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Abstract 

Color space transformation (or color correction) needs to be performed in typical imaging 

devices because the spectral sensitivity functions of the sensors deviate from the desired target 

color space. Several researchers have shown that when the color channels are correlated, color 

correction can result in sensor noise amplification [1-4]. In this paper, we describe a color 

correction method that significantly alleviates the problem of noise amplification. The key idea 

is to use spatially varying color correction that adapts to local image statistics. We show 

experimental results that illustrate the reduction of noise when color correction is performed. 

 

I. Introduction 
 

The spectral sensitivity functions (or spectral responsivity) of the 3 or more color channels in 

digital imaging devices do not match those of the desired output color space (e.g. CIE-XYZ, 

sRGB, NTSC). Thus, it is necessary to transform the raw color images into the desired color 

space, which is usually performed using a linear transformation matrix. For sensors with R, G and 

B color channels, color correction is typically performed by multiplying a 3x3 matrix with the 

vector formed by the R, G and B values at each pixel. i.e. 

 

                                         































=

















in

in

in

out

out

out

B
G
R

ihg
fed
cba

B
G
R

 



 
 

 
3 

The main differences among the linear transformation methods are in the constraints used to 

derive the color correction matrix. One method is to obtain the color correction matrix by solving 

the least-squares problem that minimizes the sum-of-squared-difference between the ideal and 

color-corrected spectral sensitivity function. Although this method minimizes the color error in 

the color-corrected R, G and B values, the 3x3 multiplication can amplify the image sensor noise. 

This becomes a major concern when the spectral sensitivity functions of the image sensor have 

high correlation between them. For example, Barhoeffer et al [1] have shown that some sensors 

with a cyan, magenta, yellow, green (CMYG) filter set suffers from this noise amplification. 

 

Several authors have investigated the color estimation error trade-offs [1-4]. Barnhoeffer et. al. 

[1] explored the trade-off between mean color deviation and the amplification of noise. The trade-

off was described mathematically and a new methodology for choosing an appropriate 

transformation was proposed. Vora et. al [2] showed that the noise amplification is related to the 

degree of orthogonality of the filters and noise reduction comes at the cost of color saturation. In 

these approaches, the trade-off is performed by choosing the optimum color correction matrix for 

the entire image. We argue that by loosening the constraint of having a fixed color correction 

matrix for the entire image, a better trade-off can be obtained. In this paper, we describe a 

spatially-varying color correction method that achieves a better trade-off between color fidelity 

and image sensor noise amplification. The method first estimates the 2nd order statistics of local 

image regions and computes the optimum color correction matrix for each local image region. 

Note that this color correction method is optimum in a mean-squared-error sense.  

 

The organization of this paper is as follows. Section II describes how the optimum color 

correction is obtained from the 2nd order local image statistics and shows how it may be 

implemented in an imaging system. Section III shows some experimental results that illustrate the 

improvement from using the proposed method.  
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II. Spatially Varying Color Correction Method 
In this section, we describe the new color correction (transformation) method that alleviates noise 

amplification. In Subsection II-A, we first give a derivation of how to obtain a color correction 

matrix for each local image region assuming that 2nd order local image statistics are known. In 

Subsection II-B and II-C, we then describe how to practically implement this and we provide 

possible extensions to the baseline approach.  

 
A. Description of the method 
In this subsection, we describe how each color correction matrix is computed assuming the local 

image statistics have already been estimated. Assume that we have the color correction matrix 

NOMINALC  that minimizes color error (but does not take sensor noise into consideration). This 

color correction may have large off-diagonal elements and suffer from severe noise amplification. 

We describe how to vary this matrix from image region to image region in order to solve the 

problem of noise amplification with minimum sacrifice of color fidelity.  
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Figure 1: Model used for the derivation 
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The model we use for our derivation is shown in Figure 1. An ideal case would be when there is 

no noise and we use NOMINALC  to perform color correction. Since there is no noise, NOMINALC  

would still minimize the sum of color error and output noise. However, when noise is present 

NOMINALC  may amplify noise and be sub-optimum in mean-squared-error sense. In the real case, 

we need to compute spatially varying NEWC  to alleviate noise amplification. The definitions of the 

symbols are given as follows. 

 

 

Using the symbols defined, Figure 1 can be summarized as follows. 
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The objective is to obtain NEWC  that minimizes expected sum of color error and amplified noise. 

In other words, the objective is to estimate NEWC  that minimizes the expected difference between 

the outputs of the “Noise-free case” and the “Real case” as illustrated in Figure 1. Consider color 

*α , *β and *γ : Weights for the green channel in the nominal matrix. (i.e., the second row of 

NOMINALC ).   

α , β  andγ : Weights (the second row) for the green channel in the NEWC , which we need to 

estimate.  

 R, G and B: Noise-free red, green and blue values before color correction is applied. 
'R , 'G and 'B : Noise-free red, green and blue values after color correction ( NEWC ) is applied. 

RN , GN and BN : Noise in red, green and blue channels before color correction ( NEWC ) is 

applied. 
'
RN , '

GN and '
BN : Noise in red, green and blue channels after color correction ( NEWC ) is 

applied. 
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correction coefficients for the G channel, which correspond to the second row of color correction 

matrix. Other channels can be derived similarly.  

 

We wish to minimize f, the expected value of the sum of color error and output noise. 

    ])[( 2'*'
GNGGEf +−= ,                           (1) 

where E[] is the expected value. Optionally, one can weight '
GN  differently than shown in 

Equation (1) where the weight was equal to 1. Higher weight on '
GN  would put more emphasis 

on the noise amplification while sacrificing color fidelity. In our derivation, the weight is set to 1 

for simplicity.  Since BGRG **** γβα ++= , BGRG γβα ++='  and BGRG NNNN γβα ++=' , 

Equation (1) can be re-written as  

  ]))()()[(( 2***
BGR NNNBGREf γβαγγββαα +++−+−+−= .             (2) 

Equation (2) can be simplified by assuming that RN , GN and BN  have zero means and are 

independent of the signals (R, G and B). Further assuming that RN , GN and BN  are independent of 

each other and have standard deviation of Rσ , Gσ  and Bσ , we obtain  

 ][))((2][)(][)(][)( **22*22*22* RGEBEGEREf ββααγγββαα −−+−+−+−=  

       222222**** ][))((2][))((2 BGRRBEGBE σγσβσαααγγγγββ +++−−+−−+       (3) 

 

To minimize f in Equation (3), we take partial derivatives of  f with respect to α , β  andγ , and 

set them to be zero.  We then obtain three equations that can be summarized in matrix form as  
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,where Cor  is the correlation matrix of [ ]TBGR NBNGNR +++  and CorNN  is the 

correlation matrix of [ ]T
BGR NNN . Note that [ ]TBGR NBNGNR +++  are the pixel 

values that we can measure while [ ]TBGR  are the noise-free pixel values that we do not have 
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access to. From Equation (4), the α , β  and γ  that minimizes the sum of color error and output 

sensor noise can be simplified as 
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Similar derivation can be applied to R and B channels and by combining them, we obtain 

 

                                               TT
NOMINALNEW CorCorNNCorCC )()( 1−−=                              (5) 

 

Equation (5) shows how to vary the color correction (or transformation) matrix based on the 

correlation matrix of the pixel intensity values (with noise) and the variances of the noise. 

Correlation matrix of the pixel intensity values can be estimated by computing average values of 

RG, GB, BR, R2, G2 and B2. Although we assumed that the noise values are independent of the 

pixel intensity values in our derivation, the variances of noise do depend on the intensity. This is 

because the image sensor noise is the sum of the shot noise and readout noise and the variance of 

shot noise for each channel depends on the pixel intensity values. 

 

The simplest way to use Equation (5) would be to apply it to the whole image (i.e. estimate Cor  

of the entire image and apply NEWC ). This would result in a color correction matrix similar to 

LMMSE solution described in [3] and [4]. However, the real merit of using Equation (5) can be 

seen when different NEWC s are applied to smaller set of pixels. Since the 2nd order image statistics 

(i.e. correlations) are not stationary throughout the image and vary from one local image region to 

another, it is advantageous to apply different color correction matrix to different local image 

regions. To maximally benefit from having different color correction matrices, the size of the local 

image regions should be small enough such that the pixel values within the local region have 

similar 2nd order image statistics but large enough for accurate estimation the correlations. 

Equation (5) provides a way to adapt the color correction matrix to alleviate noise amplification 

problem given a set of pixels in a local image region. 
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B. Baseline implementation  
The block diagram of the method is shown in Figure 2. The first block is optional since the noise 

statistics of the image sensor (e.g. variance) can be obtained from the data specifications of the 

image sensor. Even in this case, however, the variance of noise in each pixel must be computed 

from the intensity of the pixel because of the shot noise component. If color correction is 

performed after image compression or when sensor specs cannot be obtained, the noise variance 

can be estimated from the methods described in [5] or [6]. The next step is to divide the image 

into local regions and estimate 2nd order statistics of the image. After obtaining the correlation 

matrix of R, G and B pixel values (with noise), the color correction matrix for the local image 

region can be obtained using Equation (5).  

 
Figure 2: Block diagram of the new color correction method 

 

There are many ways to divide an image. The simplest way that is commonly used in compression 

standards such as JPEG or MPEG is to divide the image into non-overlapping blocks. This is very 

attractive in terms of implementation because the algorithm does not require additional frame 

memory for implementation. Although block-based algorithms generally have blockiness artifacts, 

surprisingly, our color correction method does not suffer from blocking artifacts as will be seen in 

Section III. This is partly because NEWC  tries to minimize the color error as well as the sensor 

noise, making it more robust to the blockiness artifact. To choose optimum block sizes, we 

applied the new method while varying the block sizes and monitored the mean-squared-error after 

color correction. Although optimum block size depends on the image content, block size of 8 by 8 

 

Estimate 
Noise 

Variance 

Estimate 
Correlation 
of R, G and 
B Values. 

 
Compute 

NEWC  

Perform 
Color 

Correction 
with NEWC  



 
 

 
9 

seemed to achieve the best results for our typical images. However, this may depend on many 

factors and images with more high frequency content generally require smaller block sizes. 

 

The summary of the baseline procedure is given below.  

1) Divide the image into non-overlapping 8 by 8 blocks.  

2) For each block, compute the correlation matrix (Cor ) of the R, G and B channels and estimate 

the correlation matrix (CorNN ) of the image sensor noise.  

3) Compute the color correction matrix using the correlation matrices Cor  and CorNN . 

4) Apply the newly calculated color correction matrix NEWC  to all the pixels in the block.  

5) Proceed onto the next block and repeat steps 2), 3) and 4) 

 

C. Extension of the baseline approach 

There are several ways to extend the baseline approach. We described the method assuming 3 

color channels for the image sensor. Although this is true for most image sensors today, this 

method can also be used to convert more than 3 color channels to the standard R, G and B color 

space. Since each color channel will have different noise statistics, the proposed color conversion 

matrix will naturally choose the color channel that has lower noise. Thus, this method can be used 

to adaptively weight the color channels depending on the noise characteristics. For example, if the 

sensor has cyan, magenta, yellow and green color channels, the proposed color-correction matrix 

can be used as a vehicle to choose (and weight) the color channels that minimizes sensor noise 

and color error. 

 

In the “1)” of the baseline approach (II-B), the image is divided into multiple regions. Instead of 

dividing the images into 8 by 8 blocks, it is more logical to group the pixels that have similar 

statistics. One way would be to group the pixels that have similar colors using clustering 

algorithms or vector quantization algorithms and then calculate the color correction matrix for 

that region. This could potentially give better results than using non-overlapping rectangular block 

but would be more complex to implement. One extreme case of this would be to divide the image 
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according to “similarity” rather than “proximity”. In other words, we could have a look-up-table 

of several color correction matrices based on the pixel values. 

 

In the case when calculating the inverse of Cor  matrix is too complex to implement, the 

computational complexity of the proposed method can be reduced by using numerical algorithms 

such as conjugate gradient or steepest descent method. Initial starting point for NEWC  matrix can 

just be NOMINALC  block or the NEWC  matrix of the adjacent block.  

 

III. Experimental Results 
 

A. Experimental Setup 

To test the effectiveness of our method, we used hyperspectral images obtained from [7]. Each 

hyperspectral image consists of 31 monochrome image planes, corresponding to wavelengths 

between 400nm to 700nm in 10nm steps. Hyperspectral images allow us to simulate arbitrary 

color filters instead of being pinned to a specific color filter. Figure 3 shows the spectral response 

of a set of color filter arrays (including quantum efficiency of the image sensor). The spectral 

response that has high overlap between color channels was chosen to illustrate the effectiveness of 

our method. Recall that when color channels are highly correlated, it results in color correction 

matrix with high condition number. Also, the hyperspectral images have high bit depth and 

extremely low noise, which facilitate quantitative analysis and extensive testing. We simulated the 

image capture process of an ordinary consumer digital camera with the image sensor noise model 

described in [8].  The image sensor noise is the sum of shot noise, readout noise and fixed pattern 

noise regardless of the type of the image sensors. We chose typical image sensor parameters, 

which are listed below. 

 

* Well capacity: 40000 electrons 

* Sensor readout noise: 60 electrons 

* Conversion gain: 25•V/e 
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Figure 3: Spectral response of the color filter used for our simulations 

 

When the entire capture process is simulated without adding any noise, the ideal noise-free color 

corrected image (i.e., the “Noise-free case” in Figure 1) can be obtained and used as the ground 

truth image. The “Real-case” images resulting from different color correction methods can be 

quantitatively compared by computing the mean-squared-error difference with the ground truth 

image. 

 

B. Results 

From the spectral response shown in Figure 3, we computed the color correction matrix that 

transforms the raw R, G and B values to sRGB space. The color correction matrix with least 

color error ( NOMINALC ) is 
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4612.14519.17365.0
5416.08432.11828.2

1377.09882.07423.3

NOMINALC  
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Note the high off-diagonal element which results in high noise amplification. This is mainly 

because of the high correlation between the color channels. The figures shown in the following 

pages illustrate the zoomed-in parts after color correcting with the conventional method 

( NOMINALC ) and the new method described in this paper. The mean-squared-error which includes 

both the color error and amplified noise is 6.69 DN (Digital Number) using the conventional 

method ( NOMINALC ). When the spatially-varying color correction method is used the mean-

squared-error is reduced to 3.8 DN.  
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