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Abstract
Description logic reasoners are becoming more widely used for reasoning about resources on the Semantic 
Web. To allow client tools to interact with different reasoners in a standard way, a common standard 
interface is highly desirable. The DIG Description Logic Interface is a proposed standard that provides just 
this capability. In the process of implementing a DIG adapter for the Jena Semantic Web toolkit, we have 
noted a number of problems and shortcomings in the DIG standard, version 1.1. This report summarises 
these issues, and makes specific suggestions as an input to the next version of the DIG standard.

1 Introduction
Description logics [1] are a class of logical formalism in which certain restrictions are imposed on the 
expressiveness of the logical language in return for well-established upper-bounds on the complexity of 
proving theorems using those logics. Description logic theory has thus provided a firm foundation for a 
number of implementations of description logic reasoners: computer programs that take description logic 
formulae as input, and deliver theorems about those formulae (such as whether they are logically consistent) 
as a result. Despite the relative simplicity of the proof method for such logics, practical description logic 
reasoners are the subject of much research and engineering effort in order to produce reasoners that given 
acceptable computational performance on realistic problems.

Description logics (typically DL’s) are currently of much interest in the Semantic Web community, particularly 
owing to the recently defined W3C standard Web Ontology Language OWL [4]. Given increasing 
quantities of ontology data expressed in OWL, semantic web applications will increasingly need access to 
sophisticated DL reasoners. For developers of semantic web applications, having a convenient means to 
access different standard DL reasoners would be extremely beneficial. Such a standard also aids the DL 
implementers, as they can concentrate on better engineering their reasoner, without needing to support the 
general panoply of representation services needed by application writers. Fortunately a nascent form of 
such a standard exists: the DIG DL reasoner interface specification [2] from the Description Logic 
Implementation Group1. Although strictly speaking the acronym DIG identifies the group and not the 
standard, the documentation uses the acronym DIG to refer to the interface specification itself. For brevity 
and consistency, we follow the same convention in the rest of this paper.

Jena 2 [5] is a popular Java toolkit developed by HP Labs to provide convenient developer support for a 
wide range of semantic web applications. While Jena includes a rule-based reasoner that is able to provide 
some of the semantic entailments of the OWL language for a given set of ontology data, it does not attempt 
to provide the capability of a DL reasoner. We have therefore implemented a plug-in adapter to allow a 
Jena programmer to utilise a DL reasoner with a DIG interface. This exercise has revealed a number of 
weaknesses in the DIG standard, which should be addressed in future revisions of the standard. This report
has two aims: to report on our implementation experience with DIG, particularly noting the problems that 

  

1 http://dl.kr.org/dig/
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arose, and to make suggestions as input to the next round of revising the DIG specification. It is not an 
objective to provide a tutorial on the use of the DIG interface itself.

The remainder of this report is structured as follows: section 2 describes our approach in connecting DIG 
reasoners to Jena. Many of the problems we have discovered have arisen in systematically building 
translators between DIG’s representation language and the RDF representation of OWL. Section 3 details 
the various issues that have arisen during our development process, and presents our recommendations for 
future actions to improve the DIG specification. Section 4 concludes.

1.1 A overview and brief history of DIG
The current release of DIG is version 1.1, dated Feb 2003 [2]. DIG was primarily the result of a 
collaboration between two teams of leading DL engine implementers, those responsible for FaCT [7;8] and 
RACER [6]. From its genesis, DIG’s requirements were primarily driven by the goals of providing access to 
the capabilities of these two engines, and by the kinds of reasoning tasks that were of interest to the 
respective research teams. This colours the emphases placed on DIG: for example, FaCT has very weak 
capabilities for reasoning about instances of classes, while it is very strong in reasoning about class and 
property hierarchies. Therefore the instance reasoning capabilities of DIG are correspondingly less well-
developed. Similarly, both reasoners are typically used in batch mode: a knowledge base is loaded, which 
may consume considerable computational resources, and then is repeatedly queried. This leads DIG itself to 
have a batch-oriented flavour, lacking capabilities for incremental changes to the knowledge base (other 
than strictly monotonic asserts). For the current uses of DIG, this is not a problem. However, as additional DL 
reasoners are created by other research groups and companies these restrictions are likely to seem more 
like barriers.

1.1.1 DIG summary
There is not space in this short technical report to provide full details of DIG. Readers who are unfamiliar 
with DIG 1.1 are referred to the overview [3] or the specification itself [2]. However, to set the context for 
the remainder of this report, we summarise below the principal features of DIG 1.1.

To provide maximum portability, DIG 1.1 defines a simple XML encoding to be used over an HTTP interface 
to a DL reasoner. The DL engine thus must provide basic HTTP support (though in fact only the HTTP POST 
verb is currently used), and be able to parse and generate XML content. While this is quite similar to a web-
services approach, the DIG designers explicitly chose not to use web-services machinery (SOAP, WSDL, etc) 
per se. For our Java implementation this turned out to be convenient, as Jena already includes the Xerces2

XML library, and basic HTTP support is built-in to the java.net library. Thus no additional software 
libraries were needed to access a remote DIG reasoner.

Each interaction with a DIG reasoner is initiated by a DIG client, which POST’s one or more actions 
encoded using the DIG XML schema. The server will then respond with a combination of an appropriate 
HTTP response code and, where appropriate, the results of the action or actions similarly encoded in XML.

There are three classes of action that the DIG schema provides for use by clients: management operations, 
tell operations to make assertions into the reasoner’s knowledge base (KB), and ask operations to query the 
KB.

The DIG management operations are summarised in table 1, while tables 2 to 4 summarise the concept 
encodings available, and the tell and ask verbs respectively.

  

2 See http://xml.apache.org/xerces2-j/index.html
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XML element name Description

getIdentifier Get from the reasoner a description of itself, including name, 
version number, and a list of the DIG concept language elements 
supported by the reasoner.

newKB Request the reasoner to allocate a new knowledge base and return 
the unique identifier for that KB. This KB identifier is used by 
subsequent operations to indicate which of multiple KB’s is being 
updated or queried.

releaseKB Request the reasoner to release the named KB and free resources 
associated with it. Subsequent asks or tells to that KB name are in 
error.

Table 1: DIG management operations

XML element name Description

top The universal concept (like owl:Thing)

bottom The empty concept (like owl:Nothing)

catom Introduces a concept (i.e. class) name

and
or
not

Boolean combinators for concept expressions, corresponding to 
intersection, union and complement in description logic.

some R E
all R E

Existential and universal property restrictions

atmost n R E
atleast n R E

Maximum and minimum cardinality restrictions (note that the 
number is encoded as a num attribute, not sub-element). Note also 
that the E parameter, denoting a concept expression, allows 
qualified cardinality restrictions, a language feature of DAML+OIL 
that was left out of OWL

iset A class expression that is exactly the given named individuals.

stringmin, stringmax, 
stringequals, string-
range, intmin, intmax, 
intequals, intrange

Limited set of concrete domain value expressions

ratom A named role (object property in OWL)

feature A named functional role (functional object property in OWL)

inverse A role expression denoting the inverse of a given role

attribute A named attribute (datatype property in OWL)

chain A linear composition of features (no equivalent in OWL)

individual A named individual

Table 2: Concept encoding terms



14 May 2004 Document version 0.4 page 4 of 14

XML element name Description

defconcept
defrole
deffeature
defattribute
defindividual

Concept introduction verbs. Some reasoners may warn if concepts 
are used before being introduced by a defXX verb.

impliesc C1 C2 Concept implication, every C1 is also a C2 (equivalent to 
rdfs:subClassOf in OWL)

equalc C1 C2 Concept equality (equivalent to owl:sameClassAs)

disjoint C1 C2 .. Cn Mutual disjoint-ness between the given concept expressions.

impliesr R1 R2
equalr R1 R2

Role implication and equality; analogous to class implication and 
equality

domain R E
range R E

Role R has as domain or range the concept expression E

rangeint A
rangestring A

Attribute A has as range the concrete datatype int or string.

transitive R Role R is transitive

functional R Role R is functional

instanceof I C Individual I is an instance of concept expression C (equivalent to 
rdf:type in OWL)

related I R I2 Individual I is related to individual I2 by role R.

value I A V Individual I has concrete value V for attribute A.

Table 3: Tell verbs

XML element name Description

allConceptNames
allRoleNames
allIndividuals

Query for a list of all named concepts, roles and individuals

satisfiable C Query whether concept C is satisfiable (i.e. can ever have any 
instances)

subsumes C1 C2
disjoint C1 C2

Query whether C1 subsumes, or is disjoint from, C2

parents
children
ancestors
descendants

Query for the immediate sub- or super- concepts for a given concept 
(parents/children), or the closure of all super- or sub- concepts 
(ancestors/descendants)

equivalents Query for all of the concepts equivalent to a given concept

rparents
rchildren
rancestors
rdescendants

Query for the sub- and super-concepts in the role hierarchy, by 
analogy with the class hierarchy

instances C Query for all instances of concept C

types I Query for all concepts that I belongs to
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instance I C Test whether instance I is an instance of concept C.

roleFillers I R Query for those individuals that are related to I through R
relatedIndividuals R Query for all individual pairs that are members of R

toldValues I A Query for the values of attribute A of individual I

Table 4: ask verbs

2 Connecting DIG reasoners to Jena
This section outlines the basic design and implementation that allows Jena users to use a DIG reasoner with 
the Jena RDF API.

The central object that holds RDF data in Jena is the Model. Model has a rich API, with many convenience 
functions for RDF programmers. Internally, however, this rich API is problematic for connecting to different 
kinds of stores (in-memory data structures, persistent databases, LDAP servers, etc). Thus in Jena 2 we 
introduced a much simpler abstraction Graph, which has only a few methods that need to be implemented 
to wrap a given source of RDF triples. Model is then an adapter for some Graph. A second advantage of 
introducing the Graph abstraction is that it gives a natural way of providing a certain class of RDF inference 
services. In many RDF-based languages, such as OWL, the semantics of the language entail the presence of 
additional triples in the graph of some base data closed under inference. As a simple example, consider 
graph G which contains exactly two triples: 
:x rdfs:subClassOf :y and 
:y rdfs:subClassOf :z. 

The inference closure of G, Gi, contains at least the following additional information
:x rdf:type rdfs:Class
:y rdf:type rdfs:Class
:z rdf:type rdfs:Class
:x rdfs:subClassOf :z

In Jena 2, the inference graph is an implementation of the Graph interface, but which wraps some other 
Graph providing the base data, and presents a graph that appears to contain the entailed triples as well as 
the asserted triples. The Java interface InfGraph is a specialisation of Graph that wraps a graph of base 
assertions with a reasoner.

Figure 1: Jena inference schematic
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This then provides the natural extension point for integrating a DIG reasoner. A DIGInfGraph is the new 
graph object that is presented by the Model adapter. We have to provide a specialisation of InfGraph
that knows that it is presenting a DIG reasoner, because we must specify the connection details for the 
remote DIG reasoner. A DIG reasoner is the object that performs the work of translating between RDF triples 
on one side, and the tells to and asks from the remote DIG reasoner on the other. We discuss 
DIGReasoner in more detail below.

Figure 2: Jena - DIG connection schematic

The other components from Jena’s inference machinery are used in the standard way. For example, the 
reasoner registry is able to create instances of a Jena InfGraph bound to a DIG reasoner.

The principal problem we have to deal with in connecting Jena’s graph abstraction to a DIG reasoner is not 
structural, however. As mentioned above, the use of plain XML and HTTP makes the mechanics of the 
connection straightforward. The problem is to translate between an RDF encoding of an OWL (or DAML, but 
in this paper we stick to OWL for simplicity) ontology in RDF, and the terms in the DIG concept language. 
This is easiest to illustrate with an example. In table 5, we show a collection of RDF triples encoding a 
fragment of an OWL ontology, and the corresponding DIG translation.

MemGraph –
base assertions

DigReasoner
DIG reasoner 

process
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find
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HTTP interface across 
process boundary

delete



14 May 2004 Document version 0.4 page 7 of 14

RDF/XML DIG concept language
<owl:Class rdf:ID=”A”>
<owl:complementOf>
<owl:Class rdf:ID=”B” />

</owl:complementOf>
<rdfs:subClassOf>
<owl:Class rdf:ID=”C” />

</owl:Class>

<?xml version="1.0"?>

<tells
xmlns=http://dl.kr.org/dig/lang
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://dl.kr.org/dig/lang
 http://potato.cs.man.ac.uk/dig/level0/dig.xsd">

<defconcept name="http://example.org/foo#A" />
<defconcept name="http://example.org/foo#B" />
<defconcept name="http://example.org/foo#C" />

<impliesc>
<catom name="http://example.org/foo#A" />
<catom name="http://example.org/foo#C" />

</impliesc>

<equalc>
<catom name="http://example.org/foo#A" />
<not>
<catom name="http://example.org/foo#B"/>

</not>
</equalc>

</tells>

Table 5: sample RDF/XML to DIG translation

The way we accomplish this is essentially to define a simple translator as a lookup table of LHS patterns over
sets of RDF triples, and an RHS generator of the appropriate DIG concept language. For example, the 
pattern “* rdf:type owl:Class” matches a generator that introduces defconcept terms into the tell 
verb. At the present time, this lookup table is hand-generated. It would be an interesting experiment to try 
using a parser generator that would consume a DCG defining the mappings between DIG and RDF, and 
thus generate the mapping table from a more declarative source. We do, however, define an extensive set 
of unit tests that compare source expected XML documents to the output of the translation process for a given 
input set.

A tricky issue with this translation process is when to invoke it. Clearly, if a Jena application loads a set of 
base data into a local graph, then binds that graph to the DIG reasoner, we do the translation of the entire 
model to a DIG KB at one time. More difficult is when the updates occur incrementally, because partial 
information may be transmitted to the reasoner. Consider the following triples being added to a knowledge 
base (using N3 format for brevity):

ns:A rdfs:subClassOf ns:B.
ns:A rdf:type owl:Class.

Were these triples to be translated incrementally, some DIG reasoners might issue a warning or error that A
is an unknown type, since the defconcept would follow the impliesc axiom, rather than vice-versa. To 
avoid this, we would need both to (a) be able to recognise when a set of triple-adds was complete as a unit, 
and (b) be able to re-order the triples to be translated so that the translations are presented to the DIG 
reasoner in an appropriate order. The current implementation has solutions to both of these problems, 
though they have not yet been extensively tested in practise.

The current usage model assumes that Jena is the gatekeeper to all RDF and OWL content. However, a valid 
alternative approach is that a central DIG reasoner is pre-loaded with the contents of the ontology in 
question, and then a Jena application connects to that reasoner and presents the DL contents as an RDF 
model. In principle this is quite possible, but it has not been properly tested and unanticipated problems 
may arise. This too will be corrected shortly.
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3 Problems and recommendations
In the process of arriving at the solution described in section 2, we encountered a number of problems with 
the DIG interface to RACER (the DL engine we have been testing with). A few of these problems were 
straight bugs in RACER’s DIG implementation, which have now been corrected by the RACER implementers. 
Other problems were intrinsic to the DIG specification itself. In this section of the report we summarise these 
problems, as a set of observations and suggestions to any future round of improvements to the DIG 
specification document.

3.1 General problems

3.1.1 Ambiguity
While very useful, the DIG document [2] is a research report rather than a complete specification. Some 
terms are not well-defined, some syntax has to be inferred from the examples rather than stated in normative 
descriptions. Examples: the difference between feature and attribute is not defined (moreover, it turns out 
that features were made redundant with the introduction of the functional axiom); the value axiom when 
defining the value of an attribute of an individual does not specify the encoding of the value.

Another example of general ambiguity is that the specification does not detail the responses that should be 
expected from a given query. Usually these are obvious, but in the case of differing interpretations returned 
by different DIG reasoners, it would be impossible, currently, to tell whether which is correct with respect to 
the specification. A particular case that needs more attention is the conditions under which the reasoner 
should report an error: e.g. exactly what constitutes ill-formed input, etc. A test suite should ideally contain 
examples of ill-formed input that should cause the reasoner to raise particular errors.

A further issue is a general lack of regularity. For example, concept names are introduced with <catom>, 
role names are introduced with <ratom>, while individual names are introduced with <individual>.
Also irregular, from the XML viewpoint, is the treatment of top and bottom. These have their own element 
forms, which means that code that handles conceptSet return values is needlessly complicated by having 
to handle <top> and <bottom> together with catom values. Making top and bottom special names for 
catom elements would improve the conceptual simplicity of both the underlying model and the code that 
has to process it.

Recommendation: a pass of refactoring and editing of the document, with a view to being an 
unambiguous standard for other implementers. Ideally the specification should be augmented with a 
normative set of conformance tests.

3.1.2 Result and results
There are two wrappers for returned results <response> indicates a single value, <responses> indicates 
more than one (see figures 10 and 14 of [2]). However, the size of the results set (one or greater) is easily 
determined from the XML tree, so the distinction between result and results is not useful.

3.1.3 Querying attribute values
Consider the following DIG tell message (edited for clarity, e.g. xmlns declarations removed):

<tells>
<defconcept name="http://example.org/foo#A"/>
<defattribute name="http://example.org/foo#p"/>
<defindividual name="http://example.org/foo#a0"/>
<instanceof>

<individual name="http://example.org/foo#a0"/>
<catom name="http://example.org/foo#A"/>

</instanceof>
<value>

<individual name="http://example.org/foo#a0"/>
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<attribute name="http://example.org/foo#p"/>
<ival>3</ival>

</value>
<value>

<individual name="http://example.org/foo#a0"/>
<attribute name="http://example.org/foo#p"/>
<ival>1</ival>

</value>
<value>

<individual name="http://example.org/foo#a0"/>
<attribute name="http://example.org/foo#p"/>

 <ival>2</ival>
</value>

</tells>

The next segment shows query against this KB, and the current response3. In Dig 1.1, this is the only way to 
query against attribute values:

<asks>
<toldValues id="q0">

<individual name="http://example.org/foo#a0"/>
<ratom name="http://example.org/foo#p"/>

</toldValues>
</asks>

<responses>
<ival>2 </ival>
<ival>1 </ival>
<ival>3 </ival>

</responses>

This response raises several problems. Firstly, there's no aggregate element, analogous to conceptSet or
individualSet, in other DIG response types. Secondly, the basic idea of toldValues seems to be 
mixing two different concepts: one is the dual of roleFillers for attributes, and the other is querying the 
asserted values and not the deductive closure. 

It is incongruous to make consulting the asserted facts, excluding the deductions, only available to attribute 
values and not to other query types. It would also seem prudent to allow the DIG syntax to support reasoners 
that can perform reasoning on concrete domain values, as future DIG-capable reasoners may indeed do so.

Recommendations: querying for attribute values needs a proper query verb, and an aggregate element 
to group the results (such as valueSet). Querying the told values vs. the deductive closure should be 
factored out as general option to queries, perhaps as an optional attribute on the asks element.

3.1.4 Use of HTTP error codes
While, in general, we support the choice of the DIG designers to make minimal assumptions about the 
choice of communications protocol, for example by not specifying a SOAP interface, we also recognise that 
the flexibility to adapt to other communications platforms is important. For designers who wish to adopt the 
DIG specification as an XML content language, but use, for example, SOAP or an agent communication 
language (ACL) as the communications substrate, DIG is overly restrictive in specifying that error conditions 
are signalled using HTTP error codes. It would be better for the DIG specification to be self-contained at the 
XML level.

  

3 Using RACER, but only as an exemplar. The problem is not that RACER is buggy, but that DIG does not 
have the syntax to express the results appropriately.
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Recommendation: the DIG specification should be extended so that the error conditions that are currently 
specified by HTTP return codes (see appendix A of the DIG specification) are instead returned as XML 
elements in the return message. Use of HTTP error signalling should be reserved for use by clients using 
HTTP to access the server, purely to signal errors intrinsic to HTTP communications. In particular, HTTP error 
codes should not be used to indicate parse or recognition errors with the XML content of the DIG message.

3.2 Issues arising from translating OWL RDF to DIG

3.2.1 Unique name assumption
When RACER and FACT were first created, it was common for DL engines to make the unique name 
assumption (UNA). This states that two entities that have different names necessarily refer to different things. 
Thus, if the DL reasoner was able to infer that two names referred to the same entity, a contradiction was 
reported and the KB would be deemed unsatisfiable. RDFS, DAML+OIL and OWL, because they are 
intended for the open world of the Web, explicitly do not make the UNA. Indeed, DAML+OIL and OWL 
have mechanisms for stating explicitly that two individuals are the same (q.v. owl:sameAs) and different 
(q.v. owl:differentFrom). This equivalence on individuals cannot be translated into DIG at the moment 
(while there is equalc and equalr for class and role equivalence, there is no equali for individuals), 
and in any case no DIG capable reasoners at the time of writing (April ’04) would be able to handle 
equali without contradiction because of the UNA. A forthcoming release of RACER is intended to make 
the UNA switchable, precisely to better support OWL. It is not clear whether a future version of FaCT will do 
so.

Recommendations: DIG needs to be extended to include equality of instances (i.e. something like 
equali, and synonyms to be added to the individualSet response syntax). The reported reasoner 
capabilities (in the identifier response) should be extended to report whether the reasoner supports the 
unique name assumption. Optionally, there should be a way of configuring the UNA through DIG, for those 
reasoners that support it4.

3.2.2 Anonymous resources
A core feature of RDF and its derivative languages is the anonymous resource, or bNode. DIG does not 
allow any resources to be anonymous. The way that the Jena DIG adapter handles this is to build a table of 
Skolem names, constants that are guaranteed not to occur elsewhere in the model, and use that table to 
map between the bNode identifier and the Skolem name that is passed to DIG. We use URN’s constructed 
from UUID’s for this purpose. However, such URN UUID’s are also used legitimately in other applications, so 
there is a danger that URN naming schemes may accidentally clash.

Recommendations: either extend DIG syntax properly to account for anonymous resources, or establish 
a common URN namespace for Skolem names that stand for RDF bNodes. The latter is certainly the easier 
option: it would model anonymous RDF resources as named objects in a DIG reasoner, but using a name 
that was unlikely to clash with existing names. This could be recognised by RDF clients as a proxy for an 
anonymous resource; such clients could then perform an appropriate transformation to true RDF bNodes.

3.2.3 hasValue restriction
OWL and DAML allow the definition of a class expression as a restriction on a property p where the value 
of p is a certain value, either an individual or a concrete data value. For example, the class 
IansBrothers is the set of individuals for whom the value of the brother-of property is :Ian. DIG 
does not have a direct equivalent for hasValue. Sean Bechhofer suggested the following alternative 
formulation for a restriction on property p that it owl:hasValue I:

  

4 Adding a general parameter-setting and getting might be a simple way of providing this capability in a 
generic way.
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<some>
<role name="p"/>
<iset>

<individual name="I"/>
</iset>

</some>

For datatype properties (i.e. attributes in DIG), we have something like:

<intequals val="2">
<attribute name="p" />

</intequals>

This works for the few datatypes (int and string) that are built-in to DIG, but will not work for general typed 
literals.

Recommendations: (1) Direct support for hasValue restrictions in the DIG syntax, including hasValue
operating over concrete domains (as permitted by OWL). (2) Extend DIG syntax to allow XSD datatypes to 
be specified for concrete domain values, so that reasoners that are capable of working with datatypes have 
sufficient information to do so.5

3.2.4 Inverse functional property
OWL and DAML have the notion of a property that has a unique domain value for a given range value. This 
is the opposite of a functional property, so OWL’s terminology is inverse functional property (DAML uses the 
term unambiguous property). There is no direct translation for inverse functional property in DIG. One way 
to encode “:p rdf:type owl:inverseFunctionalProperty” is to create axioms stating that 
property p’ is the inverse of p, and that p’ is functional. The translator will have to create a Skolem name for 
the inverse property p’ if none is already defined in the model, and this may produce confusing output for 
users, especially if an inverse of p is later declared in the KB.

Recommendation: DIG should be extended to include direct support for inverse functional property 
axioms.

3.2.5 Different from and all-different
OWL and DAML both allow individuals to be declared to be explicitly different. This is implied by the UNA, 
so there is no explicit syntax for it in DIG. Sean Bechhofer suggested the following encoding, that works for 
both owl:differentFrom and owl:allDifferent:

<disjoint>
<iset>
<individual name="i1"/>
</iset>
<iset>
<individual name="i2"/>
</iset>

</disjoint>

Recommendation: Although this encoding works, Sean Bechhofer also points out that it may inhibit 
reasoners that have machinery to efficiently handle allDifferent and differentFrom axioms from 
recognising situations where that support can be employed. Therefore, we recommend an explicit encoding 
for both axiom types.

  

5 Suggestion (2) is from Sean Bechhofer.
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3.3 Missing components
Some desirable verbs or queries are simply missing from the DIG 1.1 specification.

3.3.1 Testing the global consistency of the KB
There is no query verb that tests that the overall KB is consistent6.

3.3.2 Equivalent roles
There is a query verb <equivalents> for querying the concepts that are equivalent to a given concept, 
but there is no corresponding verb for querying the roles that are equivalent to a given role.

3.3.3 Querying property axioms
A role may be declared functional, transitive, etc, but there is no means for a DIG client to query the KB to 
discover the axioms for a given property. This will be particularly pertinent for Jena when a Jena model can 
be connected to an existing reasoner that already has the knowledge base loaded. Moreover, sometimes 
the characteristics of a role, such as being symmetric, can be inferred from the KB. This would be good 
deduction for the reasoner to be able to report to the client.

Sean Bechhofer recently commented7 that there are likely to be a number of queries of a KB that are not 
supported currently in DIG, but which are likely to be useful in the general case when viewing a DIG 
reasoner as a general knowledge server. This has not been a focus of DIG in the past, but may become 
increasingly important in the future.

3.3.4 Type testing for concept, role and individual atoms
Given a name, a client may wish to know whether that name is currently defined as a concept, role, 
attribute or individual. For concepts, roles and individuals the only way to achieve this is to list all of the 
appropriate names (e.g. asking <allConceptNames />), and then testing whether the given name is one 
of those. This is potentially very inefficient for large KB’s. There appears to be no means at all to test 
whether a given name corresponds to an attribute.

One way to rectify this is to provide a set of unary ask predicates to test whether a given name is a concept, 
role, etc. An alternative is a predicate that tests the type of a name, and returns one of role, attribute, 
concept, individual or undefined.

3.3.5 Testing and retrieving disjoints and equivalents in class hierarchy
The ask language contains the following verbs, both of which are useful:

<disjoint>C0 C1</disjoint>    returns true/false
<equivalents>C0</equivalents> returns a conceptSet

That is, for disjoint classes you must ask whether C0 is disjoint from C1, but for equivalent classes you must 
ask which concepts are equivalent to C0. The duals of these asks should be added to the ask language:

<disjoints>C0</disjoints>        returns a conceptSet
<equivalent>C0 C1</equivalent>   returns true/false

  

6 Note that Racer’s DIG interface provides the non-standard verb <consistentKB /> to test the global 
consistency of the KB.

7 Personal communication.
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A particular problem that is caused by not having the second form of equivalent is that it is unnatural to 
query as to whether a given named class is equivalent to a concept expression8, and moreover it is not 
possible to ask if two concept expressions are equivalent (for example is “A ∩ B owl:equivalentClass
A ∩ C”?)

3.3.6 Listing role fillers for all roles on an individual
The query <roleFillers> I R </roleFillers> allows a DIG client to retrieve all values for role R on 
an individual I. It is also important for many applications to list all the role-fillers for all of I’s roles, i.e. to 
provide a query similar to roleFillers but in which R is not known a priori. 

4 Conclusion
This report has summarised some of our experiences building an adapter to connect Jena inference models 
to DIG reasoners. DIG is a good start towards a standard interface to a description logic reasoners. Having 
such a standard will be of great value to the semantic we community, allowing semantic web tools to 
interoperate much more effectively.

The current version of the DIG specification suffers somewhat from not having been widely implemented yet. 
Our attempt to build, ab initio, a DIG reasoner client exposed a number of shortcomings in version 1.1 of 
the DIG specification. We hope that these observations will contribute to improving future versions of the 
DIG standard, and help to make DIG a successful for range of DL reasoner interfaces.
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