into refined tracks,

A key motivation behind the implementation was to verify that it is feasible to construct a sys-
tem capable of processing the outputs from hundreds of cameras observing thousands of people,
and discover what level of success one might expect. A second motivation was to test the idea
that it is possible to refine tracks by bootstrapping a Transit Graph without knowing anything
about camera locations, transit times, and preferred routes - that is, to deduce the knowledge
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Figure 8: Iterative refinement. The Transit graph is refined for 30 iterations, to yield a track
purity of 95%.

needed to refine tracks. A third motivation was to search for heuristics that might improve the
tracking process.

The camera/signature generation system was provided using a discrete-event (Monte Carlo)
simulation of a population of observed individuals making journeys through a complex network
of places. Three types of places were provided: domicile places, transit places and public places.

Each simulated individual would begin in a domicile place, select a random public place as a
destination, and negotiate a mesh of transit places to the public place, then make a return journey
to the same domicile place. This was repeated for the duration of the simulation. A percentage
of the transit places would be designated observation points, and would generate an observation
event message each time an individual entered that place. A typical simulation run would con-
sist of 500 - 1000 individuals, 100 - 400 transit places, 1000 - 2000 domicile places and 10 - 50
public places

Typically each home place would be connected to one transit place, each transit place would be
randomly connected to 4-5 other transit places, and each public place would be connected to 2
transit places. The mesh of places would be generated randomly for each simulation run. Larger
populations could be simulated, but the exponential dependency on the numbers of individuals
in transit sharing the same signature classification (see Section 7) meant that an accurate Transit
Graph could not be computed for larger simulations. Simulation confirms the approximate rea-
soning in Section 7, that there is a scale of a 100-1000 individuals and 100-200 transit nodes for
which a Transit Graph capable of refining tracks can be computed from raw data. The only sit-



uations simulated were ones where the Transit Graph was empirically deduced from the obser-
vational data; there was no method for initialising the tracking system with externally generated
information about the mesh of transit places.

The only significant simplification made in the population simulation was that individuals were
pre-sorted into signature classes. If the signature uniqueness was set to 98%, then each individ-
ual would be randomly allocated to one of 50 signature classes, and all observations of that in-
dividual would be tagged with that signature. Each observation event message also contained
the unique identity of each individual, so that the tracking subsystem could maintain a private
set of “true tracks” which were used to assess the purity of refined tracks by computing the re-
fined track purity with respect to the true track.

The tracking system uses knowledge about the average behaviour of a population to discrimi-
nate between what is a probable track and what is not. The journey time between two locations
is particularly important; if the journey time between two locations is well defined, then transit
time becomes a useful measure in deciding between track hypotheses. The more variation there
is in the transit times, the less useful transit time becomes as a discriminator, an instance of the
general rule that the noisier the data is, the harder it is to extract anything useful from it.

Each transit place in the mesh of places has a mean residency time defined, and the residency
time for each individual is selected at each simulation step from a Gaussian distribution using
the mean for the place, and a standard deviation that is a fixed proportion of the mean. Simula-
tion confirms what is intuitively obvious: the larger the standard deviation, the less successful
tracking is. Figure 9 shows the refined track purity plotted against the number of refinement in-
teractions for the standard deviation equal to 0.2, 0.4, 0.6 and 0.8 of the mean transit time. The
population is 1000 individuals, signature uniqueness is 98%, and there are 100 transit nodes.
The refined track purity asymptotes to 95-96% when the standard deviation is 0.2 of the mean,
and asymptotes to 80-83% when the standard deviation is 0.8 of the mean.

Transit times between locations are estimated from refined tracks. If location ;j follows location
i in a refined track, then the time difference of the observation events is an estimate of the transit
time. The times between any two locations in the Transit Graph are stored in the form of a roll-
ing mean of size K that is, the last X transit times are stored in the form of a first-in-last-out
queue and used to compute the mean and standard deviation. In a non-steady state, the rolling
mean is a method used to estimate statistical parameters, but also to slowly forget old data. For
most of the simulations K = 50. The transition probabilities between locations are progressively
estimated in a similar manner.

The tracking system was written in C++ for speed. The core of the tracker is an implementation
of the Kuhn-Munkres bipartite graph weighted assignment algorithm written by the author. Be-
cause of the O(N?) behaviour of this algorithm, primary tracks were batch refined when the av-
erage primary track length consisted of about 50-70 observations. When the signature
uniqueness was 98%, there would be 50 primary tracks, making about 2500-3500 observations
in each batch. These would be refined and a 10,000 vertex Transit Graph rebuilt in about 4 sec-
onds of real time on an 800 MHz Pentium running Windows 2000. From this one can deduce
that even in its current prototype state an observation event rate of 900 events/second can be
processed by the tracker.

The system is compute-bound and highly parallelisable. The speed is dominated by the weight-
ed assignment algorithm, and each primary track can be refined in parallel, so a linear speed-up
proportional to the number of primary tracks is trivial to achieve. In the example above, a speed
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Figure 9: Track Purity dependence on transit time variance

0f 45,000 events/second could be achieved using a compute array of 50 processors. The assign-
ment algorithm itself can also be parallelised [2].

The most useful heuristic discovered is to use primary tracks of high purity to refine the Transit
Graph. The most obvious way is to only update the graph during periods of light traffic, as pri-
mary track purity is a direct function of the number of individuals under observation sharing the
same signature classification.

A second method is to calculate the mean track length over all primary tracks, and only update
the Transit Graph with tracks whose length is less than the mean. The reasoning behind this is
that short primary tracks are more likely to have been generated by a smaller number of indi-
viduals in the same signature classification, and by implication the track purity for those tracks
is likely to be higher.

A third method is to tag primary tracks with information from the signature classifier, indicating
whether the track corresponds to a signature in an infrequently populated part of signature
space. Again, this track is more likely to be of higher purity.

A fourth method is to use the number of refined track hypotheses for a primary track as a guide
to its quality. A primary track that refines into many tracks is likely to have a lower purity than
one that refines to a single track.



Clearly these four methods can be combined in an heuristic to suggest which refined tracks are
of high quality, and so suitable for updating the Transit Graph.

8. Signature Generation

The tracking system described depends on being able to generate a visual signature for each per-
son within the field of view of a camera. This must take place reliably in the face of

* many individuals being within the field of view.
 occlusion of some individuals by others.
» occlusion of individuals by fixed foreground objects such as pillars, waste bins etc.

= occlusion of individuals by moving foreground objects such as shopping trolleys, vehicles,
pushchairs etc.

» changes in light intensity.

« shadows.

* variation in cameras and light sources.

+ distance, orientation, stance, gait and speed.

This is a formidable task. Tracking people using a single camera, or a small number of cameras
with overlapping fields-of-view, is still an active area of research. It does not appear to be the
case that there currently exists a system capable of dealing with all these requirements. On a
positive note, it is unlikely that the problem will prove intractable, as various researchers claim
to have solved significant parts of the problem.

Rather than attempt to be prescriptive about how to generate visual signatures, when the field is
still open for developments, [ will outline what appears to be a promising approach at this time,
based on the techniques of colour image segmentation and colour indexing [3].

Colour indexing is one of the most important techniques in Content Based Image Retrieval. Its
importance derives from the fact that objects can be distinguished/retrieved by using colour in-
formation alone, and colour feature extraction is relatively invariant to scale and orientation in
a way that geometric features are not. It can also be carried out at real-time video frame rates.

A basic and popular technique is colour histogramming [17]. The colour space (e.g. RGB, or
hue/saturation) is partitioned into buckets, and the number of pixels falling into each bucket is
recorded and used as the basis for a colour signature. There is an issue of how to normalise the
histogram for scale invariance. Another popular method is to fit the colour of the object to a par-
ametric model such as a mixture of Gaussians; the parameters can then be used as a compact
signature.

In both cases colour constancy must be considered. The light reflected from an object is depend-
ent on the spectrum of the illuminating light, which in turn is composed of direct light and re-
flected light from the environment. The apparent colour of a given material can be different
depending on the colour temperature of the main light source. For example, despite the apparent



differences due to racial type, the colour of human skin is well defined in 2D hue/saturation
space, but varies markedly according to the colour temperature of the light source [16].

There is also the effect of uneven illumination, so that a single colour may appear differently in
different parts of an image. There are techniques for normalising the colour information in an
image [5][6], but in general one would expect that a given camera would have to be calibrated
with respect to available light sources.

Real-time tracking of people using colour image segmentation has been reported by many au-
thors - the techniques used in the EasyLiving system [10] and Pfinder [19] are representative.
The EasyLiving system uses colour histograms for identity maintenance, and so comes close to
the signature idea presented here. However, no tracking system capable of generating a signa-
ture based on colour information has been identified that meets all the requirements described
in this section, and there is an opportunity for work in this area.

The kinds of cameras typically used in today’s surveillance applications are inadequate for the
application described in this paper. The Smart Camera approach [20] would be ideal, which
combines visual imaging with embedded processing for feature extraction in a compact, and (ul-
timately) low cost format. It is highly probably that binocular imaging would be used, as it is
very effective in separating multiple foreground objects from a background, and provides dis-
tance information for image scaling.

9. Scaling Limitations

The tracking method described in this paper will work if the statistical parameters embodied in
the Transit Graph are estimated using an offline method. This would be feasible for small cam-
era networks. For a large network this may not be practical, and the bootstrapping method be-
comes attractive. The informal argument in section 6. shows that bootstrapping the matrix
representation of the graph depends on three values: the number of vertices ¥ in the camera net-
work, the number of edges £ between cameras, and the level of signature confusion in the ob-
served population used to update the graph. It should be noted that only a subset of the total
population need be used for updating, and four heuristics were described in section 7. that may
be used to identify a subset of the population - literally, individuals who stand out and are easily
tracked.

Without examining a real population and a practical signature generation scheme it is not pos-
sible to say what the maximum population is likely to be, but the simulations carried out suggest
O(100) cameras and O(1000) people is likely to be an upper limit.

A solution to this limitation is to group cameras into cells, so that each cell covers a connected
spatial extent, and the spatial union of the cells covers the total observed region. Cameras on the
boundary ofa cell would have multiple membership, belonging to two or more cells. Individuals
would be tracked within a cell, and if a track terminated on the boundary of a cell it could be
associated with a track or tracks initiated within the adjacent cell.

Work on this is proceeding. Preliminary indications are that this approach is feasible, and would
permit scaling to very large networks.

10. Related Work

There is a large literature on using cameras to track human body parts and the human body [12],
normally in a spatially limited environment. Although there is some literature on tracking indi-



viduals across cameras, this is normally with overlapping fields of view [14], or a small number
of observed subjects [10]. There is a considerable literature on tracking large numbers of targets
using a variety of sensor types with various military and air-traffic control applications [1][18],
but these have not considered cameras in an urban setting.

The most relevant work which combines these approaches is described in Kettnaker’s thesis and
accompanying paper with Zabih [8][9]. Although many useful ideas have been adopted here
from this work, it is limited in considering only a small number of cameras (4), a limited spatial
environment (a building), and there is no architectural extension to large scale systems as pro-
posed here. Transit likelihoods are measured by hand, and there is no process for generating and
maintaining a Transit Graph.

11. Conclusions

A system has been described that would make it possible to track the movements of a large pop-
ulation of individuals over a spatially extended region, such as a town centre, an airport termi-
nal, or a metro system. It uses cameras as visual sensors to identify key features of an individual
(a visual signature) and uses tracking algorithms derived from radar and sonar applications to
find the most probable tracks using knowledge of underlying traffic flows. One part of the al-
gorithm is unusual in that it bootstraps knowledge of the background traffic flows from poor
quality observational data, increasingly refining the quality of the observational data in parallel
with the traffic flow patterns.

The tracking system has proved itselfto be extremely robust and convergent; given observation-
al data that is 1%-10% correct, it can refine that data to 90-95% correctness in the absence of
any information about the network of visual sensors.

The system can easily handle real-time workloads, and work-in-progress indicates that the sys-
tem can scale to practical levels.

The most immediate application for such a system would be retrospective analysis of crime
scenes in public places, and it would be straightforward to add legal safeguards to such a system
to prevent misuse and satisfy privacy concerns.
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