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Abstract This paper addresses the problem of mapping the re-
quirements of a known media service workload into the correspond-
ing system resource requirements and accurately sitzing a media
server cluster to handle the workload. In this paper, we propose
a new capacity planning framework for evaluating the resources
needed for processing a given streaming media workload with speci-
fied performance requirements. The performance requirements are
specified in a Service Level Agreement (SLA) containing: i) basic
capacity requirements that define the percentage of time the config-
uration is capable of processing the workload without performance
degradation while satisfying bounds on system utilization; and i)
performability requirements that define the acceptable degradation
of service performance during the remaining, non-compliant time
and in case of node failures. Using a set of specially benchmarked
media server configurations, the capacity planning tool matches the
overall capacity requirements of the media service workload profile
with the specified SLAs to identify the number of nodes necessary
to support the required service performance.

1 Introduction

The delivery of continuous media from a central server
complex to a large number of (geographically distributed)
clients is a challenging and resource intensive task. The
trend toward media content hosting is seeing a significant
growth as more rich media is used in the enterprise envi-
ronment. In this paper, we consider a scenario where a
service provider, supporting a busy media site, needs to
migrate the site to a new, more efficient infrastructure.
Traditionally, network bandwidth or disk system
throughput has been the target of optimization and sizing
for streaming media services. In our paper, we assume
that site’ media content is encoded at constant bit rates
(CBR). Thus, for a given workload, it is easy to deter-
mine what network bandwidth is required. However, it is
more difficult to determine what amount of CPU, mem-
ory, and disk resources are needed to handle a given work-
load while meeting specified performance requirements.
Earlier analysis [3] shows that streaming workloads
(e.g., enterprise media servers, news servers, sports
events, and music clips) exhibit a high degree of tempo-
ral and spatial reference locality: i.e. a high percentage
of requests access a small subset of media files. More-
over, many clients do not finish the playback of a full

video/audio clip and 50%-60% of the accesses last less
than 2 minutes [3, 1]. Therefore, most accesses to popu-
lar media objects can be served from server memory, even
when the media server relies on traditional file system and
memory support and does not have additional application
level caching. Thus, the locality present in a particular
workload has a significant impact on the behavior of the
system, and any capacity planning tool should account
for the impact of the server’s main memory file buffer
cache when evaluating and sizing the required configura-
tion.

The ability to plan and operate at the most cost effec-
tive capacity is a critical competitive advantage. Since
workload measurements of existing media services indi-
cate that client demands are highly variable (“peak-to-
mean” ratios may be an order of magnitude or more), it is
not economical to overprovision the system using “peak”
demand. In our tool, the service provider specifies the
desirable system performance by stating two types of re-
quirements in an Service Level Agreement (SLA): i) basic
capacity requirements that define the percentage of time
the configuration is capable of processing the applied load
without performance degradation while satisfying bounds
on system utilization; and i) performability requirements
that define the acceptable degradation of service perfor-
mance during the remaining, non-compliant time and in
casc of node failures during the scrvice time.

We assume that a service provider collects media
server access logs reflecting processed client requests and
client activities at the site. Thus the problem is to map
the requirements of a known media service workload into
the corresponding system resource requirements and to
accurately size the required system.

The core of our capacity planning tool is a media ser-
vice workload profiler, called MediaProf, which extracts a
set of quantitative and qualitative parameters that char-
acterize the service demand. In particular, MediaProf
evaluates the number of simultaneous (concurrent) con-
nections over time and classifies them into encoding bit
rate bins. Based on the history of previous accesses and
the behavior of the server’s main memory file buffer cache
and its size, MediaProf classifies simultaneous connec-
tions by file access type: whether a particular request
is likely to be served from memory or disk.



Additionally, to reflect the specific access patterns of
a given workload, MediaProf builds an interval workload
profile: the characterization of service demands over a
set of predefined time intervals. This way, MediaProf
can characterize the “amount” of possible load during
continuous time intervals. This characterization is useful
in evaluating the performability of the particular system
configuration for the amount of possible overload (or per-
formance degradation) during a node failure over some
interval. Using a set of synthetic media workloads, we
demonstrate the importance of such a workload char-
acterization. While different workloads may result in a
similar aggregate demand profile, they may have a very
different interval workload profiles.

Capacity planning tools require benchmarks to mea-
sure and compare different media servers. Currently,
there are no standard benchmarks for measuring media
server capacity. In our recent work [4], we have proposed
a set of benchmarks for measuring the capacity of stream-
ing media systems. Using the set of specially bench-
marked media server configurations, our capacity plan-
ning tool matches the capacity requirements of the ag-
gregate and interval media service workload profile with
the capacity and performability requirements within the
specified SLAs, and computes the number of nodes neces-
sary in the media cluster to support the required service
performance.

In summary, our capacity planning tool provides a new
unified framework with means for:

o Measurement of a media server capacity via a set
of benchmarks and derivation of a cost function for
resource requirements of a particular media stream;

e Derivation of a special media site workload profile
that can be directly mapped to the corresponding
resource demand profile;

e Computation of the number of nodes in media
server cluster that satisfies the workload capacity
requirements and the specified SLAs.

The remainder of the paper presents our results in more
detail.

2 Media Server Capacity Equations

Commercial media servers are characterized by the num-
ber of concurrent streams that can be supported by a
server without loosing a stream quality, i.e. while meet-
ing the real-time constraint of each stream. Two ba-
sic benchmarks were introduced in [4]that can establish
the scaling rules for server capacity when multiple media
streams are encoded at different bit rates:

o Single File Benchmark: measures the media server
capacity when all the clients in the test access the
same file, and

o Unigque Files Benchmark: measures the media
server capacity when each client in the test accesses
a different file.

Each of these benchmarks consists of a set of sub-
benchmarks with media content encoded at a different

bit rate. Using an experimental testbed, we measured
capacity and scaling rules of a media server running Re-
alServer 8.0 from RealNetworks.

Our measurement results show that the scaling rules
for server capacity are non-linear when multiple media
streams are encoded at different bit rates. For example,
the difference between the highest and lowest bit rate
of media streams used in our experiments was 18 times.
However, the difference in maximum number of concur-
rent streams the server was capable of supporting for cor-
responding bit rates was only around 9 times for a Single
File Benchmark, and 10 times for a Unique Files Bench-
mark. The media server performance was 3 times higher
(for some disk/file subsystems up to 7 times higher) under
the Single File Benchmark than under the Unique Files
Benchmark. These results quantify the performance ben-
efits for multimedia applications when media streams are
delivered from memory.

Using our benchmark measurements, we derived a cost
function which defines a fraction of system resources
needed to support a particular media stream depending
on the stream bit rate and type of access (memory file
access or disk file access):

® cost4i*® - value of the cost function for a stream with

disk access to a file encoded at x; Kb/s. If we de-
fine the media server capacity to he equal to 1, the
cost function is computed as costds* = 1/NG™I,
where N}?,”que is the maximum measured server ca-
pacity in concurrent streams under the Unique File
Benchmark for x; Kb/s encoding,
emery - yalue of the cost function for a stream
with memory access to a file encoded at X; Kb/s.
Let ijf‘gle be the maximum measured server ca-
pacity in concurrent streams under the Single File
Benchmark for a file encoded at X; Kb/s. Then
the cost function is computed as cost7<™"Y

X
(N;;(nz'que _ l)/(N;l(nz'que > (N;fngle _ l))
Let W be the current workload processed by a media
server, where
& X, = Xi,.. Xy, - aset of distinct encoding bit rates
of the files appearing in W,

® cost

7

o Nyemer¥_ a number of streams having a memory
access type for a subset of files encoded at X,,, Kb/s,

e N{sk - a number of streams having a disk access
type for a subset of files encoded at X, Kb/s.
Then the service demand to a media server under work-
load W can be computed by the following capacity equa-
tion:
kw ks
Demand = Z N;?i:"m’y X cost?i?my—l-z N}i’i’j X costc)lffv]: (1)
i=1 =1
If Demand < 1 then the media server operates within its

capacity. If, for example, the computed service demand
is Demand = 4.5 it indicates that the workload requires 5



nodes (of the corresponding media server configuration)
to avold overload. In [5], we validated this performance
model by comparing the predicted (computed) and mea-
sured media server capacities for a set of different syn-
thetic workloads with statically defined request mix.

3 Workload Profiler MediaProf

Media access logs are critical in decision making about
future infrastructure. The access logs record information
about the requests processed by the media server. Typ-
ical fields within access log records contain information
about the time of the request, the filename of the re-
quested video, the advertised video duration (in seconds),
the size of the requested file (in bytes), the elapsed time
of the requested media file when the play ended, the av-
erage bandwidth (Kb/s) available to the user while the
file was playing, etc. MediaProf creates a traffic profile
for capacity planning by extracting the following charac-
teristics from the access logs:

o The number of simultaneous (concurrent) connec-
tions over time.
Media server capacity is characterized by the number of
concurrent streams (connections) a server can support
without loosing stream quality. Thus first, MediaProf
extracts the number of concurrent connections over time
and the corresponding bandwidth requirements. In our
capacity planning tool, the number of concurrent con-
nections is averaged and reported at 1 min granularity.

o Classification of the stmultaneous connections into
the encoding bit rate bins.
Since the amount of system resources (“cost”) and the
server bandwidth needed to support a particular client
request depend on the file encoding bit rate, MediaProf
classifies the simultaneous connections into different en-
coding bit rate bins.

o Classification of the simultaneous connections by the

file access type: memory vs disk.
The request processing cost within the same encoding
bit rate group additionally depends on file access type:
memory file access or disk file access. In order to assign
a cost to a media request from the access log, we need to
evaluate whether a request will be streaming data from
memory or will be accessing data from disk. Note, that
memory access does not assurne or require that the whole
file resides in memory — if there is a sequence of accesses
to the same file, issued closely in time to one another,
then the first access may read a file from disk, while the
subsequent requests may be accessing the corresponding
file prefix from memory.

For this classification, we developed a segment-based
memory model that reflects data stored in memory as a
result of media file accesses. This model closely approx-
imates the media server behavior when the media server
operates over a native OS file buffer cache with LRU re-
placement policy.

The basic idea of computing the request access type
exploits the real-time nature of streaming media appli-
cations and the sequential access to file content. Let
Sizeme™ be the size of memory in bytes '. For each re-
quest r in the media server access log, we have informa-
tion about the media file requested by r, the duration of
r in seconds, the encoding bit rate of the media file re-
quested by r, the time ¢ when a stream corresponding to
request r is started (we use r(t} to reflect it), and the time
when a stream initiated by request - is terminated.

meny

Size

T T
Figure 1: Memory state computation example.

Let r1(t1),r2(t2), ...,m1(ty) be a recorded sequence of re-
quests to a media server. Given the current time 7 and
request »(7) to media file f, we compute some past time
77em guch that the sum of the bytes stored in memory
between 7mem and T is equal to Size™e™ as shown in
Figure 1. This way, the files’ segments streamed by the
media server between times 7™e™ and T will be in mem-
ory. Thus, we can identify whether request r will stream
file f (or some portion of it) from memory.

Table 1 shows the snapshot of the media workload pro-
file produced by MediaProf.

Time Joncur. < 56 Kb/s 56 — 112 Kb/s > 112 Kb/s
Stamp | Sessions| Disk | Memory| Disk | Memory | Disk | Memory
ti 1 100 2 0 5 2 85 6

ti 104 2 0 5 2 89 6

it 103 1 4] 5 2 89 6

Table 1: Output of MediaProf- media site workload profile.

First two columns reflect the concurrent connections
over time. The time stamps in the first column repre-
sent minutes from the beginning of the trace (i.e. t; =
t;_1 + 1). The other columns show how these concurrent
connections are classified into encoding bit rate groups
with further classification by the type of access: disk or
memory file access.

In summary, MediaProf processes the media server ac-
cess logs by

¢ evaluating the number of concurrent connections at
each moment of time;

e partitioning the concurrent connections into a pre-
defined set of bit rate groups;

o classifying the concurrent conncctions by the file
access type: memory vs disk.

!Here, the memory size means an estimate of what the system
may use for a file buffer cache.
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Figure 2: Capacity planning process.

4 OQverall Capacity Planning Process

The overall capacity planning process is shown in Fig-
ure 2. There are the three phases in the capacity planning
procedure:

¢ Basic capacity planning that derives the desir-
able configuration by taking into account two basic
capacity requirements:

— Statistical Demand Guarantees;

— Utilization Constraints.
Performability planning that evaluates and re-
fines the desirable configuration by taking into ac-
count two additional performability requirements:

— Regular-modeQuerload Constraints,
— Node-Fuailure-mode Querload Constraints.

Cluster size validation. If the configuration rec-
ommended by the basic capacity planning process
is a single machine configuration then the capac-
ity planning procedure is completed. Otherwise
the Capacity Planner performs an additional refine-
ment of the cluster sizing by evaluating the impact
of the load balancing solution.

4.1 Basic Capacity Planning

Suppose the service provider would like to size the cluster
solution for a given workload using a media server S with
a memory size Mg. There are several logical steps in the
basic capacity planning procedure:

e Compute the media site workload profile.
Using the media site access logs, MediaProf coraputes a
workload profile for a given memory size Mg of interest.
During the initial analysis, the Dispatcher component as-
sumes that the media cluster contains a single node.

o Compute the service demand profile.
The next module, called the Capacity Planner, has a
collection of benchmarked configurations. The Capac-
ity Planner takes the media site workload profile (as it is
shown in Table 1) and computes the corresponding ser-
vice demands using Equation (1) from Section 2 with the
the cost functions corresponding to the media server S.

Thus, the resulting (intermediate) profile is the list of
pairs (#;,d;) reflecting that in time ¢; the service demand
is d;. Then the Capacity Planner computes a cumulative
density function (CDF) of aggregate service demand that
is normalized over time. 2

e Combine the service demand profile and the basic ca-
pacity requirements of a desirable configuration.
The CDF obtained by the service demand profile is used
to compute the capacity required to meet the service
provider’ performance requirements:

o Statistical Demand Guarantees: “Based on the past
workload history, find an appropriate performance
solution that is capable of processing the applied
load 95% of the time”. Using the CDF of computed
service demand profile, the Capacity Planner finds
the 95th percentile of the site’s service demands
over time. Let us denote this demand as Dgsg.

Utilization Constraints: “Bascd on the past work-
load history, find an appropriate performance so-
lution that is utilized under 70% of its capacity
90% of the time”. This way, a service provider
may specify a configuration with some reasonable
“spare” capacity for future growth and changing ac-
cess patterns. The Capacity Planner finds the 90th
percentile of the site’s service demands. i.e. Dggo.
Then the requirement for a configuration that is
utilized under 70% of its capacity i8 (Dggy/0.7). Let
us denote this demand as Dy;.

Thus, the basic capacity (number nodes in cluster)t for
a desirable configuration is: Dyssic = maz(Dosw, D)
rounded up to the closest integer.

4.2 Evaluating Performability Requirements

The basic capacity planning process, described in Sec-
tion 4.1, derives the desirable configuration by sizing the

2Since we assume that media files are encoded at a constant bit rate
it is a straightforward task to compute the CDF of network bandwidth
requirements and incorporate them in the capacity planning process. In
this paper, we concentrate on the number of nodes in the cluster needed
to process a given workload with specified performance requirements.



system according to the main performance requirements
for the compliant time, e.g. identifies the system that
is capable of processing the applied load with no per-
formance degradation for 95% of the time. However, it
does not provide any guarantees or limits on how “bad”
the system performance could be in the remaining 5% of
non-compliant time. The performability planning evalu-
ates the workload performance on the configuration rec-
ommended by the basic capacity planning process and
refines it in order to limit the amount of possible over-
load per node during the regular processing time and/or
to avoid the excessive performance degradation during
periods when a node may fail.

Let us first consider a simple example. Figure 3 shows
the scrvice demands of two workloads over time (more
exactly, a day-long sample of the workloads).

Thin Spikes Workload
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Figure 3: a) “Thin Spikes” workload; b) “Fat Spikes” workload.

The access patterns of these two workloads are very
different. Workload shown in Figure 3 a) has a number of
peak-load spikes each lasting for 10 min with more than
1 hour-time gaps between the spikes. Let us call this
workload as a “Thin Spikes” workload. Workload shown
in Figure 3 b) has a different access pattern: there is a
single peak-load spike lasting for a duration of 100 min.
Let us call this workload as a “Fat Spikes” workload.

These two workloads have the same CDF of service de-
mand: 90% of the time, the service demand is 1.7 nodes,
while for 10% of the time it reaches a peak load demand
of 3.3 nodes.

Let a service provider specify the desirable configura-
tion as one that:

e 90% of the time satisfies the workload demand;
e 90% of the time is utilized under 70%.
Then the basic capacity planning will recommend a 3-
node cluster as an appropriate solution:
Dipgsic = max(Dggy, Dyta) = max(1.7,2.4) = 2.4

Since the peak service demand is 3.3 nodes, it means that
in the 3-node cluster, the applied load reaches 110% per

node, i.e. the maximum overload per node reaches 10%,
and 1t is observed for 10% of the time for both workloads.

While the “aggregate” amount of overload per node is
the same for both workloads, there is a significant quali-
tative difference in the amount of “continuous” overload
exhibited in the two considered workloads. Intuitively,
while the “Thin Spikes” workload looks more bursty, the
amount of overload per any continuous hour is limited:
no more than 10 min of 10% overload. For the “Fat
Spikes” workload, any 1 hour interval between the time
stamps 500 and 600 (as shown in Figure 3 b) experiences
the continuous 10% overload.

From the QoS point of view, the short spikes of the
performance degradations are less devastating than the
longer periods of degraded performance. We believe that
it is important to analyze workloads for the amount of
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In order to achieve this goal, the Capacity Planner
builds an inierval overload profile as follows. Let the
N-node cluster be a configuration recommended for a
given workload, and let I be a duration of time interval

af intereat (i min)
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profile, we use the service demand profile described in
Section 3. We use a “moving window” technique. A win-
dow is set to be I min duration, and it is advanced in
1 min increments. For each such I-interval, any service
demand above N nodes is aggregated and then averaged
over N x I. This way, we can evaluate the average over-
load per node in any I-interval over the entire workload
duration. Thus, the I-interval overload profile is the list
of pairs (t;,d;) reflecting that for the I-interval starting
in time t;, the average overload is d;. For performabil-
ity analysis, the Capacity Planner computes a cumulative
density function (CDF) of aggregate I-interval overload
which is normalized over the number of intervals.

Let us clarify this process with an example. For the
two workloads considered above (“Thin Spikes” and “Fat
Spikes” workloads) and the 3-node cluster configuration,
let us consider the I-interval overload profiles for T =
10 min, 30 men, and 60 min.

Figures 4 a) and b) show the CDF of I-interval over-
load for I = 10 min, 30 min, and 60 min for both work-
loads respectively. For the “Thin Spikes” workload, the
CDF of the three interval overload profiles are very dif-
ferent. For I of longer duration, the overall percentage
of intervals with overload is higher than for I of shorter
duration. However, the amount of average overload in
longer intervals is correspondingly lower. This is con-
sistent with the nature of access patterns in this work-
load: while the longer intervals more likely have the over-
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31In this work, we do not introduce the models of how the application
may deal with the overload. Typically, it is application specific. There
is a set of known strategies used in the commercial media servers to
cope with overload, which result in delivering a lower quality stream
and in this sense, leading to a degraded service performance. It is
an interesting future direction to design a set of models representing
the most popular strategies of delivering content under overload, and
provide more specific metrics of degraded service performance.
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Figure 4: CDF of I-interval overload per node, where I = 10 min, 30 min, and 60 min: a) “Thin Spikes” workload, 3-node cluster; b)

“Fat Spikes” workload, 3-node cluster; ¢) “Thin Spikes” workload, 2-node cluster.

loaded time periods within them, these overload periods
are short. It leads to a lower average overload per inter-
val. On the other hand, for the “Fat Spikes” workload,
the percentage of overloaded intervals and the amount of
overload per interval are similar for all the three profiles
reflecting the longer periods of consistent overload in the
given workload.

Suppose the service provider specifies the following
performability requirement for a solution of interest:
“Based on the past workload history, find an appropriate
performance solution such that the amount of average
overload is limited by 2% in any 60 min interval”.

Let us compare the CDF of 60 min-interval overload
profiles for “Thin Spikes” and “Fat Spikes” workloads.
For the “Thin Spikes” workload, the average overload is
limited by 2% in any 60 min-interval, while for the “Fat
Spikes” workload, 10% of the 60 min-intervals have over-
load higher than 2%. Thus, for the “Thin Spikes” work-
load, the 3-node cluster solution meets the performabil-
ity requirement above. However, for the “Fat Spikes”
workload, the 3-node cluster solution does not satisfy the
desirable overload constraints, and the Capacity Planner
will propose 4-node cluster as the minimal solution sat-
isfying given performability requirements.

Let us denote the outcome of the performability capac-
ity planning for acceptable overload during the regular

. Reg
processmg as Dol o,

For performability requirements, the service provider
should choose the interval and degree of overload that
reflect the service tolerance to QoS degradation. Specify-
ing a short overload interval (i.e. setting the tolerance to
continuous overload being very low) might dimninish the
usefulness of interval overload analysis because the CDF
of interval overload profile will be close to the CDF of the
original service demand, and it might lead to overprovi-
sioning for infrequent demand spikes.

The I-interval overload profile provides a useful insight
into possible performance degradation in case of a node
failure in the cluster. When a node fails in the N-node
cluster, it will provide the service with the remaining
N — 1 nodes, but possibly, at the price of degraded per-
formance. Since a node failure lasts a continuous period
of time, the I-interval overload analysis for the N — 1-

node cluster provides both quantitative and qualitative
characterization of possible amount of overload and its
nature for the remaining cluster. (Similar analysis can
be performed for 2-node failures, etc.)

Figure 4 ¢) shows the CDF of I-interval overload for
I = 10 min, 30 min, and 60 min in the 2-node cluster
that is processing the “Thin Spikes” workload. While
there are 10 min intervals with high continuous overload
reaching 65%, these intervals are very rare, and 80% of
10 min intervals do not have any overload.

Suppose the service provider specifies the following
performability requirement: “Based on the past workload
history, find an appropriate cluster solution such that in
case of 1-node failure the average overload per node in the
remaining system is less than 20% in any 60 min interval”.
To satisfy this performability requirement, 3-node clus-
ter will be required for the “Thin Spikes” workload and
4-node cluster for the “Fat Spikes” workload. Let us de-
note the outcome of the performability capacity planning
for acceptable overload during 1-node failures D3 ~" .

In summary, the desirable configuration that satisfies
the specilied performability requirement is determined
by: Doverati = maz{Dpasic, DL DN¥~1 ) rounded up
to the closcst integer.

4.3 Cluster Size Validation

If the configuration recommended by the basic capacity
planning process is a single machine configuration then
the capacity planning procedure is completed. Otherwise
the Capacity Planner performs an additional refinement
of the cluster sizing by evaluating the impact of the load
balancing solution as well as the implications of the in-
creased overall cluster memory.

A cluster of N nodes represents N times greater pro-
cessing power, and at the same time, it has N times larger
combined memory. During the first iteration of capacity
planning process, the classification of client requests into
memory/disk accesses is done using a “single node” mem-
ory model. We need to re-evaluate workload performance
on the cluster of recommended size by taking into account
the load-balancing solution and the impact of increased
memory in a cluster (due to multiple nodes).



Currently, in our capacity planning tool, we assume
the traditional Round-Robin (RR) load balancing solu-
tion, that distributes the requests uniformly to all the
machines in the cluster. We assume that each media
server in a cluster has access to all the media content.
Therefore, any server can satisfy any client request.

Let the outcome of the first iteration of the Capac-
ity Planner for the original media site workload be the
capacity requirement of & nodes of the media server S.
Then the Capacity Planner procedure goes through the
following sequence of steps to re-evaluate the identified
cluster solution:

e Partition the original media site workload W into k
sub-workloads Wy, Ws, .., W}, using the Dispatcher
employing a load balancing strategy (in our case,
the Round-Robin strategy).

e Compute the media workload profile for each of
sub-workloads Wy, Ws, .., Wy, using MediaProf.

e Merge the computed sub-workload profiles in the
overall media site workload profile by using the time
stamps of individual sub-workload profiles.

e Compute the overall service demand profile.

e Compute the refined basic service demand require-
ments Dyggic-

e Compute the refined performability service demand

: Reg N-1
requirements Dy, and Doy .

— If the outcome of this step is still the capac-
ity requirements of k or less nodes then the
cluster sizing is done correctly and the capac-
ity planning process for a considered cluster
configuration is completed.

— If the computed capacity requirements are [
nodes (! > k) then the capacity planning pro-
cess is repeated for the cluster configuration of
{ nodes.

Typically, for the RR load balancing strategy, the siz-
ing process converges at the second iteration. Since RR
strategy distributes the requests “uniformly” to all the
machines, this prohibits an efficient memory usage in a
cluster because popular content is replicated in the mem-
ory of each machine. The results of our simulation exper-
iments (presented in Section 5) show that under the RR
strategy, the increased memory (due to combined mem-
ory of multiple nodes in the cluster) does not provide any
additional performance benefits in practice.

5 Capacity Planning: a Case Study

In this section, we present a capacity planning example
based on realistic media workloads. The main goal of the
example is to demonstrate the workload profiling, models
and techniques introduced in the paper for accurate SLA-
based capacity planning.

For workload generation, we use the publicly available,
synthetic media workload generator MediSyn [14]. In our
example, we explore two synthetic media workloads w1

and w2 that both closely imitate parameters of real en-
terprise media server workloads {3].

Both synthetic workloads have the same media file du-
ration distribution, which can be summarized via follow-
ing six classes: 20% of the files represent short videos 0-
2min, 10% of the videos are 2-5min, 13% of the videos are
5-10min, 23% are 10-30min, 21% are 30-60min, and 13%
of the videos are longer than 60 min. This distribution
represent a media file duration mix that is typical for en-
terprise media workloads [3], where along with the short
and medium videos (demos, news, and promotional mate-
rials) there is a representative set of long videos (training
materials, lectures, and business events).

The file bit rates are defined by the following discrete
distribution: 5% of the files are encoded at 56Kb/s, 20%
- at 112Kb/s, 50% - at 256Kb/s, 25% at 500Kb/s.

Request arrivals are modeled by a Poisson process: a
new request arrives each second on average.

The file popularity for both workloads is defined by a
generalized Zipf distribution [14] witha = 1.5and &k = 7
in k-transformation. In summary, W1 and W2 have a
fileset with 4000 files (with overall storage requircments
of 207 GB), where 90% of the requests target 8% of the
files. Correspondingly, these 8% of the most popular files
have an overall combined size of 16.7 GB.

The major difference in generation of two workloads is
in diurnal access pattern which defines how the number of
accesses to a site varies during a given period of time, e.g.,
a day. In MediSyn, a user can specify a global diurnal
pattern, which contains a set of bins. Each bin specifies
a time period and the ratio of accesses in this bin. Work-
load w1 is defined by the 1-hour-long bins. Workload
w2 has a diurnal access pattern defined by the 15-min-
long bins. Hence, these two workloads slightly resemble
“Fat Spikes” and “Thin Spikes” workloads considered in
Section 4.2.

Let the capacity planning task be to find the appropri-
ate media system configurations satisfying the following
requirements for workloads w1 and w2:

o Statistical Demand Guarantees: for 95% of the
time, the system configuration is capable of pro-
cessing the given workload without overload;

e Utilization Constraints: for 90% of the time, the
system configuration is utilized under 70% of its
capacity;

o Regular-mode Qverload Constraints: during any
60 min-interval, the average overload per node is
less than 5%;

e Node-Failure-mode Overload Constraints: in case of
1-node failure, with 95% probability the amount of
average overload per node in the remaining system
is less than 10% during any 60 min interval.

Let the benchmarked capacity of the media server of in-
terest be defined as shown in Table 2.

The server capacity scaling rules for different encoding
bit rates (shown in Table 2 are similar to those measured
using the experimental testbed described in Section 2.



Benchmark Server Capacity in Concurrent Streams
for Files Encoded at a Given Bit Rate
56 Kbj/s [ 112 Kb/s [ 256 Kb/s | 500 Kb/s
Single File
Benchmark 600 400 200 100
Unique Files
Benchmark 125 20 40 20

Table 2: Benchmarked media server capacity.

We use cost§is* fcost’y ™™ = 5, i.e. the cost of disk access
for files encoded at bit rate X; is 5 times higher than the
cost of the corresponding memory access.

Finally, let the memory size of interest be 0.5 GB. ¢
Let us denote this media server type as S.
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Figure 5: Service Demand Profile for a) W1; b) W2.

Figures 5 a), b) show the service demands of two work-
loads over time (more exactly 2 days sample of the work-
loads). Most of the time, the service demand of both
workloads is below 4 nodes (we show 4-node demand
through a horizontal line in order to easier see the demand
below and above this mark). The peak load demand
reaches 8 nodes for both workloads. However, the access
patterns are clearly different: workload w2 is somewhat
more bursty than W1; it has a larger number of high-
demand spikes than W1, but these spikes are of a shorter
duration compared to the high-demand spikes in W1.

Figure 6 a) shows the computed CDF of capacity re-
quirements for processing workloads W1 and W2 on the
media server 5. We present the upper half of the curve
for better visibility.

One of the steps involved in computing the service
demand profile is classifying whether a particular media
request, ig likely to be served from memory vs disk. This
computation is based on the high-level memory model
used in MediaProf. The locality available in a particular
workload has a performance impact on the behavior of

“Here, a memory size means an estimate of what the system may
use for a file buffer cache.
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Figure 6: W1 and W2 a) CDF of service demand profile; a) CDF
of service demand profile computed with the disk cost.

the system because serving content from memory incurs
much lower overhead than serving the same content from
disk. In order to quantify this impact for correctly sizing
the system configuration, we compute the resource de-
mand profile, where all the requests are assigned a cost of
disk (for brevity, we call this demand as disk-based), i.e.
we assumne that all the requests are served from disk. Fig-
ure 6 b) shows the computed CDF of disk-based capacity
requirements for processing workloads w1 and w2. The
maximum of disk-based service demand reaches 11 nodes
compared to 8 nodes computed with our model-based ap-
proach. Thus, accounting for whether a particular media
request might be served from memory or disk has signif-
icant implications for accurate capacity planning.

Applying the basic capacity planning to satisfy the
Statistical Demand Guarantees and Utilization Con-
straints, we receive the 5-node cluster solution for both
workloads:

W1l: Dggy =41 Dy =3.3/0.7 =47 = Dpggse = 5.

W2: Dgge =4 Dy =3.2/0.7 = 4.6 = Dpggie = 5.

Now, let us analyze whether the performability require-
ments (both during the regular processing and during 1-
node failure scenario) are satisfied for the 5-node cluster
configuration.

Figure 7 a) shows the CDF of overload per node mea-
surcd in 60 min intervals in 5-node media cluster for work-
load W1: the peak overload reaches 36%, and hence 5-
node configuration does not meet performability require-
ments. In this situation, the capacity planner verifies
if the 6-node configuration meets the performability re-
quirements. As it is shown in Figure 7 a), the 6-node
configuration does not meet the required conditions ei-
ther: the peak overload reaches 15.5%. Only the 7-node
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Figure 7 a) W1: CDF of overload per node measured in 60 min intervals in 5-node, 6-node, and 7-node media cluster; b) W2: CDF
of overload per node measured in 60 min intervals in 4-node and 5-node media cluster; ¢) capacity demands under RR-strategy for W1

processed by 7-node cluster and W2 processed by 5-node media cluster.

configuration (see again Figure 7 a) finally meets the per-
formability requirements on the amount of overload dur-
ing the regular processing mode: the peak overload is
only 4%. In order to validate whether the 7-node config-
uration meets the 1-node failure overload requirements,
the capacity planner checks the CDF of overload per node
measured in 60 min intervals in 6-node cluster: the 95th
percentile of overload per node is 4.2% as shown in Fig-
ure 7 a).

Therefore the outcome of the performability capacity
planning for workload W1 is a recommendation of 7-node
cluster.

Let us analyze whether performability requirements on
overload are satisfied by the 5-node cluster configuration
for workload w2. Figure 7 b) shows the CDF of overload
per node measured in 60 min intervals in 5-node media
cluster for workload W2: the peak overload reaches 4%,
and hence 5-node configuration does meet the performa-
bility requirements under the regular processing mode.
Figure 7 b) also shows the CDF of overload per node
measured in 60 min intervals in 4-node cluster (a config-
uration when 1 node fails): the 95th percentile of overload
per node is 8.1% as shown in Figure 7 b).

Therefore the outcome of the performability capacity
planning for workload W2 is a recommendation of 5-node
cluster.

The final phase of capacity planning is the cluster size
validation for evaluating the impact of the Round-Robin
load balancing solution and the implications of the in-
creased overall cluster memory. Figure 7 c) shows the
computed CDF of capacity requirements for processing
workload W1 on the 7-node cluster and W2 on the 5-node
cluster using RR-strategy in comparison to the CDF of
service demands computed for workloads w1 and w2 at
the first iteration of capacity planning process. Valida-
tion shows that under the RR load balancing strategy,
the increased memory (due to combined memory of mul-
tiple nodes in the cluster) does not provide the additional
performance benefits, and the recommended solutions for
both workloads are correct. This completes the capacity
planning process.

The difference in the outcome — 7-node cluster for w1,
and 5-node cluster for W2 — is intuitively expected: work-

load w1 has a longer durations of continuous overload
compared to short spikes of high-load in w2, and the
designed performability framework incorporated in the
capacity planning tool is capable of capturing this differ-
ence.

6 Related Work

It is commonly recognized that multimedia applications
can consume significant amounts of server and network
resources. Traditionally, network bandwidth or disk sys-
tem throughput has been the target of optimizations and
sizing for streaming media services [16, 6, 2, 8]. Most
of the designed models deal with the complexity of real-
time delivery of variable bit rate content. In our paper,
we assume a constant bit rate encoding for media con-
tent (that is typical for commercial systems). Thus, for
a given workload, it is easy to determine what network
bandwidth is required. The difficult task is to determine
the system resources (amount of CPU, memory, and disk
resources) needed to process a given workload with spec-
ified performance requirements. This is the main focus
of our work.

The concept of performability [9, 12, 13] captures the
combined performance and dependability characteristics
of the system, i.e. how well it performs in the presence of
failures over some time inferval. Direct measurements of
performability are only possible when a full-scale working
prototype exists. Before then, system designers and ser-
vice providers must rely on models of the candidate con-
figurations. In our work, we design appropriate models
of the media workload and the supporting media system
that allow the capacity planning process to evaluate the
possible service degradation (overload conditions) in case
of node failures during the service time. In this work, we
do not consider the space of all possible failure scenarios.
Instead, we rather concentrate on providing the analy-
sis of the potential performance degradation, when one
(or more) of the nodes in the cluster fails to support the
service.

The current trend of outsourcing network services to
third parties has brought a set of new challenging prob-
lems to the architecture and design of automatic resource



management in Internet Data Centers. For measuring a
performance of commercial web servers, there is a well-
defined suite of commercial benchmarks. There are also
well-developed methods and techniques for capacity plan-
ning of commercial web and e-commerce sites [10, 11].
However, similar benchmarks and the corresponding per-
formance studies are not currently available for commer-
cial (academia/research) media servers. Work performed
in this paper presents a step in this direction.

In [15, 7], the authors promote the necessity of applica-
tion profiling and adequate system/workload /application
models, facilitating a utility service design. Our work fol-
lows a similar motivation and proposes the corresponding
models for evaluating performance and sizing the stream-
ing media cluster solutions.

7 Conclusion and Future Work

In this paper, we outlined a new model-based capacity
planning framework for evaluating the capacity require-
ments of a given media workload. Our capacity planning
tool is comprised of several novel inter-related compo-
nents:

e The capacity measurements of different h/w and
s/w solutions using a specially designed set of media
benchmarks and the derived cost function that pro-
vides a single value to reflect the combined resource
requirements (e.g., CPU, disk, memory) necessary
to support a particular media stream;

e The workload profiler MediaProf, which derives a
special media site workload profile that character-
izes a number of concurrent connections over time
and their encoding bit rates. Using a high-level
memory model, it then evaluates whether a request
will be likely streaming data from memory or will
be accessing data from disk. The media workload
profile constructed by MediaProf can be directly
mapped to the capacity requirement for a particu-
lar media server of interest using the cost function
from the benchmarked configuration of this server;

o The Capacity Planner that allows a service provider
to specify the desirable system performance via the
requirements of the Service Level Agreement (SLA).
A special feature of the Capacity Planner is that it
provides a performability analysis of the configura-
tion suggested by the basic capacity planning pro-
cess for the amount of continuous overload per node
both during the regular processing and during the
node failurc pcriods.

We envision an interesting application of our capacity
planning tool when a streaming media service is hosted
in Utility Data Center (UDC) [17]. The UDC infras-
tructurc provides a sct of new management capabilitics
for requesting/releasing the system resources to dynami-
cally provision the application demands and their require-

ments. In the future, we intend to use our capacity plan-
ning tool as a core of an adaptive management system in
the streaming media utility for determining when to de-
ploy additional server resources in order to accommodate
growing user demand or changing access characteristics.
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