

Utilization vs. SLO-Based Control for Dynamic Sizing of Resource
Partitions

Zhikui Wang, Xiaoyun Zhu, Sharad Singhal
HP Laboratories Palo Alto
HPL-2005-126(R.1)
January 23, 2006*

server
virtualization,
resource partition,
system
identification,
adaptive control

In this paper we deal with a shared server environment where the server
is divided into a number of resource partitions and used to host multiple
applications at the same time. In a case study where the HP-UX Process
Resource Manager is taken as the server partitioning technology, we
investigate the technical challenges in performing automated sizing of a
resource partition using a feedback control approach, where certain input
variable such as the CPU entitlement for the partition is dynamically
tuned to regulate output metrics such as the CPU utilization or SLO-
based application performance metric. We demonstrate the importance of
obtaining proper models to characterize both the static and dynamic
input-output relations, identify the nonlinear and bimodal properties of
the models across different operating regions, and discuss their
implications for the design of the control loop. We then present various
controller designs for either the relative utilization or the mean response
time, evaluate the performance of the closed-loop systems while varying
certain operating conditions, and discuss their advantages and issues.
Finally, we present an adaptive controller that combines the CPU
entitlement and utilization information and achieves more robust
performance than prior solutions.

* Internal Accession Date Only
Published in and presented at the 16th IFIP/IEEE Distributed Systems: Operations and Management (DSOM 2005),
24-26 October 2005, Barcelona, Spain Approved for External Publication
 © Copyright 2005 IEEE

 1

Utilization vs. SLO-Based Control for Dynamic Sizing of
Resource Partitions

Zhikui Wang Xiaoyun Zhu Sharad Singhal

Hewlett Packard Laboratories
1501 Page Mill Rd, Palo Alto, CA 94304

{zhikui.wang, xiaoyun.zhu, sharad.singhal}@hp.com

Abstract
In this paper we deal with a shared server environment where the server is divided into a number
of resource partitions and used to host multiple applications at the same time. In a case study
where the HP-UX Process Resource Manager is taken as the server partitioning technology, we
investigate the technical challenges in performing automated sizing of a resource partition using a
feedback control approach, where certain input variable such as the CPU entitlement for the
partition is dynamically tuned to regulate output metrics such as the CPU utilization or SLO-
based application performance metric. We demonstrate the importance of obtaining proper
models to characterize both the static and dynamic input-output relations, identify the nonlinear
and bimodal properties of the models across different operating regions, and discuss their
implications for the design of the control loop. We then present various controller designs for
either the relative utilization or the mean response time, evaluate the performance of the closed-
loop systems while varying certain operating conditions, and discuss their advantages and issues.
Finally, we present an adaptive controller that combines the CPU entitlement and utilization
information and achieves more robust performance than prior solutions.

Keywords: server virtualization, resource partition, system identification, adaptive control

1. Introduction

Resource partitioning is a type of virtualization technology that enables multiple applications to
share the system resources on a single server [13][15][29] while maintaining performance
isolation and differentiation among them. On most current systems, partition sizes are pre-
determined and allocated to applications by system administrators, posing a challenging
configuration problem. On the one hand, each partition has to be provided with enough resources
to meet service level objectives (SLOs) of the applications hosted within it in spite of changes in
workloads and the underlying system. On the other hand, excessive over-provisioning makes
inefficient use of resources on the system. Offline capacity planning or calendar-based scheduling
using profiles of past application resource usage are not always accurate or up-to-date and cannot
handle unexpected short-term spikes in demand.

To ease management of shared server environments, and to provide “capacity on demand” to
enterprise applications, our work aims to develop formal control-theory based techniques to
automatically size a resource partition based on its CPU utilization, the SLO and the time-varying
workload of its hosted applications.

This paper is organized as follows. In section 2, we describe the technology, the overall
architecture and the test bed in our case study. Related work is reviewed in Section 3. Section 4
describes how the input-output behavior of the system was modeled, and discusses implications
of the various models for control designs. Section 5 presents a number of different controller
designs and their performance evaluation using our test bed. Finally, we summarize our results
and conclusions, along with directions for future work in Section 6.

 2

2. A Case Study using A Feedback Control Approach

We conducted a case study where we used the HP-UX Process Resource Manager (PRM) [13] as
an example of the resource partitioning technology. PRM is a resource management tool that can
be used to partition a server into multiple PRM groups, where each PRM group is a collection of
users and applications that are joined together and allocated certain amounts of system resources,
such as CPU, memory, and disk bandwidth. Under overload conditions, PRM guarantees a
minimum entitlement of system resources to each PRM group. Optionally, if CPU or memory
capping is enabled, PRM ensures that each PRM group’s usage of CPU or memory does not
exceed the cap regardless of whether the system is fully utilized. In this paper, we focus on sizing
of a PRM group in terms of CPU allocation (with capping enabled). In general, a PRM group can
be either a PSET PRM group that is assigned a subset of the system’s processors, or an FSS PRM
group that is assigned a percentage of the CPU cycles by specifying a number of shares. Here we
consider only the FSS PRM group and refer to the CPU percentage allocated as its “CPU
entitlement.” Because this percentage is enforced by the Fair Share Scheduler (FSS) in the HP-
UX kernel, it can be changed at any time thereby enabling dynamic sizing of the PRM group.
This is particularly useful for dealing with uncertainties in the resource demands of enterprise
applications. It also allows a feedback control approach to be used for automated resource
allocation to these resource partitions.

2.1 System architecture

Figure 1 illustrates a shared server that has m resource partitions, where each partition can be a
PRM group. We consider the scenario where each PRM group is used to host one application.
The resource controller interacts with each partition i through two modules, Ai and Si, where Si is
the sensor that periodically measures the performance metric for application i, and Ai is the
actuator that dynamically sets the CPU entitlement for partition i according to the output of the
resource controller. The timing of the controller is based on the notion of a “sampling interval”.
At the beginning of each sampling interval, the controller collects from Si the measured
performance for the last sampling interval, compares it to the desired performance, computes the
needed CPU entitlement for the current sampling interval using certain control algorithms and
passes it to Ai for actuation. In the remainder of this paper, we focus on resource control for one
such partition. The results should be extensible to controlling multiple partitions with multiple
resource types using any partitioning technology.

Figure 1. CPU entitlement control system architecture

Partition 1

(application 1)

A1

S1

Partition 2

(application 2)

A2

S2

Partition m

(application m)

Am

Sm

Resource
Controller

Shared Server
CPU entitlement

Measured performance

Desired
performance

 3

2.2 Test bed setup
In the case study, we took the Apache Web server as an example of the hosted applications. We
set up an FSS PRM group on an HP-UX server to host an Apache Web server of version 2.0.52.
We refer to this PRM group as the “Web server partition”. We used a modified version of httperf
0.8 (ftp://ftp.hpl.hp.com/pub/httperf) on a Linux 2.4.18-3 client to continuously send HTTP
requests to the Web server and to log the response time of every request. We developed a sensor
module that parses the httperf log and computes the mean response time (MRT) of all the requests
completed during each sampling interval. It is assumed that the Web server has a target value for
the MRT based on its SLO. We also used a PRM provided utility prmmonitor to measure the
average CPU utilization of a partition for every interval. The CPU entitlement (with capping
enabled) for the Web server partition can be adjusted at the beginning of every interval to bound
the percentage of CPU cycles used by the Web server in that interval. We chose the simplest
possible workload where a single static page was repeatedly fetched from the Web server at a
fixed rate. This setting ensured that memory and network bandwidth utilization was low and only
minimum disk activity was involved. It means CPU was the only potential bottleneck in the
system as the workload intensity varied. Therefore, we focus on the problem of dynamically
determining the CPU entitlement for the Web server partition using feedback control.

3. Related Work

Our approach differs from prior work on operating systems support for server resource
reservation and enforcement [7][17][26][27] or scheduling [11][30] in that it is more generic and
can be used on any commodity operating system that supports a resource partitioning technology,
and any application that can be hosted inside a partition. In addition, our control loop utilizes a
feedback mechanism to determine an application’s CPU entitlement in real-time, which is useful
in dealing with uncertainties in the resource demands of typical enterprise applications. In [28] a
feedback-driven adaptive scheduler was presented to allocate a percentage of CPU cycles to a
thread over a period of time. In contrast, our controller allocates a percentage of CPU cycles to a
whole application so that the assigned CPU entitlement can be tied directly to the application’s
SLO. Although the proposed feedback loop is already in use in some existing workload
management tools [14][16], our approach is distinct in that we rely on classical control theory to
guide the design of the control algorithms.

Feedback control theory has been applied to solve a number of performance or quality of
service (QoS) problems in computer systems and services in recent years. (See [1][12] and the
references therein.) This approach allows feedback loops to be designed in a systematic fashion
and results in well-behaving closed-loop systems with provable properties such as stability and
responsiveness. On the other hand, the robustness of these properties depends heavily on the
fitness of the mathematical models used to characterize the dynamic behavior of the systems
being controlled and how these models are obtained.

Computer systems in general lack common mathematical models that accurately describe their
complex, highly-customized and ever-evolving behavior. As a result, much prior work that
applies control theory employs a “black-box” approach and uses input-output models to capture
the dynamic relation between control knobs (inputs) and performance metrics (outputs). Although
much of computer systems’ behavior exhibits nonlinearity, most researchers choose linear models
to represent the input-output relation for simplicity and tractability. However, a single linear
model is often insufficient to uniformly capture a system’s behavior under all operating
conditions for at least two reasons. First, each linear model may be only a local approximation of
the system’s nonlinear behavior around an operating point. Second, the system being controlled
may face constant changes in workloads and other conditions that lead to changes in the input-
output relation. Therefore, a model estimated under one operating condition may not explain the

 4

system’s behavior under another condition. Since models are used as the basis for controller
design, improper choice of models can lead to instability or poor performance of the closed-loop
system. More recent work that applies adaptive control theory to computer systems addresses this
issue by allowing the model to automatically adapt to changes in operating conditions using
online system identification [19][20][21][24]. However, these papers typically focus on the
controller design and do not offer in-depth discussion of the modeling phase of the design cycle.
In this paper, we present a detailed quantitative analysis of model fitness and variability through
our case study.

Performance control of Web servers has been studied extensively in the literature. For instance,
application-level mechanisms or admission-control schemes were proposed in [3][10][18] to
provide different levels of service to requests of different classes. While these approaches were
mainly based on heuristics or queuing models, other work has applied classical control theory to
manage Web server delay or server resource utilization using admission control and content
adaptation [2][8], connection scheduling and process reallocation [23], or application parameter
tuning [9]. All of these methods require modification to the server application software (with the
exception of [18]), which may not be feasible for other enterprise applications. Since our focus is
not controlling Web server performance in particular, but rather providing a general approach for
dynamic sizing of any resource partitions, it is important that our approach is applicable to any
applications that can be hosted inside such partitions.

On the other hand, we do use Apache Web server as a test case to investigate the challenges in
both modeling and controller designs. In [2] the authors offered insights into how to obtain
appropriate models for the actuator, sensor, and the controlled system using benchmarking and
linear regression based estimation techniques, whiling using CPU utilization as the output. The
resulting relation between the adaptation level and the CPU utilization is a time-varying static
gain with no dynamics but with a time delay. In comparison, we use either CPU utilization or
response time as the system output, and evaluate both the static and dynamic input-output
relations using experimental data collected at both long and short time scales. We found that both
low-order dynamics and nonlinearity are useful in capturing certain characteristics in the input-
output relations.

This work is the continuation of our earlier work in [21] where we designed and implemented
an adaptive PI controller that regulates the MRT around a target value and self-tunes its gain
parameters based on online estimation of the dynamic model. In the next section, we describe a
new set of modeling experiments and analysis and demonstrate how the system’s input-output
relation changes along with various operating conditions of the system. As a result, we show that
controlling the MRT using the CPU entitlement alone is only effective when the Web server
partition’s CPU utilization is close to its CPU entitlement, but may not work well when the
application is underutilizing its entitled CPU. In this paper, we present alternative controller
designs such as controlling the relative utilization of the partition, or incorporating CPU
utilization information into the control of SLO-based metrics such as the MRT so that the closed-
loop system achieves more robust performance across different operating regions.

4. Modeling of the Input-Output Relation
4.1 Static input-output relation
First, to understand the system’s long-term average behavior in the whole operating range, we
varied the CPU entitlement (denoted by u) for the Web server partition from 0.2 to 0.9, at 0.05
increments. At each setting, the Web server was loaded for 60 seconds with a fixed workload,
while the average CPU utilization (denoted by v) of the Web server partition was observed and
the MRT of all requests returned during this period was computed. Figure 2 shows the static
relation between the CPU entitlement, the (absolute and relative) CPU utilization, and the MRT
for different workload intensities ranging from 200 to 1100 requests/second (or r/s). Note that

 5

each data point is the average of 10 samples obtained from 10 repeated experiments. In addition
to u and v, let y denote the inverse of MRT (1/MRT), and r denote the relative CPU utilization of
the partition, i.e., r = v / u.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CPU Entitlement (u)

C
P

U
 U

til
iz

at
io

n
(v

)

Rate=200
Rate=400
Rate=600
Rate=700
Rate=900
Rate=1100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

3.5

CPU Entitlement (u)

M
R

T

Rate=200
Rate=400
Rate=600
Rate=700
Rate=900
Rate=1100

 (a) CPU utilization vs. CPU entitlement (b) MRT vs. CPU entitlement

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

CPU Entitlement (u)

C
PU

 R
el

at
iv

e
U

til
iz

at
io

n
(r)

Rate=200
Rate=400
Rate=600
Rate=700
Rate=900
Rate=1100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

1.2

1.4

CPU Entitlement (u)

1/
M

R
T

(y
)

Rate=200
Rate=400
Rate=600
Rate=700
Rate=900
Rate=1100

 (c) Relative CPU utilization vs. CPU entitlement (d) 1/MRT vs. CPU entitlement

Figure 2. Long-term relation between CPU entitlement, CPU utilization and MRT

Our key observations from these figures follow:

• As shown in Figure 2(a), for any given request rate, as the CPU entitlement varies, the CPU
utilization demonstrates a clear bimodal behavior that can be approximated using the
following equation:





>=
<

=
,if ,

,if ,
VuV

Vuu
v (1)

where V is the maximum portion of CPU needed for a given workload. For instance, a
workload of 600 r/s requires 0.4 CPU. When the CPU entitlement is below 0.4, the system is
in the overload region where the allocated CPU cycles are fully utilized, therefore making the
utilization equal to the entitlement; when the CPU entitlement is above 0.4, however, the
system is in the underload region where the allocated CPU cycles are underutilized. In the
latter case, the CPU utilization stays relatively constant.

• Figure 2(c) shows a different visualization of the same behavior through the relative CPU
utilization. The following equation is equivalent to (1), except expressing the CPU utilization
in a relative term:

 6





>=
<

=
.if ,/

,if ,1
VuuV

Vu
r (2)

This nonlinear equation will be useful in the analysis of the controllers in the next section.

• Similarly, the same bimodal behavior is observed in the relation between the MRT and the
CPU entitlement in Figure 2(b). Since the MRT is clearly a nonlinear function of the CPU
entitlement, we plot 1/MRT vs. CPU entitlement in Figure 2(d) to better illustrate the relation.
As we can see, when the system is overloaded (r = 1 in Figure 2(c)), there exists a linear
mapping from the CPU entitlement to 1/MRT, and its slope is independent of the request rate.
However, when the system is underloaded (r < 1 in Figure 2(c)), 1/MRT increases rapidly
with increasing CPU entitlement, indicating a sharp drop in the MRT.

• The linear mapping between the CPU entitlement and 1/MRT for the overload region implies
that a linear input-output model is plausible for this region if 1/MRT is chosen as the system
output.

• When the system is reasonably underloaded (r < 0.8), the MRT becomes independent of the
CPU entitlement setting. Therefore, the MRT is uncontrollable using the CPU entitlement in
this region.

Figure 3 shows the mean, maximum and minimum values of the relative CPU utilization and
MRT from the 10 experiments for a request rate of 900 r/s. The relative utilization in Figure 3(a)
shows a relatively small variation throughout the whole operating region, with the variation being
slightly higher in the underload region. For the MRT in Figure 3(b), in the overload region where
CPU entitlement is in [0*.2, 0.55], the MRT has a small variance. However, large deviation can
be found in the underload region where the CPU entitlement is in [0.65 0.9], which means that
MRT may not be taken as a stable metric in this region.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

CPU Entitlement (u)

R
el

at
iv

e
U

til
iz

at
io

n
(r

)

Mean
Max
Min

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

2

2.5

3

3.5

CPU Entitlement (u)

M
R

T

Mean
Max
Min

 (a) Relative CPU utilization (b) Mean Response Time

Figure 3. Properties of relative utilization and MRT as metrics when rate is 900

Next, we describe how to obtain a linear dynamic model for controlling MRT through CPU
entitlement in the overload region using standard system identification techniques.

4.2 Dynamic linear model identification

Similar to prior work, we chose the following linear auto-regressive model as the potential model
to represent the dynamic relation between the CPU entitlement and the inverse of MRT:

,)()()()(
1

01
∑∑

−

==

+−−+−=
m

j
i

n

i
i kjdkubikyaky ε (3)

 7

where the parameters ji ba , , the orders m, n, and the delay d characterize the dynamic behavior
of the system. y(k) is the inverse of MRT for sampling interval k, u(k) is the CPU entitlement for
sampling interval k, and)(kε is the residual term. For convenience, we refer to such a model as
“ARXmnd” in the following discussion.

We performed two series of system identification experiments for various request rates and
sampling intervals, where the CPU entitlement was randomly varied in [0.2, 0.8], and the
resulting 1/MRT was calculated. The model in (3) with different structure and parameters was
estimated offline using least-squares based methods [22] in the Matlab System ID Toolbox [25] to
fit the input-output data. The models are evaluated using the 2r metric defined in Matlab as a
goodness-of-fit measure. In general, the 2r value indicates the percentage of variation in the
output captured by the model. In the first series, the sampling interval was fixed as 15 seconds
while the rate was varied from 200 r/s to 1100 r/s, and the experiment was repeated for each rate.
The results are shown in Tables 1(a), 1(b) and 1(c). In the second series, the rate was fixed at 900
r/s but the sampling interval was varied from 3 seconds to 20 seconds. The 2r values (in %) of
the resulting models are shown in Table 1(d).

Table 1. Model fitness and parameter values for the ARX input-output model

200 400 600 700 900 1100
ARX110 -10.2 12.8 2.8 63.1 70.3 78.3
ARX111 -1 6.7 2.7 -5 0.09 6.4

Model Rate (r/s)

ARX110 ARX220 ARX330 ARX440
900 70.3 71.7 70.8 71.5

1100 78.3 79.9 80.3 80.2

Rate (r/s) Model

 (a) 2r of first-order models under different workloads (b) 2r of models with different orders

700 800 900 1000 1100
a -0.013 0.11 0.17 0.22 0.3
b 1.21 1.21 1.21 1.12 1.03

b/(1-a) 1.2 1.36 1.46 1.43 1.47

Rate (r/s)Param.

3 5 10 15 20
ARX110 5.4 25.9 77.9 74.8 79.5
ARX111 59 31.9 9.6 -33.1 -179.4

Model Sampling Interval (seconds)

 (c) Parameters of ARX110 under different workloads (d) 2r of models under different sampling intervals

The observations we made from the above tables are the following:

• The linear ARX model fits the input-output data for heavier workloads, not lighter
workloads. When the system is significantly underloaded, a simple linear model does not fit
the input-output data as shown in Table 1(a) by the 2r value for ARX110 (first-order model
with no delay) for a rate below or equal to 600 r/s. This is consistent with our earlier
observation from Figure 2(d). In contrast, when the request rate is above 600 r/s, the ARX
110 model fits quite well, providing a good basis for controller design. Moreover, ARX111
(first-order model with one-step delay) does not explain the system behavior for any request
rate, showing that no significant delay is observed in the system dynamics for a sampling
interval of 15 seconds.

• Under all conditions where an ARX model is a good fit, a first-order model is sufficient.
Table 1(b) shows, using rates of 900 and 1100 r/s as examples, that increasing the order of the
ARX model does not increase its fitness. Additionally, experience has shown that simpler
models offer better robustness for the resulting control system.

• Under overload conditions, the parameter values of the dynamic model changes with
the workload intensity. The evolution of the parameters a and b values of the ARX110
model as shown in Table 1(c) reveals that, with a heavier workload, the system contains more
inertia and responds slower to changes in the CPU entitlement. However, the steady state

 8

gain,)1/(ab − , remains relatively constant at around 1.4 (except for 700 r/s). This is
consistent with the constant slope in Figure 2(d).

• Models with different delay values should be chosen for different sampling intervals.
Table 1(d) shows how the fitness of the ARX110 (no delay) or ARX111 (one-step delay)
model changes as we change the sampling interval Ts, under a workload of 900 r/s. For a
short sampling interval (Ts=3 seconds), the ARX111 model provides a much better fit
(%0.592 =r) than the ARX110 model (%4.52 =r), indicating a delay from the input to the
output of around 3 seconds. It is mainly caused by the actuation delay in PRM. For longer
sampling intervals (Ts >5 seconds), this delay can be ignored, and an ARX110 model
provides a fairly good fit (%702 >r). For a sampling interval of 5 seconds, neither model
provides a good enough fit. Because smaller Ts results in noisier data, and larger Ts causes
slower response in the controller, both the sampling interval and the delay in the model
should be chosen carefully before the controller design.

The above experiments and analysis were repeated for a different server, and the same qualitative
results were observed. Our main conclusion is that, due to the existence of first-order ARX
models for the dynamic relation between the CPU entitlement and 1/MRT when the system is
overloaded, the MRT should be controllable using simple controllers such as the adaptive PI
controller used in [21]. On the other hand, it will be quite challenging to regulate the MRT in the
underload region because our observations from the modeling exercise suggest that the MRT is
simply uncontrollable using the CPU entitlement as the only input. Because variation in the
workload intensity may frequently move a resource partition between the two regions, it is
desirable to design a controller that can manage the partition size across both operating regions.

From Figure 2, we know the essential reason that MRT is uncontrollable when the Web server
partition is underutilized is that the MRT is no longer correlated with the CPU entitlement.
However, the MRT should always be dependent upon the real CPU utilization of the Web server
process. This was confirmed from the following exercise, where offline identification
experiments were repeated when the CPU entitlement was randomly varied in two regions, as
shown in Table 2. Under a fixed workload of 900 r/s, the system worked in the overload or
underload region when the CPU entitlement was varied in [0.2, 0.5] or [0.5, 0.8], as can be seen
from Figure 2(b). Consider the ARX110 models between the CPU entitlement and 1/MRT, the
CPU utilization and 1/MRT, and the CPU entitlement and utilization. In the underload case where
the entitlement range is [0.5, 0.8], 1/MRT is only weakly correlated with the CPU entitlement
with 2r =26%. However, the 2r value of the models between the CPU utilization and 1/MRT is
always much higher. Therefore, it may be helpful to introduce the CPU utilization into the control
loop for the MRT such that more robust designs can be achieved.

Table 2: 2r (in %) of ARX110 models between different input-output pairs for different regions

Range of Entitlement [0.2, 0.5] [0.5, 0.8]
Entitlement --> 1/MRT 77.6 26
Utililzation --> 1/MRT 84.3 65.5

Entitlement --> Utilization 86 31.5

5. Controller Design and Performance Evaluation

The CPU utilization of a Web server is a common metric that is monitored to determine whether
more or less CPU resource should be allocated to the server. The usage-based operation mode in
the HP-UX Workload Manager [14] allows the relative CPU utilization of a PRM group to be
controlled within a user-specified range, e.g., 50%-75%. Compared to SLO-based metrics such as
response times, the relative utilization of the resource partition is easier to measure on the server

 9

side, more directly related to the CPU entitlement and its control is more intuitive. The downside
lies in that the relation between a given relative utilization level and the client-perceived service
level varies with the demand of the workload. Therefore, no guarantees can be given to metrics
such as the MRT for an arbitrary workload when only the relative utilization is being controlled.
This is in contrast to using the MRT as the controlled output that is more directly related to the
SLO but its relation with the CPU entitlement is rather complex. In addition, regulating the MRT
using the CPU entitlement is more difficult in the underload region, as explained in Section 4. In
this section, we present controller designs for dynamic sizing of the Web server partition using
both output metrics, and discuss possible ways to combine these two metrics to provide more
effective control across the whole operating region.

5.1 Control of relative utilization

We first consider dynamic sizing of the Web server partition using its relative utilization, r(k), as
the output and the CPU entitlement, u(k), as the input. The goal is to maintain dynamically the
relative utilization at a reference value, rref. This value can be chosen higher for more predictable
workloads, and lower for more variable workloads. Prior work on applying control theory to
regulating Web server CPU utilization used different input variables, such as the content
adaptation level [2] or the application parameters [9].

From offline identification experiments, we observed that r(k) responds quickly to changes in
u(k) with negligible delay and inertia when the sampling interval is set at 15 seconds. Therefore,
the nonlinear static model (2) can be used to represent the input-output relation. i.e.,





>=
<

=
.)(if),(/

;)(if ,1
)(

VkukuV
Vku

kr (2*)

Define the tracking error at sampling interval k as)()(krrke ref −= . We can then use the
classical integral (I) controller to dynamically tune the CPU entitlement based on the tracking
error:

).1()1()(−−−= keKkuku i (4)
In theory, integral control ensures zero steady state error, i.e., the measured relative utilization
should converge to rref, and the integral gain iK determines the aggressiveness of the tuning.
Note that e(k) is a non-decreasing function of u(k). The minus sign in (4) is required to ensure a
negative feedback loop for a positive iK .

The main challenge here is to choose the right gain parameter iK such that the closed-loop
system is stable, and the relative utilization tracks the reference value as quickly as possible. This
can be illustrated using an example. Let rref =80%. We started from a workload of 500 r/s,
changed it to 800 r/s at the 20th sampling interval, and back to 500 r/s at the 40th interval. Figure 4
demonstrates the behavior of the closed-loop system with a iK value of 0.1 and 1.0, respectively.
The two top figures show both the measured relative utilization and its reference value. The two
bottom figures show the allocated CPU entitlement and the measured (absolute) CPU utilization.
As we can see, when the gain is too small as in Figure 4(a), the response to the workload change
is very sluggish; when it is large, however, the response is unstable as shown in Figure 4(b). In
this experiment and all those followed, the CPU entitlement was upper-bounded by 0.8. The x-
axes in the figures on the control system performance are labeled in the number of sampling
interval.

 10

0 10 20 30 40 50 60
0

0.5

1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

Entitlement (u)
Utilization (v)

Reference (rref)

Relative Utilization (r)

No. of Sample

0 10 20 30 40 50 60
0

0.5

1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

Entitlement (u)
Utilization (v)

Reference (rref)
Relative Utilization (r)

No. of Sample
 (a) 1.0=iK (b) 0.1=iK

Figure 4. Performance of fixed I Controller from CPU entitlement to relative utilization

Although an optimum iK value may be chosen carefully for certain workload, it may not be
applicable to a different workload or a different operating region. Therefore, it should be
desirable to design an adaptive controller with an adjustable gain parameter. Since the process is
nonlinear, the controller design approach for linear systems such as pole placement cannot be
applied. Instead, we can perform the following analysis. It does not solve the problem completely,
but we can have some analytical direction on the parameter configuration.

We rely on the static models defined in (1) and (2*). Assume that at steady state,
Vvuu =∞=∞)(,)(0 . Consider the problem in the two operating regions respectively. In the

overload case, Vku ≤−)1(,)1()1(−=− kukv , then 1)1(−=− refrke , and

refref rkurVu /)1(/0 −≥= . A safe but conservative option for)(kK i could be refrku /)1(−

such that 0/)1()(urkuku ref ≤−= . Note that this adaptive gain will lead to exponential

increment of the CPU entitlement in the overload region since 1<refr . In the underload case,
Vku >−)1(, and))1(/)1(()1()(−−−−−= kukvrKkuku refi . Let us consider the local stability of

this nonlinear system. Linearizing the equation around 0u , we derive that 2/ 2
0

<uVK i is
required for the local stability. This is a necessary condition. But we can still consider one
candidate for iK in this region as 2

1 /)1()(refi rkvkK −= λ , with some 20 1 << λ . Figure 5(a)

shows the performance of such a nonlinear adaptive controller where .5.01 =λ The relative
utilization is maintained around the reference, and the CPU entitlement tracks the changes in the
workload fairly quickly.

Because the nonlinearity in equation (2*) in the underload region, the analysis of the global
stability for the controller in (4) is challenging. We perform the following transformation to
linearize the system here. Let)(/1)(~ krkr = be the output of the system. Then Vkukr /)()(~ =
when Vku >=)(. Now define the tracking error at time k as)(~~)(~ krrke ref −= , and use the
following negative feedback integral controller:

).1(~~)1()(−+−= keKkuku i (5)

We may set the gain)(~ kK i adaptive to the workload as follows:





−>−−
−=−−

=
).1()1(),1(

),1()1(),1(
)(~

2 kvkuwhenkv
kvkuwhenku

kK i λ
 (6)

 11

Then in the overload and underload cases, respectively, we can still have the exponential change
of the entitlement when the workload changes. Moreover, global stability can be guaranteed in
the latter case since the closed-loop system is linear. One example for such a controller with

5.02 =λ is shown in Figure 5(b), whose performance is similar to that in Figure 5(a).

0 10 20 30 40 50 60
0

0.5

1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

Reference (r ref)

Relative Utilization (r)

Entitlement (u)
Utilization (v)

No. of Sample

0 10 20 30 40 50 60
0

0.5

1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

Reference (r
ref

)

Relative Utilization (r)

Entitlement (u)
Utilization (v)

No. of Sample
 (a) Nonlinear adaptive controller (b) Linear adaptive controller

 Figure 5. Performance of adaptive I Controller from CPU entitlement to relative utilization

5.2 Control of mean response time

In this section, we demonstrate the challenges in controlling the mean response time compared to
controlling the relative utilization. We first consider both a fixed PI controller and the adaptive PI
controller presented in [21] that dynamically adjust the CPU entitlement for the Web server
partition to meet its SLO-based MRT target. Using examples, we show that this adaptive
controller is effective in handling changes in the target performance by online estimation of the
dynamic model, but may not work well when a sudden change in the workload pushes the system
into the underload region. We then describe a new controller design by introducing the CPU
utilization measurement into the control loop.

Based on the analysis in Section 3, we consider the following ARX110 model to represent the
dynamic relation between the CPU entitlement (u) and the inverse of MRT (y):

)()()1()(kkbukayky ε++−= . (7)
Define the tracking error)()()(kykyke ref −= , where)(kyref is the target value for 1/MRT.
Then a PI controller implements the following algorithm:

)2()1()()1()(−−−++−= keKkeKKkuku pip . (8)
The closed-loop system is of second order and the gain parameters, pK and iK , can be chosen
using the pole placement algorithm according to design specifications such as overshoot, rising
time and settling time [5]. We applied both the fixed PI controller and the adaptive PI controller
to regulate the MRT around its target. For the fixed PI controller, we used the model identified
offline under a fixed rate 900 r/s with (a, b) = (0.20, 1.14), from which the best gain parameters
were chosen. For the adaptive PI controller, the model parameters were estimated online and the
gain parameters were also computed online to maintain the desired closed-loop poles.

In the first experiment, a fixed workload with 900 r/s rate was sent to the Web server for a
duration of 60 sampling intervals (15 minutes), while the target of MRT was changed from 2
seconds to 1 second at the 30th sampling interval. From Figure 2(b), we can see that these two
steady states are located in the overload and underload regions, respectively. Figure 6(a) and 6(b)
show the performance of the closed-loop system for both controllers for the duration of the
experiment. The top figures compare the measured MRT to its target value, while the bottom
figures show both the CPU entitlement actuated and the measured CPU utilization. Both
controllers worked well when the system was overloaded. However, as in Figure 6(a), the CPU
entitlement was oscillating heavily (hitting the upper bound periodically) when the model

 12

parameters were fixed. This is because the gain parameters for the PI controller were chosen
using the model estimated over the whole input region, and were too aggressive when the system
became underloaded. The adaptive PI controller fixes this mismatch of the parameters and
achieves more stable results as shown in Figure 6(b).

In the second experiment, the target MRT was fixed at 1.5 seconds, but the rate of the workload
was changed from 900 r/s to 500 r/s at the 30th sampling interval, which pushes the system
suddenly into the underload region. Figure 6(c) and 6(d) show the performance of the closed-
loop system for both controllers. We can see that both the CPU entitlement and the resulting
MRT became unstable because of the over-tuning actions of the controller. In this scenario, the
adaptive controller only improves the performance very marginally.

0 10 20 30 40 50 60
0

1

2

3

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

MRT Reference
MRT

Entitlement (u)
Utilization (v)

No. of Sample

0 10 20 30 40 50 60
0

1

2

3

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

MRT Reference
MRT

Entitlement (u)
Utilization (v)

No. of Sample
 (a) Fixed PI controller upon change of reference (b) Adaptive PI controller upon change of reference

0 10 20 30 40 50 60
0

2

4

0 10 20 30 40 50 60
0

0.5

1

0 10 20 30 40 50 60
0

500

1000

MRT Reference
MRT

Entitlement (u)
Utilization (v)

Workload

No. of Sample

0 10 20 30 40 50 60
0

2

4

0 10 20 30 40 50 60
0

0.5

1

0 10 20 30 40 50 60
0

500

1000

MRT Reference
MRT

Entitlement (u)
Utilization (v)

Workload

No. of Sample
 (c) Fixed PI controller upon change of workload (d) Adaptive PI controller upon change of workload

Figure 6. Performance of PI controllers from CPU entitlement to MRT

In summary, in the overload region, both the fixed and adaptive PI controllers work reasonably
well, while the adaptive controller offers better performance in the slightly underload region (as
in Figure 6(b)) by self-tuning of its parameters. However, neither controllers are applicable when
the system is significantly underloaded (as in Figure 6(c) and 6(d)), where the loss of
controllability of the MRT by the CPU entitlement leads to over-provisioning of the CPU
resource. This is also consistent with our observation from Figure 3(b) that the MRT is not a
stable metric in the underload region. Given the suggestion of Figure 3(a) that the CPU utilization
is a more stable metric, we propose one design that attempts to incorporate the measured CPU
utilization into the control loop to extend the controllable region, as illustrated in Figure 7.

 13

PI
Controller

G2

EstimationDesign

1/MRTref e

Specification

Ent 1/MRTG1
Util

(a,b)

(Kp, Ki)

Figure 7. Block diagram of an adaptive control loop with incorporation of measured CPU utilization

From Section 3.2, we know that the CPU utilization has a tighter relation with the MRT than
the CPU entitlement does in the underload region. In the following design, the ARX110 model
was estimated online between the measured CPU utilization (v(k), as the input) and 1/MRT (y(k),
as the output). Moreover, the term u(k-1) in the controller (8) is replaced by v(k-1) as follows:

)2()1()()1()(−−−++−= keKkeKKkvku pip . (9)
The parameters were chosen according to the same specification as in the prior designs. The
previous experiments with varying target MRT or workload intensity were repeated using the
new controller in (9) and the closed-loop performance is shown in Figure 8. In both cases, the
measured MRT is kept near the reference values. In the second case, even with a significantly
reduced workload, the stability of the system is maintained.

In this control design, introducing the CPU utilization into the model estimation leads to a more
truthful and stable model. With the controller in (9), over-tuning of the CPU entitlement can be
avoided since it is based on the measured utilization. However, one implicit assumption in this
solution is that the utilization measurement tracks the entitlement immediately, that is, 12 =G .
This is satisfied in the overload region where)()(kukv = . When the system works close to the
overload region, it is an approximation of the relation between the entitlement and the utilization.
Error exists in the underload region between the expected value of the utilization and its
measurement. That is why, as shown in Figure 8, the measured MRT is above the target value
when the system is underloaded. This steady-state error can be estimated approximately as
follows. Assume that)()(kukv β= with 1<β and the closed loop is stable. Then the transfer
function is, by omitting the estimation and design blocks,

))(())((

))((
)(

ip

p
ip

ip

p
ip

c

KK
K

zKKbazz

KK
K

zKKb
zG

+
−++−−

+
−+

=

ββ

β
. (10)

According to the Final Value Theorem, the DC gain of)(zGc is 1)1(<cG since 1<β . Note
that the output is the inverse of the MRT. The MRT in steady state is larger than its reference on
average.

It is possible to eliminate this average error, for instance, by setting the entitlement
appropriately larger than the expected utilization, or setting the reference proportional to)1(/1 cG
to compensate the steady state error. However, it is challenging to choose the right ratio β due to
variations in the workload and measured utilization. Figure 9 shows the performance of the
controller in the two scenarios when β is assumed to be a fixed value of 0.9, and the output of
the controller is multiplied by 9.0/1 so that 12 =G is satisfied. In the first case when the reference
value changes during the process, the steady-state error in the underload region is almost removed
as shown in Figure 9(a). In the second case as shown in Figure 9(b), the error in the underload

 14

region is decreased, but the output is noisier than before. In the overload region, new errors
appear in both cases. This is because β is actually 1 in this region. These errors may be removed
if the operating regions can be identified. However, there is no obvious boundary between the
two regions and it is difficult to find the exact value for β . Therefore, the proposed solution can
improve the robustness of the controller (8) significantly only in or close to the overload region.

0 10 20 30 40 50 60
0

1

2

3

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8
Entitlement (u)
Utilization (v)

MRT Reference
MRT

No. of Sample

0 10 20 30 40 50 60
0

2

4

0 10 20 30 40 50 6060
0

0.5

1

0 10 20 30 40 50 60
0

500

1000
Workload

Entitlement (u)
Utilization (v)

MRT Reference
MRT

No. of Sample
 (a) Varying target MRT (b) Varying workload intensity
Figure 8. Performance of the adaptive PI controller with incorporation of measured CPU utilization

0 10 20 30 40 50 60
0

1

2

3

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8
Entitlement (u)
Utilization (v)

MRT Reference
MRT

No. of Sample

0 10 20 30 40 50 60
0

2

4

0 10 20 30 40 50 60
0

0.5

1

0 10 20 30 40 50 60
0

500

1000
Workload

Entitlement (u)
Utilization (v)

MRT Reference
MRT

No. of Sample
 (a) Varying target MRT (b) Varying workload intensity
Figure 9. Performance of the adaptive PI controller with incorporation of measured CPU utilization

β is assumed to be 0.9 and u is set to 9.0/1 of the controller output.

6. Conclusions

This paper identifies challenges in applying control theory to dynamic sizing of a resource
partition using CPU entitlement as the input and the mean response time or the relative CPU
utilization as the output metric. We emphasize that the input-output relation has to be accurately
modeled for the theoretical properties of the closed-loop control system to be meaningful. We
recognize that this relation varies significantly as the resource partition moves between the
overload and the underload regions, which has a noticeable impact on the performance of any
controller design. We evaluate the performance of the closed-loop system using either relative
utilization or the mean response time as the controlled output, and discuss their respective
advantages and issues. Finally, we present a new adaptive controller design for regulating the

 15

mean response time that incorporates information on measured CPU utilization and improves the
robustness of prior adaptive algorithms.

To make the system work well across all operating regions, we need to respect the bimodal
behavior of system and develop a better way to integrate the control of relative utilization (using
controller (4-5)) and the response time (using controller (8)) in possibly different regions. Note
that the targets on the relative utilization and the MRT may not be tracked simultaneously in most
regions. To make the combination possible, one scheme is to give the regulation of the relative
utilization a higher priority than that for the regulation of the MRT, and to design an intelligent
switching scheme between these two controllers as the system state moves across different
operating regions. It could be applied to the control of multiple resource containers, where the
objectives on relative utilization can be guaranteed when there is no contention for resource
among the containers, and then the controller for MRT comes into play when the system is
overloaded. This is one topic of our ongoing work.

Another interesting direction is to apply the same approach to dynamic sizing of a resource
partition in terms of its physical memory allocation. The distinct interaction between application
performance and its memory may make it much more challenging to design a sensible controller
that works under all operating conditions.

References
[1] T.F. Abdelzaher, Y. Lu, R. Zhang, and D. Henriksson, ``Practical application of control theory to Web

services,'' invited paper, American Control Conference, June 2004.
[2] T.F. Abdelzaher, K.G. Shin, and N. Bhatti, “Performance guarantees for Web server end-systems: A

control-theoretical approach,” IEEE Transactions on Parallel and Distributed Systems, vol. 13, 2002.
[3] J. Almeida, M. Dabu, A. Manikutty and P. Cao (1998), “Providing differentiated levels of service in

Web content hosting,” SIGMETRICS Workshop on Internet Server Performance, June 1998.
[4] Apache Web server, http://www.apache.org/
[5] K. Astrom and T. Hagglund, PID Controllers: Theory, Design, and Tuning (2nd Edition), Instrument

Society of America, 1995.
[6] K.J. Astrom and B. Wittenmark, Adaptive Control (2nd Edition), Prentice Hall, 1994.
[7] G. Banga, P. Druschel, and J.C. Mogul, “Resource Containers: A new facility for resource

management in server systems,” 3rd USENIX Symposium on Operating Systems Design and
Implementation, Feb. 1999.

[8] P. Bhoj, S Ramanathan, and S. Singhal, “Web2K: Bringing QoS to Web servers,” HP Labs Technical
Report, HPL-2000-61, May 2000.

[9] Y. Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.M. Tilbury, “MIMO control of an Apache Web
server: Modeling and controller design,” American Control Conference, 2002.

[10] L. Eggert and J. Heidemann, “Application-Level differentiated services for Web servers,” World
Wide Web Journal, Vol. 3, No. 1, pp. 133-142, March, 1999.

[11] P. Goyal, X. Guo, and H. Vin, “A hierarchical CPU scheduler for multimedia operating systems,”
2nd USENIX Symposium on Operating System Design and Implementation, October, 1996.

[12] J.L. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback Control of Computing Systems,
Wiley-Interscience, 2004.

[13] HP Process Resource Manager, http://h30081.www3.hp.com/products/prm/index.html
[14] HP-UX Workload Manager, http://h30081.www3.hp.com/products/wlm/index.html
[15] IBM Application Workload Manager,

http://www.ibm.com/servers/eserver/xseries/systems_management/director_4/awm.html
[16] IBM Enterprise Workload Manager, http://www.ibm.com/developerworks/autonomic/ewlm/
[17] M.B. Jones, D. Rosu, and M.-C. Rosu, “CPU reservations and time constraints: Efficient, predictable

scheduling of independent activities,” 16th ACM Symposium on Operating Systems Principles, 1997.
[18] V. Kanodia and E. Knightly, “Multi-Class latency-bounded Web services,” 8th IEEE International

Workshop on Quality of Service, June, 2000.
[19] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: Performance isolation and differentiation for

storage systems,” 12th IEEE International Workshop on Quality of Service, 2004.

 16

[20] A. Kamra, V. Misra, and E.M. Nahum, “Yaksha: A self-tuning controller for managing the
performance of 3-tiered web sites,” IEEE International Workshop on Quality of Service, June, 2004.

[21] X. Liu, X. Zhu, S. Singhal, and M. Arlitt, “Adaptive entitlement control of resource partitions on
shared servers,” 9th International Symposium on Integrated Network Management, May, 2005.

[22] L. Ljung, System Identification: Theory for the User (2nd Edition), Prentice Hall, 1999.
[23] C. Lu, T.F. Abdelzaher, J. Stankovic, and S. Son, “A feedback control approach for guaranteeing

relative delays in Web servers,” IEEE Real-Time Technology and Applications Symposium, 2001.
[24] Y. Lu, C. Lu, T. Abdelzaher, and G. Tao, “An adaptive control framework for QoS guarantees and

its application to differentiated caching services,” IEEE International Workshop on Quality of Service,
May, 2002.

[25] Matlab System Identification Toolbox, http://www.mathworks.com/products/sysid/
[26] C.W. Mercer, S. Savage, and H. Tokuda, “Processor Capacity Reserves: Operating system support

for multimedia applications,” International Conference on Multimedia Computing and Systems, 1994.
[27] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource Kernels: A resource-centric approach

to real-time and multimedia systems,” ACM Conference on Multimedia Computing and Networking,
1998.

[28] D.C. Steere, et al., “A feedback-driven proportion allocator for real-rate scheduling,” 3rd USENIX
Symposium on Operating System Design and Implementation, 1999.

[29] SUN Solaris Resource Manager, http://www.sun.com/software/resourcemgr/index.html
[30] C. Waldspurger and W. Weihl, “Lottery Scheduling: Flexible proportional-share resource

management,” 1st USENIX Symposium on Operating System Design and Implementation, 1994.

