

RDF Graph Digest Techniques and Potential Applications

Craig Sayers, Alan H. Karp
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2004-95
May 28, 2004*

RDF, graph, digest,
signature, RDF
applications,
Resource
Description
Framework

Digests are short digital abbreviations computed from original content.
This paper compares existing algorithms for computing the digest of a
Resource Description Framework (RDF) graph and discusses potential
applications.

Digest computation is complicated by blank node relabeling and
statement reordering. We treat these separately: surveying four
techniques for handling blank node identity and three algorithms for
dealing with statement ordering.

It is possible to avoid the issue of blank nodes by limiting permissible
graph operations, placing restrictions on allowable graph content, or
modifying the RDF specification. Assuming none of those are
reasonable, then practical solutions are still possible but they require
adding additional information to the graph.

To deal with statement ordering, the simplest approach is to use a sort
with the attending O(Nlog(N)) runtime. An incremental algorithm is also
possible. This is theoretically faster, offering O(N) runtime but may be
slower in practice for applications which do not benefit from the
incrementality.

Graph digests are applicable to digital signatures. Other applications
include verifying integrity, detecting changes, generating content-based
identifiers, and improving efficiency when accessing remote stores.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

RDF Graph Digest Techniques

and Potential Applications.

Craig Sayers and Alan H. Karp
HP Labs, Palo Alto.

May 27, 2004

Abstract

Digests are short digital abbreviations computed from original content.

This paper compares existing algorithms for computing the digest of a

Resource Description Framework (RDF) graph and discusses potential

applications.

Digest computation is complicated by blank node relabeling and state-

ment reordering. We treat these separately: surveying four techniques for

handling blank node identity and three algorithms for dealing with state-

ment ordering.

It is possible to avoid the issue of blank nodes by limiting permissi-

ble graph operations, placing restrictions on allowable graph content, or

modifying the RDF specification. Assuming none of those are reason-

able, then practical solutions are still possible but they require adding

additional information to the graph.

To deal with statement ordering, the simplest approach is to use a

sort with the attending O(Nlog(N)) runtime. An incremental algorithm

is also possible. This is theoretically faster, offering O(N) runtime but

may be slower in practice for applications which do not benefit from the

incrementality.

Graph digests are applicable to digital signatures. Other applications

include verifying integrity, detecting changes, generating content-based

identifiers, and improving efficiency when accessing remote stores.

1

1 Introduction

When sending a message between machines it is sometimes desirable to verify
that it has not been tampered with. Our task is to generate a digital signa-
ture which may be sent to the recipient to enable verification. For text-based
messages this is a well-studied problem and there are well-known signature al-
gorithms [14].

Since computing a digital signature is relatively expensive, it is common to com-
pute a short “fingerprint” or “digest” from the message then sign that instead
of the original message [1]. Provided it is difficult to find a different message
that generates the same digest then a recipient can extract the digest from the
signature and compare it to the computed digest of the received message to
verify authenticity. (See Schneier [18] for a great introduction). Figure 1 shows
an example of signing and sending a message.

Mechanisms are needed for applying similar algorithms efficiently for the case
where the message contains information encoded in the Resource Description
Framework (RDF). In particular algorithms are needed for computing the digest
of an RDF graph.

Note that while we are using digital signatures to introduce the need for graph
digests, they have much wider applicability (see Section 5).

Digest Digest’

VerifySignature Signed digest

Machine A Machine B

Message Message’

Figure 1: When sending a message between machines it is sometimes de-

sirable to guarantee that it has not been altered in transit. Since digitally

signing an entire message is expensive, it is common to compute a short

digest by hashing the message and then signing that digest. At the re-

ceiving end, the digest is extracted from the signature and compared with

the computed digest of the received message to verify that the message is

intact and has not been tampered with.

2

1.1 RDF Graphs

RDF Graphs [11] encode information about resources. They are labeled directed
graphs and may contain cycles. An example of a simple RDF graph containing
just two nodes and arcs is shown in Figure 2. In this case the nodes are unlabeled
or blank nodes.

dc:creator dc:subject

Figure 2: A simple RDF graph consisting of just two blank (unlabeled)

nodes and two arcs.

To transmit an RDF graph between sites it must be serialized as a list of state-
ments and doing so requires assigning labels to any blank nodes and choosing
some ordering for the statements. Each RDF graph thus has many possible
serializations. For example, the above graph could be serialized as:

1 dc:subject 2 .
1 dc:creator 2 .

but it could also be serialized as:

2 dc:creator 1 .
2 dc:subject 1 .

Both serializations are equally valid and equivalent (at least as far as any RDF
processing engine is concerned).

1.2 Direct communication

The simplest case of securely transmitting a graph is to rely on a particular
serialization of that graph. In this case, we use the same general message sign-
ing procedure shown in Figure 1. Generating a message by serializing the RDF
graph, hashing that to form a short digest and then signing that digest. On a
receiving machine, the digest can be extracted from the signature and compared
with the hash of the received serialization to verify it has not been altered in
transit. Then the graph may be reconstructed from that serialization. This is
shown in Figure 3. This approach works well, and has been used in practice [2].

3

The downside is that we’ve only computed the digest for that particular mes-
sage. If the RDF is loaded into an in-memory graph then we lose any ability to
recompute the digest. Even if we could exactly duplicate the serialization algo-
rithm, the arbitrary labels assigned to blank nodes and the lack of any defined
statement ordering precludes recreating the original serialized message.

1.3 Graph communication

A more sophisticated solution would allow a graph to be transferred. This avoids
the need to remember any particular serialization and also allows the graph to
be stored and transported by intermediaries.

We’ll begin by considering a “perfect” algorithm. That is, one which generates a
digest for arbitrary RDF graphs, places no restrictions on content or operations,
and does not modify the graph.

Assuming a perfect RDF canonical serialization algorithm exists, then we can
use that to compute a graph digest. At the sending machine the canonical
serialization can be hashed to give a digest; while at the receiving end the graph
may be passed through the same algorithm and the results compared. Since the
serialization is canonical, it should be the same regardless of any changes to the
RDF graph caused by the communications channel.

An example of signing a graph using a perfect canonical serialization scheme
is shown in Figure 4. This is a simple and appealing solution. Unfortunately,
there is unlikely to ever be any fast perfect canonical serialization algorithm.
Carroll [6] showed this by noting that canonical serializations can be used to
solve graph isomorphism, and thus if there was a fast solution to canonical
serialization we could use that to make a fast solution for graph isomorphism.
But graph isomorphism is known to be a hard problem for which there is no
fast algorithm.

The perfect canonical serialization is complicated by the presence of blank nodes
and the lack of any defined statement ordering. Practical algorithms must deal
efficiently with both of those.

1.4 Overview

In this paper we compare several alternative practical techniques for computing
the digest of an RDF graph. In Section 3 we compare four different mechanisms
for handling blank node identity. In Section 4 we look at three different algo-
rithms which account for statement ordering. Finally, Section 5 describes some
of the many applications for graph digests.

4

RDF Graph

Serialization

Digest

RDF Graph’

Serialization’

Digest’

VerifySignature Signed digest

Machine A Machine B

Figure 3: Using direct communiction we serialize the RDF graph, hash it to

form a short digest and then sign that digest. On a receiving machine, the

digest can be extracted from the signature and compared with the hash of

the received serialization to verify it has not been altered in transit. Then

the graph may be reconstructed from that serialization.

Perfect
Canonical
Serialization

RDF Graph'

Digest Digest’

VerifySignature Signed digest

Machine A Machine B

Possible
re-serialization

and bnode
renaming

RDF Graph

Perfect
Canonical
Serialization'

Figure 4: Assuming a canonical serialization algorithm exists then it can

be used at both the sending and receiving ends to construct identical se-

rializations. This conveniently allows the graph to be transferred through

intermediaries who may reorder statements or relabel blank nodes. It also

means that we only need to store the graph in order to be able to later

verify the signature.

5

2 Definitions

An RDF graph is a set of statements. Each statement describes an arc between
two nodes of the graph and may be represented by a triple:

subject predicate object .

where the arc goes from the subject node to the object node and is labeled by
the predicate.

Let S be the set of statements in a graph. Each set contains N triples t1, t2, . . . tN
and each triple, ti, consists of a subject si, predicate pi and object oi.

Our goal is to find a digest function, D, which generates:

d = D(S)

and is:

• Compact. d is typically much smaller than S.

• One-way. That is, given a digest it is infeasible to find the original graph.
If an adversary knows d it is very difficult for them to determine S.

• Collision-resistant. That is, given a digest and a graph it is very difficult
to find a different graph that has the same digest. If an adversary knows
D and S it is very difficult to find a set of statements T such that:

D(S) ≡ D(T) when S 6≡ T

3 Blank node identity

The key to a practical graph digest is removing the influence of blank nodes.
There are four ways to do this and we’ll examine each one in turn.

• Limit the operations which may be performed on the graph.

• Limit the graphs for which we support computing digests.

• Modify the graph, adding additional information to aid handling blank
nodes.

• Change the RDF specification.

6

3.1 Limit operations

In rare cases, the sender may know that the serializations used on the sending
machine and any intermediary machines maintain blank node identity and that
that identity is preserved at the recipient for long enough to compute the di-
gest. This is possible, for example, if the sender uses the N-triples syntax, the
serialization is not altered in transit, and the recipient can extract and use the
blank node identities from the received serialization.

Placing restrictions on intermediaries is clearly not an ideal choice, but it is
simple.

3.2 Limit graphs

Another solution is to simply avoid the use of blank nodes entirely. This won’t
always be an option, but if you are designing an ontology and data generator
from scratch, and you know you’ll need to later sign the generated graphs, then
you can take care not to use any blank nodes. This limits what you can express,
but for some applications that may be quite acceptable.

3.3 Modify the graph

Rather than limiting the operations, or limiting the graphs, we can change the
problem. In describing use of the perfect canonical serialization, we assumed
that the original graph to be signed must remain unchanged. If we relax that
restriction, allowing the graph to be modified, then we can insert additional
information into the graph itself and use that to later speed digest computation.

In particular, we can add additional statements to the graph to capture the
arbitrary labels assigned to the blank nodes.

There are two alternative approaches to this. One proposed by Carroll [6] is to
perform a sophisticated analysis of the graph and add a relatively small number
of additional statements. Another approach is to simply add a statement to
encode the label assigned to each blank node.

For example, if we had a graph containing the blank node “ 1”:

1 dc:creator “Pat” .
1 dc:type “Book” .

Then we could add an additional statement:

7

1 myOnt:hasLabel “ 1” .

After passing though intermediaries, the blank node labels may change, so a
receiving machine may see the graph:

42 dc:creator “Pat” .
42 dc:type “Book” .
42 myOnt:hasLabel “ 1” .

By extracting the blank node label statements, it may use those to relabel the
blank nodes, conveniently returning the graph to the same form used by the
sender:

1 dc:creator “Pat” .
1 dc:type “Book” .
1 myOnt:hasLabel “ 1” .

Using this approach we can guarantee the blank node labels at the sending and
receiving machines match without needing to restrict the content of the graph,
or the serializing/deserializing that may be performed by intermediaries.

The additional statements are of course not without cost. The extra statements
consume space and require time to process. Nevertheless, those costs are rea-
sonable when compared to the time which would be required if we didn’t add
the additional statements.

3.4 Change the specification

A final approach, which we mention for sake of completeness, would be to change
the specification. Specifically, if blank nodes were assigned globally-unique iden-
tifiers, and those identifiers were required to be maintained in all serializations
then there would be no need to handle blank nodes specially.

This is not a large leap. The N-triples syntax [10] and the most recent RDF/XML
syntax [3] already provide the means to encode blank node labels. The only re-
quired changes are to assign the identifiers a globally-unique name (such as a
UUID [12]) and require any reader to preserve the identifiers.

Having global labels would also have the desirable property that any two graphs
could be merged without needing to first perform blank node relabeling.

8

3.5 Comparison

By limiting the operations, the graphs, or modifying the specification, then it
is possible to avoid the issue of blank nodes entirely without any performance
penalty. If that is not possible, then it is necessary to add additional information
to the graph.

If we use one additional statement per blank node, then adding and processing
the additional statements for blank node identity takes O(N) time (since there
can’t possibly be more than twice as many blank nodes as statements). Note
that in practice, if the blank nodes are assigned incremental numeric labels then
a lookup table can be employed and each lookup can be performed in constant
time, however, if the blank nodes are assigned arbitrary text labels then some
form of hash map will be needed and the possibility for hash collisions means
that it takes only approximately constant time for each lookup.

4 Graph digest algorithms

Having dealt with blank nodes, the remaining complexity in computing a graph
digest is the lack of any statement ordering. To solve that there are three
approaches and again we’ll look at each in turn.

4.1 Hash-Sort

The approach used by Melnik and Dunham [13] is to compute a hash for each
statement, sort the hashes, concatenate them, and then hash the result:

ds
i = hash(si)

dp
i = hash(pi)

do
i =

{
hash(oi) << 8 if oi is a literal
hash(oi) otherwise

di = hash(concat(ds
i , d

p
i , d

o
i))

digest = hash(concat(sort(d1, d2 . . . dN)))

where hash() is a hashing function (this takes an input of arbitrary length and
generates an n bit output) and << is a bitwise left-shift.

9

4.2 Sort-Hash

The approach used by Carroll [6] is to serialize each statement, sort them,
concatenate them together, and then compute a hash of the result:

ui = serialize(si, pi, oi)

digest = hash(concat(sort(u1, u2...uN)))

where serialize() may be done using a subset of any of the RDF serialization
syntaxes. The only special requirements are that it must not allow any optional
characters, must be repeatable, operate one statement at a time and must in-
clude an identifier for each blank node.

4.3 Incremental digest

In both the preceding approaches statement ordering was handled via a sort.
In [16] we showed the sort could be avoided by using a set hash [4, 5, 20, 8]. We
first modify the graph to permit blank node relabeling and then compute a set
hash, treating each statement as one member of the set:

digest =
N⊙

i=1

hash(serialize(ti))

where � is a combining operation which is both associative and commutative to
support incremental operation. One convenient but relatively insecure function
is addition modulo 2n, where n is the number of bits generated by the hash
function.

4.4 Comparison

4.4.1 Security

When considering security of the digest, we consider the task for an adversary
attempting to find a different graph which has the same digest.

In the case of both hash-sort and sort-hash, the security is almost entirely
dependent on the choice of the hashing function. Existing functions, such as
SHA-1 [18, 9] appear to be a good choice.

In the case of the incremental digest, the security depends on both the hashing
function and the combining function. If the hashing function is again SHA-1
and the combining function is addition modulo 2160 then security is acceptable

10

for some applications but may be inadequate against a determined attacker [19].
Better security is possible, but only by using more time-consuming combining
functions or a much longer randomizing function.

4.4.2 Time complexity

All of the algorithms need some accommodation for blank nodes, and all can
use the same technique.

If we assume some upper bound on the length of URIs and literals then both
serialize() and hash() take constant time per statement.

For both hash-sort and sort-hash, the runtime is dominated by the need for the
sort and is hence O(Nlog(N)).

For the incremental digest, assuming the combining operation may combine two
hashed blocks in O(1) time, then the algorithm takes O(N) time. This is better
in theory, however in practice it may be more expensive, especially if a high
level of security is required.

For incremental computation, the incremental digest is significantly faster, even
with very high security, since it can add a new statement in constant time, while
the other algorithms all require recomputing a hash over all the statements (in
the best case) and also redoing the sort (in the worst case).

5 Applications for Graph Digests

While we have focused on digital signatures, the general notion of a graph
digest has much wider applicability. Think of the digest as an abbreviation for
an instance of a graph.

5.1 Graph identity

In the present specification there is no concept of graph identity and hence no
way to make statements about a graph. If graph identity were to be supported
in the future, and it was possible to mark graphs as being closed (see [7] for
a proposed serialization which would support this), then the digest of a closed
graph could serve as its identifier. This would conveniently allow graphs to be
compared simply by comparing their identifiers. Such comparisons are obviously
merely for equality not isomorphism but they are nevertheless still useful.

11

5.2 Verification

One property of the digest is that you can verify data integrity. For example, a
small device sending a stream of RDF information to a remote store can compute
a running digest for later use in verifying that all the data arrived intact and
has not been tampered with.

5.3 Secrecy

Since the digest is one-way, and serves as an abbreviation for the entire graph,
you can use it in places where secrecy is desired. For example, if purchasing a
book, the bookstore agent and your agent can share a graph, then the digest
of that graph can be used in subsequent three-way conversations with a credit
card company. The credit card company then doesn’t know which book you
purchased but it has enough information that you could later prove if the book
you received did not match the one you paid for.

The incremental digest provides additional opportunites for secrecy since it per-
mits a graph to be updated and the digest recomputed without requiring access
to all the original statements in the graph. For example, if a graph stores trans-
actions you can add a new transaction and update the graph digest without
needing to know details of all the preceding transactions.

5.4 Detecting changes

There are applications where it is desirable to know if a graph has changed. To
see why, consider interacting with a graph on a remote database. A common
operating pattern is:

1. Query the graph, returning query result

2. Perform some computation based on the query result

3. Update the graph

The obvious difficulty is that the graph may change between the time you query
and the time your update to the graph arrives back at the server. You could
avoid that by locking, but that’s expensive.

If the remote server continuously maintains a digest of the graph, then you can
instead do:

1. Query the graph and its digest, returning query result and digest, D.

12

2. Perform some computation based on the query result

3. Send atomic command “if the digest is still D, update the graph, otherwise
return an error.”

In that way, you can guarantee that your operation is performed on a graph
which has exactly the state you anticipated and there was no need to lock the
graph.

Since we’re only interested in detecting changes, it is possible to largely avoid
the issue of blank nodes. So long as the blank nodes are assigned some label,
and that label is available for use in the digest computation, then there is no
need for any relabeling or the addition of extra statements. This provides a
conservative indication of change, since any modification (even the harmless
renaming of blank nodes) will cause the digest to change.

5.5 Finer granularity

Digests may also be applied to subsets of a graph. One particular example is to
compute a digest for each unique subject node in a graph [15, 17].

6 Conclusions

The simplest approach to signing RDF is to serialize the RDF in a message and
sign that particular message.

The task of signing a graph, rather than a particular message containing the
graph, requires computing a graph digest. Since a fast perfect canonical seri-
alization algorithm does not exist, we have examined techniques for developing
practical algorithms. These use two phases: first removing variations in blank
node identity and then using either a sort or an incremental digest to handle
variations in statement ordering.

The described graph digest algorithms have wider applicability than just for
digital signatures. They may be used to generate content-based identifiers for
RDF graphs, to aid in security, to verify integrity, and to improve efficiency
when remotely accessing graph stores.

13

7 Acknowledgements

Thanks to Kave Eshghi for a number of great discussions about content-based
identifiers and to Kevin Wilkinson for suggesting a number of improvements to
an early draft.

References

[1] M. Atreya. Digital signatures and digital envelopes, RSA Security white
paper. http://www.rsasecurity.com/products/bsafe/whitepapers/Article5-
SignEnv.pdf, November 2003.

[2] D. Banks, S. Cayzer, I. Dickinson, and D. Reynolds. The ePerson snippet
manager: a semantic web application. Technical Report HPL-2002-328,
Hewlett Packard Labs, Bristol, England, November 2002.

[3] D. Becket. RDF/XML syntax specification (revised), W3C recommen-
dation. http://w3.org/TR/1999/REC-rdf-syntax-grammar-20040210/,
February 2004.

[4] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography:
the case of hashing and signing. In Y. Desmedt, editor, Advances in
Cryptography - Crypto ’94, Lecture Notes in Computer Science, Vol. 839.
Springer Verlag, New York, 1994.

[5] M. Bellare and D. Micciancio. A new paradigm for collision-free hashing:
Incrementally and at reduced cost. In W. Fumy, editor, Advances in Cryp-
tography - EuroCrypto ’97, Lecture Notes in Computer Science, Vol. 1233.
Springer Verlag, New York, 1997.

[6] J. Carroll. Signing RDF graphs. In Lecture Notes in Computer Science,
volume 2870. Springer-Verlag, September 2003.

[7] J. Carroll and P. Stickler. RDF triples in XML. Technical Report HPL-
2003-268, Hewlett Packard, 2003.

[8] D. Clarke, S. Devadas, B. Gassend, M. van Dijk, and E. Suh. Incremental
multiset hashes and their application to integrity checking. In ASIACRYPT
2003 Conference, November 2003. (to appear).

[9] Federal Information Processing Standards Publication 180-1, U.S. De-
partment of Commerce/N.I.S.T., National Technical Information Service,
Springfield, Virginia. FIPS 180-1: Secure hash standard, April 1995.

14

[10] J. Grant and D. Beckett. Resource description framework (RDF) test cases,
W3C working draft. http://w3.org/TR/2002/WD-rdf-testcases-20020429,
April 2002.

[11] G. Klyne and J. Carroll. Resource description framework (RDF): Con-
cepts and abstract syntax. http://www.w3.org/TR/rdf-concepts, Novem-
ber 2002.

[12] P. J. Leach and R. Salz. UUIDs and GUIDs. http://www.opengroup.org/
dce/info/draft-leach-uuids-guids-01.txt, February 1998.

[13] S. Melnik. RDF API draft: Cryptographic digests of RDF models and
statements. http://www-db.stanford.edu/~melnik/rdf/api.html#digest,
January 2001.

[14] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining digital
signatures and public-key cryptosystems. Technical Report MIT/LCS/TM-
82, MIT, 1977.

[15] C. Sayers and K. Eshgi. The case for generating URIs by hashing RDF
content. Technical Report HPL-2002-216, Hewlett Packard Laboratories,
Palo Alto, California, August 2002.

[16] C. Sayers and A. Karp. Computing the digest of an RDF graph. Tech-
nical Report HPL-2003-235-R1, Hewlett Packard Laboratories, Palo Alto,
California, November 2003.

[17] C. Sayers and K. Wilkinson. A pragmatic approach to storing and dis-
tributing RDF in context using snippets. Technical Report HPL-2003-231,
Hewlett Packard Laboratories, Palo Alto, California, November 2003.

[18] B. Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and
source code in C. John Wiley & Sons, Inc., 1996.

[19] D. Wagner. A generalized birthday problem. In M. Yung, editor, Crypto
2002, Lecture Notes in Computer Science, Vol. 2442. Springer Verlag, New
York, 2002.

[20] A. L. Zobrist. A hashing method with applications for game playing. Tech-
nical Report 88, Computer Science Dept. University of Wisconsin Madison,
1970. reprinted in International Computer Chess Association Journal, Vol-
ume 13, Number 2, pp. 69–73, 1990.

15

