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Abstract

Resource pools are computing environments that offer virtualized access to shared resources. When used
effectively they can align the use of capacity with business needs (flexibility), lower infrastructure costs (via
resource sharing), and lower operating costs (via automation). This paper describes the Quartermaster capacity
manager service for managing such pools. It implements a trace-based technique that models workload (e.g.,
application) resource demands, their corresponding resource allocations, and resource access quality of service.
The primary advantages of the technique are its accuracy, generality, support for resource access qualities of
service, and optimizing search method. We pose general capacity management questions for resource pools and
explain how the capacity manager helps to address them in an automated manner. A case study demonstrates
and validates the method on empirical data from an enterprise application. We show that the technique
exploits much of the resource savings to be achieved from resource sharing and is significantly more accurate at
estimating per-server required capacity than a benchmark method used in practice to manage a resource pool.
Finally, we explain how the problems relate to other practices regarding enterprise capacity management and
software performance engineering.

1 Introduction

The Quartermaster (QM) capacity manager is a management service for resource pools that support enterprise
applications. It automatically searches for workload assignments that best meet objectives such as consolida-
tion, load leveling, and problem solving. Consolidation packs workloads onto a small set of resources, load
leveling distributes workloads across a fixed size resource pool to lessen the likelihood of service level viola-
tions, and problem solving recommends alternative assignments to lessen the impact of unexpected demands
on a particular resource. The service evaluates alternative workload assignments more quickly and accurately
than human operators. As a result it can lower administrative costs, reduce the risks associated with resource
sharing, and improve the use of resource pool infrastructure.

Resource pools are collections of resources, such as clusters of servers or racks of blades, that offer shared
access to computing capacity. Virtualization services offer interfaces that support the lifecycle management
(e.g., create, destroy, move, size capacity) of resource containers (e.g., virtual machines, virtual disks) that
provide access to shares of capacity. Application workloads are assigned to the containers which are then
associated with resources. A resource pool and its resources have capacity attributes, e.g., CPU, memory, I/O
operation rates, and bandwidths, each with limited capacity.

Figure 1 provides some motivation for resource pools and the potential sharing they offer. It illustrates the
average CPU utilization of servers at an enterprise computing site. Each bar gives the average CPU utilization
of a server. The figure shows that many servers have low CPU utilizations. The site is typical of many enterprise
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Figure 1: Average CPU Utilization of Servers at an Enterprise Data Center.

data centers. There is an opportunity to consolidate many workloads on a smaller number of servers. The
figure also shows that some servers are over utilized. Ideally, it would be possible to make more resources
available to workloads if they need them.

We consider the problem of hosting enterprise applications in such resource pools. These applications often
operate continuously, have unique time varying demands, can share individual resources such as a CPU or may
require many resources, and may have different service level expectations. These complexities make it difficult
and time consuming for human operators to make effective use of such pools.

When managing resource pools there are numerous capacity management questions that must be answered to
ensure that the resources are used effectively. For example: how much capacity is needed to support the current
workloads? Which workloads should be assigned to each resource? What is the performance impact of workload
scheduler and/or policy settings that govern sharing? How should workloads be assigned to make workload
scheduler and/or policy settings most effective? What should be done when a resource doesn’t have sufficient
capacity to meet its workloads’ needs? How many resources will be needed over a planning horizon? The
QM capacity manager can be used to automate analysis steps that address these questions. We demonstrate
the effectiveness of the method using a case study. The technique proves to be significantly more accurate at
anticipating capacity requirements than a method, the benchmark method, used in practice.

The following sections describe related work, the QM capacity manager technique, our approach towards
addressing the above questions, and a case study. We close with a summary of our work.

2 Related Work

Historically, enterprise capacity management groups have relied upon curve fitting and queueing models to
anticipate capacity requirements for shared resources such as mainframes or large servers. Curve fitting and
business level demand forecasting methods are used to extrapolate measurements of application demands on
each resource. Queueing models may be used to relate desired mean response times for general workload
classes (e.g., batch or interactive, payroll, accounts receivable) to targets for maximum resource utilizations.
Unfortunately, such planning exercises are a people intensive and hence expensive process. Most organizations
only conduct these exercises when the costs can be justified. Furthermore, today’s enterprise data centers can
have hundreds of large shared servers and thousands of lightly utilized smaller server resources. To reduce
management costs, enterprises are evolving their data center architectures to exploit resource pools. Resource
pool automation and virtualization capabilities promise lower costs of ownership for similar quantities of ca-
pacity. However, methods are needed that systematically address the capacity management questions for such
environments.
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We employ a trace-based approach to model the sharing of resource capacity for resource pools. The general idea
behind trace-based methods is that traces capture past demands and that future demands will be similar. Many
groups have applied trace-based methods for detailed performance evaluation of processor architectures [1].
They can also be used to support capacity management on more coarse data, e.g., resource usage as recorded
every five minutes. Our early work on data center efficiency relied on traces of workload demands to predict
opportunities for resource sharing in enterprise data centers [2]. We conducted a consolidation analysis that
packed existing server workloads onto a smaller number of servers using an Integer Linear Programming based
bin-packing method. Unfortunately the bin-packing method is NP-complete for this problem, and as a result
is a computationally intensive task. This makes the method impractical as a method for on-going capacity
management.

Traces have been used to support what-if analysis that consider the assignment of workloads to consolidated
servers. AOG [3] and TeamQuest [4] now offer products that employ trace-based methods to support consolida-
tion exercises. Our methods are similar, but go further by addressing issues including resource access Quality
of Service (QoS) [5] and fast optimizing searches in support of on-going automated management [6]. The work
described in this paper integrates the concepts of QoS and fast optimization heuristics and demonstrates the
resulting service in a case study. Qualities of service are realized by associating workloads with resource access
classes of service that have specific service level objectives.

Others have used traced-based methods to support the creation of performance models for software performance
engineering exercises [7]. Clearly traces can be exploited at many levels of abstraction. We suggest that
they are an excellent mechanism to bridge the divide between software performance engineering and capacity
management.

The approach we consider is targeted towards enterprise application environments. In these environments
workloads are often repetitive and predictable. Those responsible for the applications are typically risk averse.
The approach we employ aims to reduce risk. We believe that the approach is more appropriate than pure
priority and market based mechanisms for resource allocation that do not offer any assurances regarding
qualities of service [10][11]. However, at this time our belief remains a subject of debate.

3 QM Capacity Manager Service

We have developed the Quartermaster Capacity Manager Service to address the capacity management ques-
tions. The service is part of the Quartermaster resource utility [8]. The tool has several inputs that are
described below. These include traces of application workload demands on capacity attributes, an association
of the demands with classes of service, resource access Class of Service (CoS) constraints for each class of
service [2], constraints on application assignments (e.g., which applications may or may not be assigned to the
same resource), and a specification (limits) for the capacity attributes of resources in the resource pool. The
service implements several kinds of analysis including the simulation of a workload assignment (e.g., what-if)
and an optimizing search to find an assignment of applications to resources that best satisfies an objective (e.g.,
consolidation, load leveling, problem solving) subject to the constraints. We now describe each of these inputs
in greater detail. This is followed by a description of the components that implement the service.

Consolidation refers to an objective of minimizing the number of resources, e.g., computer servers, needed to
support the workloads. Load leveling balances workloads across a resource pool of known size to reduce the
likelihood of service level violations. Problem solving focuses on a single resource. It reports on the impact
of moving one or more workloads from a resource, that may not be satisfying its service level objectives, to
other resources and recommends which workloads to migrate. Combinations of these functions can be used to
address the capacity management questions of Section 1. This paper focuses on the consolidation objective.

Each workload has demands upon capacity attributes such as CPU, memory, network and storage usage.
Workload traces are gathered by existing monitoring systems such as HP’s OpenView Performance Agent or
the Windows Performance Monitor to record these demands. Such traces are gathered as a matter of best
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practice in professionally managed enterprise environments to support capacity management exercises. Often
they are gathered on a per-server basis, and sometimes on a per-application workload basis. If they are only
gathered on a per-server basis we treat the aggregate load on the server as a single workload in our analysis.

Figure 2: Simulation Algorithm

Each resource access CoS constraint includes a probability, θ, and a deadline, s. θ is the probability that
a workload associated with the CoS receives a unit of capacity when requested. Those requests for units of
capacity that are not received on demand are deferred. Deferred units of capacity must be made available
to the workload within the deadline s. If either part of the constraint is unsatisfied then there is a service
level violation. The demands in traces are used to compute the empirical value for θ for the traces and/or the
minimum capacity required to ensure that a CoS constraint is satisfied. Multiple CoS are supported so that
workloads with different needs can be accommodated. We refer to the minimum capacity needed to satisfy all
resource access CoS constraints jointly as the required capacity. We define resource access CoS further in the
next section.

Application placement constraints can also be important. For example, some workloads must be hosted on
separate resources for the purpose of availability. Some workloads must be associated with specific resources
because of licensing constraints. The capacity manager supports these kinds of placement constraints.

The capacity manager has two components. A simulator component emulates the assignment of several appli-
cations to a single resource. It traverses the traces of observed demands to estimate a required capacity that
satisfies the resource access QoS constraints. The required capacity can be compared with resource capacity
limits to support what-if analysis. An optimizing search algorithm examines many alternative assignments
and reports the best solution found for an objective such that the placement constraints are satisfied. These
components are described in the following sections.
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3.1 Simulator and resource access CoS constraints

Figure 2 illustrates the simulator algorithm. The simulator considers the assignment of a set of workloads to
a single resource. It replays the workload traces, compares the aggregate demand of the observations in the
traces with the capacity of the resource, and computes resource access CoS statistics. If the computed values
satisfy the CoS constraints then the workloads are said to fit on the resource. A search method, e.g., a binary
search, is used to find the required capacity, i.e., smallest value, for each capacity attribute such that the CoS
constraints are satisfied. Next, we consider the computation of the CoS statistic θ in detail.

A formal definition for a resource access probability θ is as follows. Let A be the number of workload traces
under consideration. Each trace has W weeks of observations with T observations per day as measured every
m minutes. Without loss of generality, we use the notion of a week as a timescale for service level agreements.
Time of day captures the diurnal nature of interactive enterprise workloads (e.g., those used directly by end
users). Other time scales and patterns can also be used. Each of the T times of day, e.g., 8:00am to 8:05am, is
referred to as a slot. For 5 minute measurement intervals we have T = 288 slots per day. We denote each slot
using an index 1 ≤ t ≤ T . Each day x of the seven days of the week has an observation for each slot t. Each
observation has a measured value for each of the capacity attributes considered in the analysis.

To define resource access CoS more formally, consider one CoS and one attribute that has a capacity limit of
L units of demand. Let Dw,x,t be the sum of the demands upon the attribute by the A workloads for week w,
day x and slot t. We define the measured value for θ as follows.

θ =
W

min
w=1

T
min
t=1

∑7
x=1 min(Dw,x,t , L)

∑7
x=1 Dw,x,t

Thus, θ is reported as the minimum resource access probability received any week for any of the T slots per
day. Furthermore, let L′ be the required capacity for an attribute to support a CoS constraint. A required
capacity L′ is the smallest capacity value, L′ ≤ L, to offer a probability θ′ such that θ′ ≥ θ and those demands
that are not satisfied upon request, Dw,x,t − L′ > 0, are satisfied within a deadline. We express the deadline
as an integer number of slots s.

As an example, suppose we replay the A workload traces with respect to a server with L′ CPUs that has a
scheduler that allocates/re-allocates CPUs to workloads each slot based on the current use of capacity. All the
workloads are associated with a CoS with resource access probability θ. The CoS offers CPUs to its workloads
with probability no worse than θ during each slot as evaluated on a weekly basis. To give an intuitive feel
for the impact of the resource access probability, an aggregate workload that requires a CPU week (10,080
minutes) worth of CPU time and receives a resource access probability of 0.999 receives all but 10 minutes
of CPU time when requested. A resource access probability of 0.99 implies that all but 100 CPU minutes
are received when requested. Suppose that one of the A workloads, that we name unlucky, has a demand of
100 CPU minutes while the remaining workloads we consider have a total demand of 9,980 minutes. In the
degenerate case, all of unlucky’s demands may get deferred while the other workloads may receive all of their
demands when requested. If this is a likely yet unacceptable scenario then the workload should be placed in
its own CoS.

Note that system CPU schedulers often re-allocate shares of resources on the time scale of sub-seconds to 15
seconds for more transparent processor sharing. We rely on system schedulers to ensure that workloads do not
starve, e.g., become unlucky, during the many scheduling cycles that contribute to an observation. Also, the
measurements provided by monitoring tools are typically an average value over the entire interval. As a result
the θ value applies to the m minute slot time scale as evaluated on a weekly basis.

Next, we contrast the use of required capacity L′ with the use of a utilization metric alone for workload
placement. In our earlier work [2], we limited the assignment of workloads to servers by constraining the
maximum aggregate utilization of the target servers. For example, we assigned workloads subject to the
constraint that the maximum aggregate CPU utilization never exceeds a limit u, e.g., u = 80%. We show
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Figure 3: Cumulative Distribution Function for percentiles of CPU Utilization for 1459 Servers

that resource access probability with a deadline provides a more practically useful constraint than utilization
constraints alone.

Figure 3 gives a cumulative distribution function (CDF) for the percentiles of CPU utilization for 1459 enterprise
servers from three data centers over a one month period in 2001. For each server, a CPU utilization measure
is recorded every five minutes for the month giving 8,640 measurements. For each server, we sort these
measurements in increasing order. We present a CDF for the percentiles of these utilization values for the
servers. We present results that correspond to the 100th, 99.9th and 99th percentiles of the sorted values. The
illustration is with respect to buckets that show the percentage of servers that have a CPU utilization u in the
range 0% ≤ u < 10%, 10% ≤ u < 20%, up to 90% ≤ u < 100%, and u = 100% where u is the CPU utilization
for the given percentile. The 100th percentile curve, as read from the 70% CPU utilization value on the x axis,
shows that 45% of servers each have a maximum utilization that is greater than or equal to 0% and less than
80%. It follows that 55% of servers each have one or more CPU utilization measurements greater than or equal
to 80%. The 99.9th percentile curve indicates that approximately 42% of servers each have 8 or more 5-minute
observations with a CPU utilization greater than or equal to 80%. The 99th percentile curve reveals that 23%
of servers each have 100 or more CPU utilization measurement values that are greater than or equal to 80%.

The figure shows that a constraint that limits target server utilization to 80% causes us to omit approximately
two thirds of the servers from workload placement exercises. Nearly one quarter of the servers each have one
hundred or more utilization values greater than or equal to 80% over the month. Simple utilization constraints
may omit too many workloads from a consolidation analysis. This problem is particularly acute when the
workloads are being assigned to target servers that have similar capacity. This is the typical case for the
on-going management of a resource pool. We use resource access probability and the deadline to capture the
notion that a quantified amount of demand may be deferred for a limited amount of time.

Workloads can exploit the CoS parameters in the following way. An interactive workload may require a very
high probability and may not benefit much from the notion of a deadline. Degraded access to resources will
likely result in higher application response times rather than any deferral of work. A batch workload may be
more flexible regarding when it receives its resources. It could have a lower resource access probability, e.g.,
θ = 0.5 which gives a window of time that is approximately double the demand to complete the work, but
could rely on the deadline to ensure its demands are not deferred by too much.

When multiple CoS are involved, the simulation component schedules access to capacity in the following
way. Capacity is assigned to the highest priority, e.g., greatest θ value, CoS first. If a CoS does not have a
probability of 1.0, then it is only offered its specified probability of access with remaining demands deferred to
future intervals. The remaining capacity is assigned to the next lower CoS. This repeats for other lower classes
of service.
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The required capacity of each attribute is found as follows. If the current capacity satisfies the CoS constraints
then the algorithm reduces the capacity value for the attribute. If the current capacity does not satisfy the
constraints, the algorithm increases the value for capacity up to the capacity limit L of the attribute. The
algorithm completes when it is found that the constraints cannot be satisfied or when the value for capacity
changes by less than some tolerance. Currently we use a binary search, but other search mechanisms could also
be used. Upon termination, the algorithm reports whether the constraints are satisfied (for each attribute). If
so, the resulting value for capacity is reported as the required capacity (for each capacity attribute).

3.2 Optimizing search

Figure 4 illustrates the optimizing search algorithm. An objective, constraints, workload traces, and an initial
assignment of workloads to resources are the inputs of the algorithm. The behavior of each resource is simu-
lated using the method described in Section 3.1. The results of the simulations are then used to compute a
score for the objective’s corresponding objective function. If there is little improvement in the score then the
algorithm reports a configuration that achieved the best score and terminates. Otherwise a new configuration
is enumerated using a genetic algorithm [6] and the simulation process is repeated.

Figure 4: Optimizing Search

We have two methods for setting the initial configuration for the system. The first method takes the current
configuration of a system. It is most appropriate in support of what-if analysis and where solutions are required
that have only small numbers of changes to the environment.

The second approach applies a greedy algorithm to choose the initial placement. The greedy approach is
a clustering algorithm that starts with each workload in its own cluster. The algorithm then simulates the
merging of pairs of clusters to determine the amount of sharing between workloads in the clusters. A sharing
distance ∆i,j between a pair of clusters i and j is defined as the difference between the required capacity of
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the merged cluster Li,j and the sum of the two required capacities Li and Lj of the original clusters. It is
computed as follows.

∆i,j =
Li,j

Li + Lj

The lower the sharing distance the greater the sharing of resources between workloads in the clusters. For each
iteration, we merge the pair of clusters with the lowest sharing distance, such that placement and resource
access CoS constraints are satisfied. A weighting value is specified to factor the importance of each capacity
attribute in this equation. The more important it is to share a resource, e.g., CPU or memory, the greater its
weight. The greedy algorithm is most appropriate when consolidating to a new resource pool or when many
changes are permitted, e.g., as supported by virtualization mechanisms that enable the migration of a workload
from one resource to another with minimal disruption to the service that it provides and minimal human effort.

The consolidation objective causes a search for a workload assignment that satisfies constraints and uses a
small number of servers. The number of servers of an intermediate solution is used as its score. The solver
reports a solution that had the lowest score. The solution gives the assignment of each workload to each server
and the required capacity of each server. Other objectives (e.g., load leveling) have different expressions for
assigning scores. They are also implemented within the same framework.

3.3 Assumptions and Validation Method

This section considers several assumptions of the trace based approach. The technique assumes that the traces
are of sufficient duration to capture the correlations between workload demands, and that each workload’s
demand trace is representative of its future demands. These assumptions support our use of the capacity man-
ager for forward looking management. With regard to specific resource pools, we assume that the simulator’s
approach for scheduling access to resources is compatible with the scheduling mechanism in the resource pool.
Last, we assume that the workloads operate in an additive manner, i.e., when the workloads are reassigned to
different resources we assume that their demands will not change significantly. We now discuss each of these
assumptions in more detail.

The capacity manager considers the sensitivity of required capacity to correlations in workload demands by
implementing a technique that exaggerates correlations. The trace data we exploit typically has an observation
for each workload for five minute slots. We can also perform the analysis at more coarse time scales that
exaggerate correlations. For example, we may perform the analysis with 1 hour slots where the demands for
each slot are the peak capacity attribute values of the 12 corresponding 5 minute observations. As a result,
the aggregate demand is greater than or equal to per-5 minute aggregate demand values for the same hour.
This allows for the possibility that future per-workload demands will be similar but may shift slightly in time
causing greater peaks. The approach leads to more pessimistic results. We rely on a validation method to help
decide what slot duration is most appropriate for studying a particular system’s behavior.

We envision the capacity manager being used in an on-going capacity management scenario where recently
gathered data is used to prepare a capacity plan for the near future. The capacity management plan may
call for the re-assignment of some workloads to make better use of the resource pool. We assume this process
is repeated periodically, e.g., weekly, bi-weekly or monthly. This scenario also corresponds to the validation
method we present in the case study.

The validation method is as follows. Given a large amount of workload data, e.g., several months, the analysis
is applied to contiguous subsets of the data. For each subset, a part is used as training data to report a solution.
This solution gives an assignment of workloads to servers and the predicted required capacity for each server.
Then the remaining part of the subset of data is used to validate how that solution would have behaved in
practice. It gives the actual required capacity for each server for the remaining data. This is sometimes referred
to as a walk-forward test in the literature. We define per-server error as the predicted required capacity minus
the actual required capacity. A characterization of errors over time gives a measure of confidence for the results
of the capacity manager for a particular set of workloads.
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As a simulation-based approach, the resource scheduler of the simulation component can model any scheduling
mechanism that operates on data offered in the workload traces. For example, it is compatible with the HP-UX
Process Resource Manager (PRM) scheduler [9] when the QM capacity manager’s highest priority CoS is given
a resource access probability of one.

We note as well that demands in traces are typically averages. The PRM scheduler supports a goal mode to
ensure application level QoS for interactive workloads at the sub-five minute timescale. It has the same role for
this capacity management approach as the queueing analysis step described in the related work section. The
basic idea is that the scheduler allocates sufficient resources to maintain a particular target utilization level
within an allocation. For example, if the target utilization, g, of an allocation is 50% and a workload has a
demand of one CPU then the scheduler allocates two CPUs. The QM capacity manager models the goal mode
by scaling each CPU demand in a trace, d, using the the target utilization goal, g, to an allocation value d

g . The
allocation values are used when computing required capacity. This ensures sufficient resources are available for
interactive workloads.

We have not yet addressed the additive assumption in our work. This is in part a function of the virtualization
mechanisms that are used to enable sharing, and in part affected by the detailed interactions of application
demands below the sub-five minute boundary. We regard this as future work.

4 Case Study

To assess the accuracy and benefits of our method we obtained demand traces from an enterprise application
environment. The environment is a large order processing system. It has application components that tend to
require resources at the same time. We chose this application because it allows us to explore the benefits of
resource sharing for applications that have highly correlated demands. We demonstrate the effectiveness of the
QM capacity manager for the environment.

The data set spans 32 weeks, collected between October 2003 and June 2004. It includes traces that describe 26
application servers each with either 6 or 8 CPUs. We conduct our study with respect to a particular reference
processor speed. The applications are hosted on the equivalent of approximately 138 of these reference CPUs.

The order processing system includes interactive and batch workloads. We use a target CPU utilization of
g = 50% for the interactive workloads. This results in an allocation that is double the observed demand. The
purpose is to keep the interactive response times low. The batch workloads have a target CPU utilization of
100%. Thus for batch, the allocations are the same as the observed demands. The original system requires 207
CPUs when its demands are scaled in this way.

There are both production and non-production (e.g., test and development) workloads in our data set. The
production workloads are placed in the highest CoS. The non-production workloads are associated with a
second CoS. This lets us associate the workloads with different resource access constraints.

We present three sets of results. The first set considers the simulation component only. It demonstrates the
sensitivity of required capacity to slot size, resource access CoS constraints, the stability of predicted required
capacity based on the number of weeks of data used for prediction, and compares the prediction of required
capacity with the actual required capacity. The second set of results demonstrates the optimizing search
method for the consolidation objective. The third set of results focuses on on-going capacity management. We
apply the consolidation method to successive subsets of trace data and report how accurately the technique
predicts required capacity over time. We conduct our analysis for the CPU demand attribute only to simplify
the presentation of results and report required capacities as real values rather than integers for the purpose of
illustration.
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4.1 Sensitivity Analysis

The first set of results rely on the simulation component to determine the required capacity for the order
processing workloads as a whole. This assumes a sufficiently large server that is able to share its resources
among all workloads. Though this is an unlikely consolidation scenario, it gives a lower bound for required
capacity. We use this case to show the sensitivity of required capacity to slot size, e.g., 5 minutes, 15 minutes
or 1 hour, the impact of resource access CoS, the stability of predicted required capacity based on the number
of weeks of data used for prediction, and the prediction of required capacity with actual required capacity.
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Figure 5: (a) Predicted Required Capacity for Several Slot Sizes, (b) Impact of QoS on Required Capacity.

For the first scenario, both CoS have a resource access probability of 1.0. Figure 5(a) shows the required
capacity for 5 minute, 15 minute, and 1 hour slot sizes. The values are reported weekly as computed using
the past two weeks of data. The corresponding peak required capacities are 79, 80, and 86 CPUs, respectively.
As expected, as slot duration increases the correlation in demands also increases leading to larger values for
required capacity. Note that these peaks for required capacity are significantly lower than both the 207 CPUs
for the comparable original system, i.e., with allocations scaled based on utilization goals, and the 138 CPUs
of the original system.

Figure 5(b) considers 1 hour slots. It shows the required capacity for the case where both CoS have resource
access probability of 1.0, as referred to in the figure as θp = 1.0 for production and θnp = 1.0 for non-production,
and for the case where the non-production workloads have a resource access probability of θnp = 0.8 and a
deadline of s = 2 slots. This means that non-production workloads can have some demand deferred by up to
2 slots. This is a reasonable scenario in that priority is given to production workloads yet the non-production
loads still receive significant capacity when requested. From the figure we see that required capacity drops
from a peak value of 86 CPUs to 79 CPUs. This information is helpful in several ways. It may serve to lower
management or software licensing costs if fewer servers are needed to support the workloads, or may simply
provide a quantitative assessment of the impact of current capacity, e.g., 79 CPUs, on the lower CoS workloads.

Next, we show the impact of the choice of the number of weeks of historical data used for analysis on the
stability of predicted required capacity. Figure 6 shows predicted values for required capacity for 1 hour slots
with 3, 6, and 12 week subsets of data. For the 3 week subsets, 2 weeks of training data are used to predict
required capacity for the third week. The analysis is repeated weekly. The 6 week subsets use 4 weeks of
training data to predict the required capacity of the next 2 weeks with the analysis repeated every two weeks;
the 12 week subsets use 8 weeks of training data to predict required capacity for the following 4 weeks with
the analysis repeated every four weeks. Predicted values for required capacity are computed using hourly slots.
Actual values for required capacity are computed using 5 minute slots. The more weeks that are used for
prediction the greater the likelihood of larger peak values arising. From the figure we see that longer data set
sizes tend to yield larger estimates for required capacity. The 4 and 8 weeks subsets offer more stable estimates
for required capacity than the 2 week subsets. Hence we choose to use 4 week subsets for the remainder of our
study. In general, the training portion of the subset should have sufficient data to capture peaks that arise due
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Figure 6: (a) 3-week subset: 2 weeks predicting 1 week, (b) 6 week subset: 4 weeks predicting 2 weeks, (c) 12 week
subset: 8 weeks predicting 4 weeks.

to predictable but time varying business needs. For example, if end of month capacity requirements are always
larger than mid-month requirements, the training portion of the subset of data should always include end of
month data.
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Figure 7: Predicted and Actual Values for Required Capacity with QoS

Figure 7 compares predicted values for required capacity with actual values. Predicted values for required
capacity are computed using 1 hour slots. Actual values for required capacity are computed using 5 minute
slots. This figure corresponds to the scenario where the production workloads have a resource access probability
of θp = 1.0 and the non-production workloads have a resource access probability of θnp = 0.8 with a deadline
of s = 2 slots. With hourly slots the predicted values are typically greater than the actual values. Other figures
not included in the paper show similar accuracy for the cases where both CoS have a resource access probability
of 1.0. We note that the results we present do not take into account any trends that can be observed from the
data. Nor do they consider any business planning information that can be used to predict changes in demands
more directly. Such information is likely to improve predictions.
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4.2 Consolidation Method

Figure 8(a) shows the sum of per-server required capacity for the assignment of the workloads to servers with
CPU capacity limits of 16, 32, 64 and 128 CPUs. The required capacity values are reported for four week
subsets of data. Both CoS have a resource access probability of 1.0. The peak required capacities over all
subsets of data are 101.5, 90.6, 85.9, and 84.2 CPUs, respectively. As the number of CPUs per server increases
from 16 to 32 we see a drop in the required capacity values. This is because larger servers provide greater
opportunities for resource sharing. The 16 CPU servers suffer the most from resource sharing fragmentation.
The required capacity values for 32 and 64 CPU servers drop, but with diminishing returns. Improvements are
smaller still for the single large 128 CPU server. Most of the sharing that can be achieved is realized by the
64 CPU servers. The 16 CPU servers realize all but 20% of the savings possible from sharing, with respect to
the 128 CPU server. We note that when a server is used, not all of its CPUs are exploited. For each scenario,
the total number of CPUs for the resource pool is the product of the maximum number of servers needed and
the number of CPUs per server. The total number of CPUs needed for the 16, 32, 64, and 128 CPU per server
scenarios are 112, 96, 128, and 128 CPUs, respectively. The difference between a server’s per-server capacity
limit and its required capacity is available to support additional work. Often, unused CPUs can be disabled to
reduce server costs and software licensing costs. These can then be enabled on-demand if and when they are
needed.
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Figure 8: (a) Consolidation to 16 CPU servers, (b) Impact of Slot Size on Required Capacity, (c) Impact of QoS on
Required Capacity

Figure 8(b) shows the impact of slot size on the sum of required capacity for the 16 CPU server case. The
slot size has less of an impact than in the large server case. This is reasonable as the search algorithm aims
to co-locate workloads with smaller or negative demand correlations onto the same server. Thus, our method
of increasing slot duration to exaggerate correlations has less of an impact because there are fewer positive
correlations to exaggerate as compared to the large server scenario where all the workloads are assigned to the
same server.

Figure 8(c) shows the sum of required capacity values for the 16 server scenario, for 1 hour slots, for the case
where both CoS have a θ = 1.0 and for the case where the production workloads have a θp = 1.0 and the
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non-production workloads have a θnp = 0.8 with a deadline of s = 2 slots. The peak of required capacity values
are 101.5 and 95, respectively. The sum of required capacities drops by 6.5 CPUs case where both CoS have
a resource access probability of 1.0. The large server case differed by 7 CPUs. This shows that most of the
advantages of the quality of service specification are achieved on the 16 CPU servers.

4.3 On-going Capacity Management

This section focuses of a validation of the capacity manager for on-going management. We apply the optimizing
search consolidation method to 6 week subsets of data to assign and re-assign workloads to servers over time.
For each subset, we use 4 weeks of training data to compute a predicted required capacity for 1 hour slots. This
is then compared with the computation of the actual required capacity for the next two weeks as computed
using 5 minute slots. We define error for a server as its predicted required capacity minus its actual required
capacity. Positive errors correspond to an over-estimate of required capacity. Negative errors correspond to an
underestimate. Our figures show the distribution of errors for the individual servers.

We compare the accuracy of the technique with a benchmark method used to manage a resource pool. Its
advantage is that it is straightforward for an operator to calculate without significant effort. It computes a ratio
between the sum of per-application peak demands and the observed aggregate demand for all the workloads
on all servers as a whole. We compute this ratio using the four most recent weeks of data and use it to predict
the demand for each server for the next two weeks.
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Figure 9: Error: Predicted Required Capacity minus Actual Required Capacity

Figure 9(a) shows the distribution of errors for the QM capacity manager’s trace-based method for the case
study data on 16 CPU servers. 38% of the errors are negative, for these cases the error was never greater than
2 CPUs. 62% of the errors are greater than zero. These are over-estimates for required capacity. Together, the
estimates are within 2 CPUs of per-server required capacity values 85% of the time. In the remaining 15% of
cases, the capacity manager over-estimates required capacity by more than 2 CPUs. From the figure, we see
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that the benchmark approach has errors that are significantly larger and more frequent than the trace-based
approach.

Figures 9(b) and (c) show the distribution of error values for servers with 32 and 64 CPU, respectively. The
trace-based method becomes more optimistic as the server size increases. This suggests that an analysis using
slots of less than 60 minutes is more appropriate for these servers. Again, the benchmark approach has errors
that are larger and more frequent than the trace-based approach.

The accuracy of the trace-based method provides confidence to system operators. It offers insights regarding
how much workload can be assigned to a server and what the impact is likely to be of moving workloads from
one server to another.

5 Summary and Conclusions

This paper describes a trace-based approach to capacity management for resource pools. We define an empirical
measure of required capacity and resource access quality of service constraints. We describe an optimizing
search method with a focus on consolidation and re-consolidation for the purpose of on-going management as
an objective for the search. Results from approximately 1500 servers show that our approach to resource access
quality of service is superior to our earlier utilization based method, which is too constraining for capacity
management, in particular for on-going management. Case study results show that our consolidation approach
realizes much of the opportunity for resource sharing for a large order processing system. It automates the
process of deciding workload assignments for resource pools and is much more accurate than a benchmark
approach for capacity management used in practice.

Though our focus has been on a consolidation objective for the optimizing search, other objectives including
load leveling and problem solving are also supported. Together these automate functions needed by operators
to address the capacity management problems described in Section 1.

The trace-based approach provides confidence to system operators as they manage resource pools. However
many challenges still remain. Changing business conditions, new applications, changing applications, and is-
sues such as run-away processes in applications can all have big impact on past and future resource usage.
To improve the approach, methods are needed to systematically obtain capacity requirement estimates from
business planning systems, and from software design, development, and maintenance processes. Software per-
formance engineering exercises could provide initial estimates for the capacity requirements of new or modified
applications so that their impact on resource pools can be anticipated prior to deployment. Methods are needed
to assure the quality of historical trace data. These are all requirements for further automation of capacity
management for resource pools.
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