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Abstract. Artificial Immune Systems (AIS) have been shown to be useful, 
practical and realisable approaches to real-world problems. Most AIS 
implementations are based around a canonical algorithm such as clonotypic 
learning, which we may think of as individual, lifetime learning. Yet a species 
also learns. Gene libraries are often thought of as a biological mechanism for 
generating combinatorial diversity of antibodies. However, they also bias the 
antibody creation process, so that they can be viewed as a way of guiding the 
lifetime learning mechanisms. Over time, the gene libraries in a species will 
evolve to an appropriate bias for the expected environment (based on species 
memory). Thus gene libraries are a form of meta-learning which could be 
useful for AIS. Yet they are hardly ever used. In this paper we consider some of 
the possible benefits and implications of incorporating the evolution of gene 
libraries into AIS practice. We examine some of the issues that must be 
considered if the implementation is to be successful and beneficial.  

1 Introduction 

In any biologically inspired algorithm, one is obliged to make a number of 
concessions to simplicity. Indeed, one might argue that excessive biological realism is 
undesirable, since it will lead to building a system rather too specifically tailored to 
the biological environment. Nevertheless, the danger of oversimplification is that one 
may make a generic system, full of sweeping assumptions, that is not well suited for 
real world tasks [9]. In this paper we focus on two such broken assumptions. Firstly, 
random creation of antibodies. As any machine learning student knows, the naïve 
generate and test metaphor is the canonical algorithm, cheap yet unsystematic and 
often hopelessly inefficient. In the AIS world the approach may bring scalability 
problems [19]. The second broken assumption states that antigens are uniformly 
distributed in non-self space. We think this is unlikely to be representative of real 
world problems, and is certainly not true of the well-known UCI datasets [3]. 

In the biological system, of course, neither assumption holds. Firstly, antibodies 
are created from genes spliced from the so-called gene libraries; this ensures that 
antibody creation is far from random. Secondly, uniform coverage of non-self space is 
not only unnecessary, it is impractical; non-self space is too big! Thus, from a 
computational point of view, libraries introduce initialisation bias and provide a 
‘species memory’ to tackle the antigen mapping task.  
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What could this mean for AIS? Could gene libraries be used to intelligently seed 
our algorithm? In the paper we consider whether gene libraries might: 

1. improve non-self space coverage – through better placement of detectors 
(antibodies), over and above random creation; 

2. reduce the cost of detector generation by more effectively avoiding self; 
3. map the antigen population more accurately; and 
4. help deal with co-evolving antigens 

At a trivial level, the answer to all these questions is affirmative. Yet, of course, the 
computational cost of maintaining and evolving gene libraries may make the approach 
infeasible. In this paper, we outline a method for a principled evaluation of each 
feature. We include some preliminary results suggesting that option 2 is somewhat 
easier to achieve than option 1. Our work is intended to shed light on the sort of real 
world problems for which gene libraries should be considered.  

We start by reviewing the relevant biology. We then consider the criteria outlined 
above in more detail before presenting our preliminary results. The considerable body 
of related work is reviewed before we make our concluding remarks. 

2 Biological Metaphor 

In this section, we give sufficient biological background for the purposes of this 
paper. This is not intended to be an exhaustive review; the interested reader is directed 
to sources such as Kuby [11] or Travers [16]. 

In the human immune system (HIS), gene libraries are used to generate both T cell 
(T cell receptor; TCR) and B cell (antibody) diversity. Antibody molecules are 
composed of four immunoglobulin chains; two identical pairs of heavy and light 
chains. Each chain contains a variable region which determines its antigen specificity; 
the DNA encoding this region is constructed by sampling from so-called V, D and J 
gene libraries (see Table 1); usually one from each, although sometimes multiple D 
segments can be sampled [16]. This DNA mixing occurs during B cell maturation, 
during which further diversity is encouraged by junctional flexibility, P-additions and 
N-additions (insertion or deletion of base pairs between gene library segments). Of 
course, such variability inevitably means many such generated gene sections are 
unviable. There are two interesting mechanisms to counter this. Firstly, there are two 
‘flavours’ of light chain, κ and λ. If a viable κ gene segment cannot be built, then an 
attempt is made to build λ (thus typically κ is more prevalent than λ). Secondly, being 
diploid, B cells have 2 chromosomes for each immunoglobulin chain type. This 
allows two attempts to generate valid chain DNA (although a successful combination 
suppresses further attempts; this is allelic exclusion). Nevertheless, only about 10% of 
the pre-B cells in the bone marrow progress to maturity. Once a B cell is mature, 
however, it is immunologically committed1.  

The gene library mechanism appears at first to be wasteful: to make an 
immunoglobulin variable region of 223 amino acids we supply enough DNA to 

                                                           
1 In fact there is a further choice to be made, at transcription (DNA to mRNA) time, about which C region 

to choose. However this isotype switching mechanism does not affect the antigen specificity, so it is not 
considered here. 
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encode 11,975 amino acids. However this redundancy enables 2M combinations 
(which if stored linearly would require 2M × 223 = 446M). Combinatorial diversity is 
further enhanced by the join errors described above, and by somatic hypermutation, in 
which B cells activated by antigens are stimulated to divide with a mutation rate of 
about 0.001 per base pair per generation (this compares to a spontaneous mutation 
rate of about 10-8). To encode 223 amino acids needs 669 base pairs, so this mutation 
rate is expected to change one base pair almost every division. Estimates of total 
antibody diversity vary from 1010 [11] to 1014 [16], with somatic hypermutation 
pushing the number even higher to maybe 1016 [7]. The expressed diversity is, of 
course, likely to be somewhat lower because not all combinations are equally likely 
(in the mouse, some are actually disallowed). One assumes also that some variants are 
never expressed because they are autoreactive. Finally, it should be noted that only a 
subset (estimated 106-107) of these types are actually represented at any one time.  

TCR diversity is similar, although a larger number of J segments (61) leads to a 
much higher gene library diversity, 1018 [16]. TCRs also do not undergo somatic 
hypermutation (perhaps a protection against generating autoreactive T cells).  So for 
TCRs the diversity is more heavily germline encoded; conversely, some non-human 
species rely much more on somatic mechanisms. 

Library Gene length  
(amino acids encoded) 

Gene library size  
(number of gene segments) 

Total 

 Heavy Light Heavy Light κ Light λ  
V 94 97 51 40 31  
D 3 N/a 27 0 0  
J 16 13 6 5 4  

(amino acids) 113 110 4971 3945 3059 11,975 
(combinations)   8262 200 120 2,643,840 

Table 1. Human antibody diversity generation. These numbers are taken from a single 
individual and are not the same for all individuals. The first three rows show the size of each V, 
D and J gene, and the number of genes in each library. It is a simple matter to sum the gene 
lengths to arrive at the total number of amino acids in an immunoglobulin chain variable region 
(4th row, first 2 columns). Multiplying the library size and gene length shows the number of 
amino acids encoded in each gene library (e.g. 4971 = 51×94 + 27×3 + 6×16). Combining the 
gene library sizes (final row) shows the diversity generated from each library (e.g. 
8262=51×27×6). Finally, using both light chain alternatives in combination gives the expected 
total diversity (1982880 = (8262×200) + (8262×120)). Note that since 3 base pairs encode one 
amino acid, you should multiply by 3 to get the number of base pairs. Adapted from Kuby [11]. 

 However, even this extraordinary diversity may not be sufficient for all possible 
antigen encounters. In principle, since there are 20 amino acids, there are 20223 = 10390 
ways of expressing the variable regions of an antibody. This renders almost negligible 
the antibody diversity expressible by an individual, even if we multiply this by every 
human on the planet. Bakács et al [28] concur, and point out that antigenic variation is 
a hallmark of several RNA viruses, thus providing a fast moving target. Yet we seem 
able to mount an immune response to pretty much any foreign molecule, “even 
those…never having appeared before in evolutionary time” [7]. One simplification is 
that vast swathes of this antibody shape space will be identical, or topologically 
infeasible, or simply non-functional. So it would seem reasonable that gene libraries 
bias the antibody creation process towards creating viable immunoglobulin chains. 
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But we suspect that some antigen shapes are simply more likely than others, due to 
the energetics of protein folding. Perhaps gene libraries may help to focus the 
antibody creation process into the most promising areas of shape space, a possibility 
suggested by the fact that multiple antibody types bind a single antigen [7], and the 
finding that V region genes are clustered into related families and clans [16].   

Taking inspiration from this account, we can see that gene libraries, shaped by 
evolution, are used to guide the B cell creation process to create antibodies with a 
good chance of success, while preserving the ability to respond to novel threats. This 
has obvious parallels in AIS, in instances where random creation does not scale, or 
where memory enabled by lifetime learning mechanisms is not sufficiently persistent. 

3 What Are Gene Libraries For? 

3.1 Enhanced Coverage 

The most naïve way of looking at antibody creation is a way of covering a 
multidimensional area (antigen space). If one uses gene libraries to bias the creation 
process, then it is easy to see that evolution should encourage the emergence of 
diverse gene libraries, which perform some coarse grain mapping on antigen space. 
Indeed, Oprea and Forrest [21] found precisely this mechanism at work. Yet in the 
real world, such a mechanism is highly expensive. If all one wants to do is to cover a 
well understood antigen space (say, binary strings with Hamming distance matching), 
then an enforced distribution would be the simplest mechanism. There are well 
understood algorithms for dealing with other types of spaces, for example 
Wierzchon’s schema match [26] for r-contiguous matching. 

Of course, generally the task is to map antigen space while avoiding self. This is a 
more involved task, yet even here there are simple algorithms that might do a superior 
job to gene libraries, particularly when computational cost is taken into account. For 
example, de Haeseleer’s greedy algorithm [6] generates a number of non-self 
‘templates’ and uses these to create an antibody which binds to the most unmatched 
antigens. Singh [23] extended this algorithm to deal with non-binary alphabets. A 
somewhat simpler approach is Ayara’s NSMutation [2] which generates detectors 
randomly, mutating those that match self. Gonzalez [12] uses idiotypic suppression to 
maximise antibody diversity. Finally, Wierzchon’s schema matching algorithm [26] 
can be used to effectively generate self-avoiding, non-self-matching antibodies [25]. 

This, then, provides a convenient place to start our investigation into gene library 
function. We propose a comparative study on these algorithms in order to find what 
characteristics of a real world problem (if any) would suggest the use of gene libraries 
might be advantageous. It should be noted that complete coverage will almost 
certainly be impossible in presence of self [6]. An advantage of using a binary string 
representation with r-contiguous bits is that one can work out the theoretical optimum 
[26] and compare the coverage obtained by any one individual against it. 
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3.2 Avoiding Self 

As mentioned in the last section, simple coverage is probably not a sophisticated 
enough aim for gene libraries. The avoidance of self is a different slant on the same 
problem. In the HIS, this is essential to protect against autoimmune reactions. Whilst 
it is true that there is a negative selection mechanism operating in the HIS, it would 
clearly be beneficial for the creation process to have a bias against creating self 
reactive antibodies.  In the context of AIS, this amounts to making the creation 
process cheaper. In other words, the number of attempts to create a valid (i.e. not self-
reactive) antibody should be considerably less using gene libraries than a naïve 
random approach, which is exponential in the size of self [8]. Of course the benefit 
may still not justify the computational expense of using gene libraries. Also, 
alternative algorithms (see the last section) may be a rather cheaper way of attaining 
the same benefit. Thus, the cost of avoiding self is a plausible evaluation function 
which we can use as an additional comparison point.  

3.3 Mapping Antigens 

Antigens correlate to things we want to detect, or classify. In a sense, they are 
‘points of interest’ in the non-self space. If we accept that it is impossible (given the 
computational resources, i.e. number of antibodies available) to map all of non-self 
space, even in principle, then it clearly behoves the system to bias antibody creation 
towards these areas of interest.   

This, now, starts to move towards more realistic scenarios. Imagine, for example, a 
document classifier that identifies ‘interesting’ documents. Given a training set of 
interesting and uninteresting documents it will generate a set of detectors to identify, 
and generalise from, interesting documents. Such documents tend to form clusters in 
non-self space. A gene library would bias the creation process so that rather than 
fumbling blindly in non-self space, antibody creation would be guided towards the 
clusters of interest.  

A more subtle point is that gene libraries provide a long term memory. Say, for 
example, that a set of randomly created antibodies are subject to clonotypic learning, 
such that they cover the clusters in one particular training set but not all clusters ever 
seen. Gene libraries provide a way of remembering past encounters so that antibody 
creation is more likely to match novel clusters which are nevertheless similar to those 
seen some time ago. This motivation has guided several previous implementations of 
the gene library metaphor [14,20]. In a variant of this approach, gene libraries have 
been used as metaphor in an email filtering system [31]. Here words found in 
“interesting” emails were archived, then during the mutation stage of clonal selection, 
a word (gene) chosen to be mutated was replaced by one chosen from the archive, 
rather than subjected to random perturbation. 

Of course, evolving these gene libraries will take time, during which a great deal of 
random searching (or searching guided by a cheap heuristic) might have taken place. 
Whether the trade-off is worth it is a moot point, and will depend greatly on the 
problem characteristics. For example, there is a choice about whether to use self; if so, 
the task is transformed into a 3-class problem (self, non-self, don’t care).  Another 
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consideration is the evaluation function, for example: number of antigens successfully 
detected after X generations; number of antibodies created before all antigens 
detected; average cost before 1st antigen detected. Our work should provide some 
principled guidance for AIS practitioners. 

3.4 Winning the Evolutionary Arms Race 

A further consideration is that in the real world, antigens (i.e. whatever you want to 
map) are unlikely to stay still. Mapping dynamic antigens is a more complex problem, 
akin to non-stationary landscapes, for which problem generators [24] are available. 
The species-level memory afforded by gene libraries could prove to be a boon here, 
since they may evolve to track a moving target. This assumes that gene libraries can 
‘keep up’ with the rate of antigen change, of course; a point illustrated by Oprea and 
Forrest’s work [21]. 

A further complication is that antigens may be moving purposefully, to avoid 
detection by the immune system. For example, a sensible strategy for an antigen is to 
get close to self, ideally within a ‘cove’ or ‘hole’ [6]. Such possibilities can be 
explored using coevolutionary models, and this is a major focus of our ongoing 
research. Interestingly, Gathercole and Ross [10] use a predator-prey model for 
effective coverage, which links in nicely with our original scenario. 

What practical implications could such work have? In almost all real world 
problems the target is constantly moving (for example, the definition of: an 
‘interesting’ or ‘relevant’ document; an anomalous network event; a suspected 
fraudulent mortgage application, a spam email). Could gene libraries provide the basis 
for a more robust, adaptive and responsive system? 

4 Implementing Gene Libraries 

The preceding discussion describes the areas where we intend to focus our 
investigation. As a validation scenario, we repeated Forrest’s canonical experiments 
on self/non-self discrimination [8]. In this paper, the authors use a random generate 
and test algorithm to create a set of detectors covering non-self with some desired 
(low) probability of failure. They used a simple binary string universe with self, non-
self and an r-contiguous matching measure. For example, using a 32 bit string with 16 
self strings and r set to 8, 105 attempts were needed to create 46 detectors which 
between them covered about 90% of non-self space. 

It is worth commenting a little on this experimental setup. The r-contiguous 
matching function is often argued to be more biologically plausible than Hamming 
distance, although this view is strongly criticised by Timmis & Freitas [9]. In fact, 
Forrest et al., who pioneered the metric, call it “[an] arbitrary decision [made] in order 
to simplify the mathematical analysis”. As an example, they calculate the chance of 2 
random strings matching as roughly 0.05 using the parameters above.  

In an elegant paper, Wierzchon [26] extended this mathematical analysis to sets of 
detectors. In general, non-self space is likely to contain ‘holes’ that cannot be detected 
[6]; these are regions where matching detectors would also match self.  Wierzchon 
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showed how to calculate the number of holes for any given self set, giving a upper 
bound to the amount of non-self coverage possible. In a similar vein Esponda, Forrest 
and Helman  have analysed the trade-offs between postivie and negative selection for 
the r-chunks matching function [29], arguing that this is a prefrable matching 
function, and Stibor, Bayarou and Eckert have investigated the propoerties of this 
matching function as the underlying alphabet is extended beyond the binary case [30].   

The evaluation measure is also important. In fact, we would say it is key to 
understanding the system. The evaluation function in some sense defines the task. 
One measure is the ease of avoiding self, or equivalently the cost of generating a 
system. The detection rate, in contrast, measures the performance of the generated 
system. It can be calculated either for a fixed number of detectors (number of antigens 
matched divided by number of antibodies in system), or for a fixed number of 
attempts to generate a detector. 

Following Forrest then, we used a set of antigens (sampled from a fixed 
population). The antibodies are subject to negative selection, but in our case rather 
than employing random creation we create the antibodies from gene libraries. The 
overall algorithm is as follows, where TERMINATION_CRITERION occurs when 
NR non-self antibodies have been generated, or the full set of combinations has been 
tested, whichever is sooner. 
Create self 
Create non-self 
LOOP foreach generation 
   LOOP foreach individual (= gene library) 
      While (TERMINATION_CRITERION not met) 
      DO  
         Choose genes from gene libraries 
         Create antibody 
         IF match self THEN destroy 
      END WHILE 
      Evaluate fitness of individual  
   END LOOP 
   Do selection/recombination/mutation of individuals 
   Do replacement of individuals 
END LOOP 

4.1 Some Preliminary Results 

We conducted a series of experiments looking at the effort required (number of 
antibodies generated) to produce a set of NR (= 46) detectors, and the coverage they 
provide of the non-self region, as defined by its complementarity to a randomly 
created set of 128 “self” strings. The parameters are shown in table 2.  

Initially we considered random generation to verify that our system was equivalent 
to Forrest’s. For 1000 repetitions we generated strings at random until we had created 
a set of 1024 non-self strings (i.e., not matching the self region), noting the total 
number of strings created (NS_Attempts). We then generated antibodies at 
random, discarding those which matched self until we had NR detectors, again noting 
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the effort required (number of antibodies created, NR0). Finally we measured the 
coverage provided by the set of detectors, calculated as the percentage of the non-self 
set which were matched by at least one of the detectors.  These results are shown in 
Table 3. The coverage values obtained are higher than those Forrest noted, but their 
measure was slightly different – they changed one eight-bit block of one string from 
self and saw whether any of the detectors matched the mutated string. The values for 
NR0 are similar – they reported a mean of 34,915 with a standard deviation of 8513. 

 
Parameter Choice Comments 
Antigen representation Binary string 32 bits 
Antibody representation Binary string 32 bits 
Matching function r-contiguous  8 bits 
Antibody creation Try a maximum of LC times from gene 

library or until NR antibodies created 
LC =8000; NR =46 
No mutation at this stage. 

Fitness evaluation % antigens matched from f antigens 
sampled randomly from non-self space.  

f = 1024. Static; not changed 
between individuals or generations 

Self S randomly created strings.  s = 128. Static; not changed 
between individuals or generations 

Genotype 20V11, 20D10, 20J11 
LC = 20×20×20 = 8000 

20V11: V library has 20 genes each 
with 11 bits.  

GA parameters Mutation: 0.01 per bit 
Crossover: 0.1 one point  
Selection: Binary Tournament 
Replacement: generational, no elitism 
Population size: 128 
Learning: 500 generations 

Tournament selection Avoids many 
problems with fitness-proportionate 
selection 

Fitness of an individual See below  

Table 2. Parameters and choices for our experiments 

 
Measure Min Max Mean Std.Dev Skewness 
NS_Attempts 433,846 1,543,945 777,525.3 147027 0.718 
NR0 16,863 80,105 35135.37 8386.91 0.803 
Coverage 96.68 99.8 98.67 0.46 -0.61 

Table 3. Results of Random Antibody Generation. 

Next, we considered the effects of evolving gene libraries. During the evolution, 
each population member was evaluated as follows. First, a random permutation of the 
LC possible antibodies was generated. The antibodies were then created and tested for 
matches against self in this order, until either the number of detectors created (ND) 
equalled NR, or all possibilities had been exhausted (NR0 = LC). In addition to ND 
and  NR0, the efficiency and coverage were calculated and the mean per generation 
noted, defined as: 

( )
( )NRLC

NRLC
NR
ND

Efficiency
−
−

∗=
0

, %100
)(

)(
∗=

NonSelfall
NonSelfmatch

Coverage  

We considered three different fitness functions to be maximised: efficiency, 
coverage, and a equal linear combination of the two. Preliminary experiments used a 
simpler version of efficiency, which discarded individuals which could not produce 
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the full set of NR detectors. This proved to be highly ineffective since in the early 
generations many population members had ND < NR and so were assigned fitness 
0.0, removing any fitness gradients and preventing evolution.  For each fitness 
function we conducted 25 runs, each using a different set of self and non-self, but the 
same set of seeds were used across the fitness functions to avoid the possibility of one 
seeing “easy” or “hard” sets of self/ non-self strings.  

 
 

 
Fig. 1. Evolution of metrics under different fitness functions: Coverage (top left), Efficiency 
(top right), Number of detectors made: ND (Bottom left), Effort: NR0 (bottom right). Markers 
are for mean over 25 runs, with error bars showing 95% confidence interval for mean. 

Figure 1 shows the evolution of the metrics considered under the three different 
fitness functions. From this figure we can make the following observations: 

• Evolution solely under the influence of avoiding self (efficiency) produces 
results which are highly variable and are, on average poor. Closer examination 
shows that this is because around half of the runs cannot produce solutions 
providing many, let alone the full complement of, detectors. 
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• Evolution under the influence solely of coverage of non-self, reaches around 
70% coverage, but produces less detectors (ND ~40) and uses considerable effort 
to produce them (NR0 ~6000) 
• Evolution under the combined influence of efficiency and coverage quickly 
learns to produce NR detectors at low cost (NR0 < 3000), while reaching similar 
levels of coverage (maximum recorded 77.2%, mean over last 400 generations 
68.03% with std. deviation 3.06). Clearly in this case the GA is managing to evolve 
gene libraries which efficiently avoid self and cover the non-self regions. 
In each case evolution has nearly stopped by the 100th generation. Taking the 

results for the combined fitness function, and sampling every tenth of the last four 
hundred generations gives us 25 runs × 40 samples = 1000 samples to compare with 
the random results. Statistical analysis using a variety of non-parametric tests 
confirms that the coverage is worse than the random case (68% vs 98%), but that the 
effort required to avoid self is considerably (tenfold) lower.  

4.2 Evaluation and Extensions 

It would appear that the use of evolved gene libraries can produce significant 
improvements in terms of the efficient generation of antibodies which do not match 
self, but that the resultant coverage of the non-self regions is clearly not uniform. One 
possibility is that the gene libraries are in fact modelling self, or more accurately its 
inverse (in the r-contiguous matching sense). Another is that during the initial phase 
of evolution fitness gains are made by improving efficiency, but that diversity is lost, 
so that coverage does not improve as much.  These will be tested in future work by 
incorporating explicit diversity preservation measures into the genetic algorithm. 

To investigate whether gene libraries could produce reasonable coverage, we 
simplified the gene libraries so that there was only one library (46V32). We were now 
able to obtain the 90% coverage reported by Forrest et al. In addition, if we allow the 
AIS a fixed number of attempts (NR0 =105) to generate as many detectors as it can, 
then the performance goes to about 95% with about 60 detectors. This, of course, 
amounts to using a GA to search for a set of optimal antibodies, which is rather less 
ambitious than a search for a set of optimal gene libraries. What is rather interesting is 
that similar results were obtained even without using any self. This adds weight to our 
supposition that the block for gene libraries is the capability of covering a large space 
with a small number of detectors, rather than the problem of avoiding self. 

It is worth emphasising that improved results could probably be obtained by using 
a more sophisticated GA, or one with a larger population. We could also combine the 
fitness measures together using a Pareto-based approach [1]. Our parameter choices 
were domain led - we chose to use one-point crossover because of its positional bias: 
it is more likely to keep together adjacent genes than, for example, uniform crossover. 
The gene library fragments are coded as contiguous segments. 

One problem of fitness evaluation is that there are a large number of potential 
antibodies to be evaluated before we get a good idea of the ‘worth’ of a gene library. 
Other authors have faced the same problem, and either limited evolutionary learning 
to a partial fitness measure [15] or resorted to less computationally expensive 
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algorithms, such as hill climbing [21]. Also, the ‘meaning’ of a gene in a library 
depends on which genes it is combined with (a form of epistasis).  

An important consideration here is the use of gene libraries for coding efficiency. 
As discussed above, the HIS encodes 2M combinations of 223 amino acids using 
12000 amino acid coding units2, a compression rate of 223×2M:12K = 37K:1. Our 
naïve gene libraries managed to encode 8000 combinations of 32 bits using 640 bits, a 
compression ratio of only 400:1. Clearly, there is trade-off between encoding 
efficiency (the most efficient being a random generator) and preservation of species 
memory (the extreme being 1 gene per antibody, as per our 46V32 encoding). 

We made several simplifications to the biology, some of which are straightforward 
to explain. For example, no lifetime learning mechanism is included here; we are 
simply testing for the initial coverage. Further work is likely to involve a mechanism 
for clonotypic learning; this would be a good way to introduce a Baldwin effect which 
may well be essential to leverage gene library diversity and hence achieve better 
coverage [21]. Another example is the encoding, which was binary, rather than, say, 
20 letters (for amino acids) or 4 letters (for DNA bases). The motivation here is to 
evaluate gene libraries in established, analytically tractable, scenarios.  

Other possibilities suggest interesting areas to explore. For example, we used a 
static definition of self, using random selection of 128 binary strings. Different sizes 
of self may influence the results, as might the distribution of self (should it be 
clustered?). Self might also be dynamic, though in a principled way. Perhaps inter-
individual variation could be captured using Gaussian perturbation, while species drift 
could be modelled by including self in an individual’s genotype. The antigens used 
here consisted of 1024 randomly created strings (screened against self): an enforced 
uniform selection might be a more principled way to check coverage. Another 
possibility is to use a static, perhaps clustered definition of antigen, which could be 
generated from its own set of gene libraries or antigen schema. Such possibilities of 
course take us into the more complex scenarios introduced earlier. 

5 Related Work 

We make no claim to be the first researchers to look at gene libraries. That claim, 
at least for AIS, perhaps belongs to Stephanie Forrest’s group at the University of 
New Mexico. Perelson et al [22] showed that gene libraries can enhance coverage. 
They constructed antibodies by taking segments from 4 gene libraries. Fitness was 
evaluated by calculating the coverage of a varying size antigen universe. 
Unsurprisingly, the fitness asymptotically approached random levels as the antigen 
universe size increased, but approached perfection as the number of antigens 
decreased. Their work differs from that presented here in that the matching function 
used was Hamming, and (more significantly) there was no ‘self’ to avoid.  
Interestingly, they experimented with both straight Hamming scores (fitness of an 
antibody is its closeness of match with an antigen) and thresholds (fitness of an 
individual is the number of antigens to which at least one antibody binds sufficiently). 

                                                           
2 Recall an amino acid coding unit is 3 base pairs of DNA 
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They also show that a modest degree of somatic (clonotypic) learning may provide a 
Baldwinian acceleration.  

Extending this work, Hightower et al [15] investigated the evolution of effective 
coverage. They showed that the ‘best’ coverage was achieved by a high Hamming  
distance (spread out antibodies) – but not too high. A maximal separation actually 
allows gaps in coverage (analogous to gaps between disjoint spheres). Oprea & 
Forrest [21] showed that as the pathogen set size decreases, the structure of the gene 
library changes, moving from a ‘coarse mapping’ of antigen space towards a more 
focused targeting of pathogenic clusters. They also show that since gene library size 
increases coverage only logarithmically, it must be augmented with somatic learning.  

Forrest et al [7] do not use explicit gene libraries, but they do consider bias in the 
antibody creation process, which they evolve to map an antigen population. 
Interestingly, this process requires a minimal number of antibody types to bind to a 
particular antigen.  

Other groups have also studied gene libraries. Hart & Ross [13] used a genetic 
algorithm (GA) to evolve libraries for a scheduling immune system. Essentially, the 
gene libraries preserved useful fragments of antibody (building blocks) that could 
successfully be reused. The same authors [14] develop this notion by suggesting that 
the germline (gene library) could be ‘seeded’ with antibodies during learning. Coello 
Coello et al employ a similar approach [27]. We would suggest that such an approach 
is akin to having species level memory cells. Kim & Bentley [17] mention the notion 
of gene libraries as a way of encoding ‘some knowledge of antigens’. In their 
companion paper [18] they model gene libraries as a single population of successful 
genes which are combined to form detectors. Thus the gene library evolves in parallel 
with AIS itself. More recently, these authors [20] have used deleted memory detectors 
as ‘gene library’ – i.e. long term memory. Kim and Bentley point out that “the fact 
they managed to become memory detectors at all implies that they hold valid 
information about non-self antigens in previous clusters”. 

In much of this work [13,14,17,18,20] the gene library metaphor is used as an 
engineering artefact rather than in the more biologically faithful way that we 
investigate here. Conversely, the theoretical work [7,15,21,22] is distanced from 
existing AIS applications (e.g. by absence of self). The current work attempts to build 
a bridge between the established theoretical foundations and current AIS engineering 
practice. 

6 Conclusion and Future Directions 

In this paper, we have shown that gene libraries are an interesting, and perhaps 
useful, tool in the AIS practitioner’s repertoire. We have outlined some areas where 
gene libraries might help and shown how to evaluate gene libraries in each area. Our 
preliminary results suggest that gene libraries may not be well suited to simply 
enhancing coverage, and may be better employed for improving the average quality of 
created antibodies (here exemplified by the task of avoiding self). These results need 
to be extended and analysed, and we have proposed a plan for testing the gene library 
metaphor in progressively more complex scenarios.   
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