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Abstract. Two new algorithms, SPMFsimple and SPMFfast, for finding the complete chain of solutions of the 
selection model are presented in this paper.   A special kind of residual path, called a λ-directed simple residual path, 
is identified to be the only kind of residual path necessary for SPMFsimple.  By augmenting the right amount of flows 
along the λ-directed simple residual paths, the new algorithms are monotone convergent.    SPMFfast replaces the 
path-wise flow augmentation by flow-redistribution at each node, which provides a factor of ten speed-up for all the 
large datasets tested.   

 

1. Introduction 

In the selection problem, introduced by Balinski [1970] and Rhys [1970], a finite set of items 1
1{ }n

i iP p ==  and a 

finite collection 2
1{ | }n

j j jO o o P == ⊆  are given.  There is a cost cp associated with each item p∈ P, and a benefit 

Ro ≥ 0 conferred by each subset o ∈ O. The objective of the selection problem is to choose a group of items in P to 
maximize the net benefit of the selection. This problem can be stated mathematically as follows: let xp be an 
indicator variable, taking values in {0,1}, associated with the selection of item p. Let variable yo∈{0,1} indicate 
whether all items in subset o are selected. Then the following integer programming model defines an optimal 
selection: 
 

  max o o p po p
R y c x−∑ ∑  s.t.  o py x≤  for all p o∈  and , {0,1}p ox y ∈   (1.1) 

 
Rhys [1970] showed that since the constraints of this integer program are totally unimodular, every extreme 

point is integral, and thus its linear programming relaxation will produce integer solutions.  Thus, the selection 
problem can be stated more simply as a linear program: 
 

max o oo
R y∑ - ∑p pp xc   s.t. o py x≤  for all p∈ o and  0 ≤ xp, yo ≤ 1.   (1.2) 

 
The selection problem arises in many applications.  Rhys introduced the problem in the context of freight 

terminal selection, in which one must select freight terminals to construct from a given set of candidate terminals, 
each of which has a construction cost. The construction of a pairs of terminals allows freight service to be offered 
between them, and thus a benefit in the form of expected service revenue is associated with each pair.  The goal of 
the freight terminal selection problem is to choose a set of terminals to maximize the benefit minus the 
construction cost.  

In many applications, the cost of selecting an item p consists of a cost cp times a nonnegative weighting 
parameter λ. As the parameter λ varies, the relative importance of the revenue and cost components of the 
objective varies. The problem of finding a solution to the selection problem for all values of λ can be thought of 
as a parametric selection problem, stated as 
 
LR(λ):   max ∑∑ −

p ppo o xcR λ  s.t. o py x≤  for all p∈ o and 0 ≤ xp, yo ≤ 1.   (1.3) 



 
One application of the parametric selection problem is in database record segmentation, proposed by Eisner 

and Severance [1976]. In this problem, the items in P are data items to be stored in a large shared database. Users 
retrieve subsets o ∈ O of data items, and derive benefit if all items in a subset o reside in primary memory. The 
cost of storing item p in primary memory is λ times the size of item p, where λ is a tradeoff parameter between 
storage requirements and user benefit. The goal is to choose how to partition items among primary and secondary 
memory.  

Another application, due to Stone [1978], is in determining the critical load factor in two-processor systems. 
The items in this context are program modules, each of which must be assigned to one of two computer 
processors, A or B. A module has a different execution cost depending on the processor to which it is assigned. 
The subsets o ∈ O are pairs of program modules that need to communicate with each other, with communication 
costs if the two members of the pair are assigned to different processors. The parameter λ is the load factor, the 
fraction of time that processor A delivers useful cycles. The goal is to assign program modules to processors for 
each value of the load factor to minimize the execution costs and communication costs for each program module. 

Mamer and Smith [1982] proposed an application to optimal repair kit selection. Items are tools or parts, with 
associated annual cost of carrying the tool or part in inventory. The sets correspond to repair jobs; each set 
contains tools and/or parts required for a particular repair job. Each repair job has an expected annual penalty 
associated with being unable to perform the job. The problem is to select the tools and parts for a repair kit to 
minimize expected annual penalties plus the inventory cost of the parts. 

Determining how many more games our baseball team can lose partway through a season without being 
eliminated from finishing in first place can also be viewed as a parametric selection problem, as was shown by 
Gusfield and Martel [1992]. The items in this model are teams (other than our team), and the subsets are pairs of 
teams (not involving our team) that have remaining games to be played in the season. 

Zhang, Ward and Feng [2004 & 2005] applied the parametric selection problem to product portfolio selection. 
A company wants to select a portfolio of products to offer to maximize the total benefit (eg, revenue or profit 
margin) of historical orders “covered” by the portfolio, minus some penalty λ associated with the portfolio size. 
Thus, the items are products, and the subsets are orders. Varying λ affects the relative importance of order benefit 
coverage and portfolio size. 

A more detailed review of applications can be found in Hochbaum [2004]. 
In the remainder of the paper, we focus on the version of the selection problem in which the item costs cp =1 

for each item p ∈ P. The results apply to the more general case. 
 
 
1.2 Solving the Selection Model by Parametric Maximum Network Flows 
 
Balinski [1970] showed that a selection problem is equivalent to the problem of finding a minimum cut in a 
particular bipartite network, illustrated in Figure 1.   

The equivalence between the LR(λ) problem and the minimum cut problem is established by observing that 
min (1 )o o po p

R y xλ− +∑ ∑  is the same as  max o o p
o p

R y xλ−∑ ∑ .   It is a well-known result of Ford and 

Fulkerson [1956] that the value of a maximal flow equals the value of a minimum cut.   

A capacitated flow network { , , , }N E C Fλ λΩ = , where { , }V P O s t= ∪ ∪ , a source node s is at the far left and a 
sink node t at the far right (see Figure 1).  Adjacent to the source node is the set of p-nodes.  Adjacent to the sink 
node is the set of o-nodes.  The set of arcs { , | } { , | , } { , | }E s p p P p o p o o O o t o O= < > ∈ < > ∈ ∈ < > ∈∪ ∪ .  Let n1 = |P| 
and n2 = |O|, the cardinalities of P and O respectively, and m = |E|, the number of arcs.  The capacities on the arcs 
incident to s are all equal to λ.  The capacity of the arc from o to t is oR  for any o. The capacity of arcs between a  
p oP∈  and the o-node is +infinity.  ,v wf  is the flow from any node v to any other node w.   

A st-cut is a partition of the nodes into two subsets – the s-partition containing s and the t-partition containing 
t.  The capacity of a st-cut is the sum of the capacities of arcs going from the nodes in the s-partition to the nodes 



in t-partition. A minimum cut is a st-cut with minimum capacity.   

As we allow λ to vary, the problem LR(λ) becomes a parametric maximum flow problem.  There are several 
known algorithms for parametric maximum flow problems, including that of Gallo, Grigoriadis and Tarjan [1986] 
and slightly improved algorithms by Gusfield and Martel [1992], Gusfiled and Tardos [1994].  In most of these 
algorithms, a series of maximum flow problems is solved, and the algorithm makes use of the previous problem’s 
solution to speed up the solution at the next parameter value.  By comparison, the algorithm presented in the next 
section finds the maximum flow in the network for all breakpoints, at which the set of edges in the minimum cut 
changes, of the parameter values simultaneously.  The algorithm presented in this paper is much simpler and 
easier to implement in comparison to all prior parametric maximum flow algorithms. 

 

                            
Figure 1. A bipartite minimum-cut/maximum flow problem  
                corresponding to the Lagrangian relaxation LR(λ). 

 

2. SPMFsimple  -- A Parametric Bipartite Maximum Flow Algorithm 
A simple version SPMFsimple  of the simultaneous parametric maximum flow algorithm is presented in this section.  
A more general version of this algorithm that applies to more general capacities, both parametric and non-
parametric ones, can be found in Zhang at el [2004].   

SPMFsimple works with a derived non-parametric network instead of the original parametric network.  For the 
special case arising from selection models, the derivation is obtained by simply removing all the λ  dependent 
capacities on the arcs incident to the source by +infinity, which is the first step of the algorithm as shown in  
Figure 2.   

                
Figure 2.  The derived non-parametric network.   

 

The second step initializes the flows in the derived network.  The initial flows in the derived network are set 
to saturate all arcs incident to the target.  Since all other arcs not incident to the target have capacity of +infinity, 
this step is straightforward and does not require any special algorithm.  After initialization, the total flow through 
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the network remains fixed forever, which is always equal to the total flow to the target right after the initialization, 
or oo

R
≠∅∑ .  Different initializations may have an impact on the amount of time the algorithm will take but it 

will not have any impact on the correctness of the algorithm. 

The third step is the main body of the SPMFsimple algorithm.  It redistributes the flows through the arcs 
incident to the source in a regulated way which in the end will ultimately result in a special state of the flows F  
in the derived network, from which all minimum cuts and their associated maximum flows at all breakpoints of 
the parameter λ , in the original network, can be found from one linear scan of the vertices and the arcs in the 
derived network..   

In the derived network, we define  , .
ii s pfλ ≡   A residual path is called a λ-directed simple residual path if it 

consists a simple loop as s  pi  o  pj  s with , ,i ji s p j s pf fλ λ= < =  and , 0
jp of > .   

The rules for augmenting the flows are 

a) flows are augmented to only λ-directed simple residual paths, 

b) the amount of flow to augment to path is  

ˆmin{ ( ), ( ) / 2},j ic pathδ λ λ= −       (2.1) 

where ˆ( )c path  is the residual capacity of the path.   

We call such an operation a move.  The moves continue as long as there are λ-directed simple residual paths in the 
network.  From the rule b), it is clear that the order of the two λ-values involved in the residual path is never 
reversed after a move.    

A particular implementation of SPMFsimple algorithm: 

Step 1: Initialization: All p’s nodes are put into a Round-Robin queue, Queue, which is all active p’s.   

All arcs <o,t> are saturated. 

Step 2: get current_p from the head of the Queue, scan all s current_p o p s paths.  If a λ-directed 
simple residual path is found, make a move on the path; if inactive(p), set p active. 

Step 3: If no move happened in the scan in Step 2, set current_p inactive. 

Step 4:  If Queue is empty, stop, else goto Step 2. 

SPMFsimple  is proven to have monotonic convergence after each operation (Zhang at el. [2004] [2005]).  Round-
Robin queue of all p-nodes ensures that all λ-guided simple residue paths are visited. 
 
 
3. SPMFfast  -- Redistributing Flows on All Arcs Incident to Each o  
 
A much faster version of SPMF is presented in this section.  The idea is to redistribute the flows on all arcs 
incident to a node o in a single operation such that no λ-directed simple residual path going through o remains.   
 
SPMFfast is described in steps as follows: 
Step 1: initialize all flows to zero.  Set the status of all vertices o O∈ active.   
Step 2: Run CALC(o), to be defined next, on each active o in the Round-Robin fashion, if CALC(o)  return the 

message “nothing is changed” on a node o, set the status of o as “inactive”.  Step 2 is continued until no 
more active o’s left in the Round-Robin queue.   

Step 3: Applying CALC(o) on each  o to make sure that there is nothing left to be done (after an o  is deactivated, 
its status could be changed by later operations).  If CALC(o) does not return the message “nothing is 



changed” on any o, return it to the Round-Robin queue. 
Step 4:  If the Round-Robin queue is empty, DONE, otherwise go to Step 2.   
 
The subroutine CALC(o) is to find the state of flows on all the arcs incident to o so that no λ-directed simple 
residual path going through o remains after the redistribution. 
 
CALC(o): Assume that there are K  arcs incident to o  and 1,..., Kp p  are the K  p-nodes at the other end of these 
arcs as illustrated in Figure 4.    
 

                                                         
 

Figure 4.  The situation at one o-node. 
 
 
Let  
    , , , 1,...,

k kk s p p of f k Kµ = − =       (3.1) 
 
and from the flow balance condition at o, 
 

    , ,
1

k

K

o t p o
k

f f
=

= ∑         (3.2) 

 
the total flow arrive at o (zero when just start).   

First we sort the kµ ’s in increasing order; without loss of generality, assume that they are sorted: 
1 ...k Kµ µ µ≤ ≤ .  We assign the total flow ( )oR=  to the arcs so that no λ -directed simple residual paths is created.  

This is done by split the total flow ,o t of R=  as 
 

   
'

,

'

1
, '

k o

K

o p
k

R f K K
=

= <∑  and ' '
, 0,

kp of K k K= < <      (3.3) 

 
where '

,kp of  are the new flows to be assigned by CALC(o).  The new λ-values will be 
 

' '
1 ,

'

'( ) , 1

'( ) ,
kk s p

k k

p f k K

p K k K

λ µ

λ µ

= + ≤ ≤

= < ≤
       (3.4) 

 
To eliminate all the λ -directed simple residual paths in this sub-graph, we must have  
 
   ' '1 1

'( ) ... '( ) '( )... '( )KK K
p p p pλ λ λ λ

+
= = ≤ ≤ .     (3.5) 

 
The system of equations in (4.5) can be solved in time linear to K  and the flows are calculated from the new λ-

p1 

p2 

p3 

pK 

o ,o t of R=

c1 
c2 
c3 

cn 



values, 
 

 
'

'
, '

'( ) 1
0k

k k
p o

p k K
f

K k K
λ µ⎧ − ≤ ≤⎪= ⎨

< ≤⎪⎩
 .      (3.6) 

 
The cost of calling CALC(o) is O( K *log( K )) because of the sorting involved, where K is the degree of node o.   
 

Theorem 1: 2

1
( )

K

k
k

pλ
=
∑  is monotone decreasing under the operation of CALC(o).   

Proof:  Actually, after CALC(o), the new λ-values is the solution of 2

1
min ( )

K

k
k

pλ
=
∑ .  The minimization is over 

all possible choices of λ-values that do not violate the flow balance equation at vertex o.  The rest of the proof is 

done by direct verification of  2 '2

1

( ) ( ) 0
bK

k k
k

a aλ λ
=

⎡ ⎤− ≥⎣ ⎦∑ . 

 
 
4. Experimental Comparisons 
 
We compare the new SPMFfast algorithm with the SPMFsimple algorithm.  The characteristics of the data sets are 
shown in Table 1.  There are no multiarcs in the data sets.  All data sets are from real-world problems.  All 
timings are shown in seconds.  Data loading time is common to both algorithms and excluded from the 
comparison.  Timing started right before the initialization step of the algorithms.  The experiments are carried out 
on HP Workstation XP8000.  The best maximum flow implementation is by Cherkassky & Goldberg [1997], 
which calculates a single minimum cut at one particular λ-value.  We run their code on the same machine with 
timing excludes the data input reading time and output printing time.  Timing started just before the algorithm 
initialization and ended just before output printing. 
 

Table 1.  The major characteristics of the data sets. 

 
 

5. Conclusions 

Both SPMF algorithms were implemented in C++.  Their performances, as shown in Section 6, are very fast 
even with real data set with above one million arcs and above 100,000 nodes. However, without access to an 
implementation of the parametric maximum flow algorithm by Gallo at el, experimental comparison with their 
algorithm is still missing.   

Another advantage of SPMF algorithms is its simplicity which made its implementation very easy as shown 
in Section 7.   

SPMF has been generalized to more general network flow problems with general capacity constraints for both 
the constant and parametric constraints (which were first used in Gallo [1989], see Zhang [2004]).   
 

Data Set |P| |O| #arcs #Minimum 
Cuts Found 
by SPMFs 

SPMFsimple

(seconds) 
SPMFfast 
(seconds) 

Goldberg 
Maximum Flow 

(one min-cut) 
D1 263 39,106 416,481 189 10.7 0.67 0.313 
D2 232 53,565 572,134 155 8.9 0.94 0.47 
D3 344 123,933 1,280,298 222 18.9 1.88 0.844 
D4 439 286,604 3,111,773 298 118 9.1 2.60 
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