

Virus Throttling for Instant Messaging†

Matthew M. Williamson, Alan Parry, Andrew Byde
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2004-81
May 5, 2004*

E-mail: firstname_lastname@hp.com

 Virus Throttling is a technique to slow the spread of worms and viruses

by targeting their propagation. It works by preventing an infected
machine infecting many others. This then results in fewer machines
becoming infected and less traffic generated by the virus. The technique
has been shown to work well for worms that spread over many TCP/IP
protocols as well as email. This paper applie s the technique to Instant
Messaging. Worms and viruses that spread over Instant Messaging are a
growing but significant threat. They have the potential to spread very
rapidly causing widespread damage. While there have been few Instant
Messaging viruses in the wild, they are likely to become more of a
problem in the future, particularly as many enterprises are adopting
Instant Messaging for internal use.

* Internal Accession Date Only
 †Virus Bulletin Conference, September, 2004, Chicago, IL, USA
 Approved for External Publication
 Copyright Hewlett-Packard Company 2004

Virus Throttling for Instant Messaging

Matthew M. Williamson, Alan Parry, Andrew Byde
HP Labs Bristol, Filton Road, Stoke Gifford, BS34 8QZ, UK

matthew williamson@alum.mit.edu, alan.parry@hp.com, andrew.byde@hp.com

April 28, 2004

Abstract

Virus Throttling is a technique to slow the spread of
worms and viruses by targeting their propagation. It
works by preventing an infected machine infecting many
others. This then results in fewer machines becoming in-
fected and less traffic generated by the virus.

The technique has been shown to work well for worms
that spread over many TCP/IP protocols as well as email.
This paper applies the technique to Instant Messaging.

Worms and viruses that spread over Instant Messaging
are a growing but significant threat. They have the po-
tential to spread very rapidly causing widespread dam-
age. While there have been few Instant Messaging
viruses in the wild, they are likely to become more of
a problem in the future, particularly as many enterprises
are adopting Instant Messaging for internal use.

1 Introduction

Worms and viruses1 that spread over instant messaging
(IM) are a new and potent threat to enterprises and home
computer users. The client programs used to read and
send messages are increasingly complicated, and thus
are likely to contain bugs (or even features!) that can
be exploited by malware. For enterprises, IM is partic-
ularly worrying as IM protocols often use tunnelling to
traverse firewalls, allowing any malicious payload (de-
nial of service, key logging, damage to machines etc.)
to be suffered inside the corporate network. Finally be-
cause each user generally has a list of “buddies” it is easy
for the worm or virus to find new users and machines to

1While recognising the differences between viruses and worms, in
this paper both terms are used to refer to the same thing: propagating
malware.

infect. This means that IM worms have the potential to
spread very quickly [8].

Current techniques for dealing with worms and viruses,
notably patching machines to remove vulnerabilities,
and using signature detection methods, are unsatisfac-
tory for this threat. Patching machines is slow, hard work
and often incomplete, in spite of efforts to improve it e.g.
Windows Update [12]. Indeed, many IM clients are third
party software and patching occurs on an ad hoc basis
at best. Signature detection methods operate by defi-
nition after the malware has been released, and so are
forever playing catchup. With the fast propagation rate
of IM worms, signature based mechanisms are likely to
be stretched, and would provide little protection against
unknown (so called zero-day) attacks.

This paper presents an alternative approach based on
limiting the propagation of any IM worm. Virus Throt-
tling [18, 16, 19] is based on the observation that normal
traffic on many protocols is quite different from the traf-
fic generated by a worm or virus spreading on the same
protocol. This paper will show that in the case of IM,
the normal interaction of an IM user with their buddies
is quite different from a virus spreading by sending mes-
sages to all their buddies. In particular, IM usage con-
sists of many interactions with a slowly varying subset of
buddies, while a virus will send messages to many differ-
ent buddies. Restricting the rate that a user can interact
with others will contain the virus but not be noticeable
to the user.

The paper begins by providing background information
about how common instant messaging systems work,
and then analyses in detail the structure of a network of
IM users, showing that IM worms could indeed spread
quickly. Virus throttling is then introduced and its ef-
ficacy demonstrated using data collected from the mes-
saging habits of over 700 users. The implementation of
throttling at the messaging server is also described. The
final sections return to the IM network and show what

effect throttling would have on the global spread of a
worm.

2 Instant Messaging Background

Instant messaging is a method for real time communi-
cation over the Internet. Instant messaging clients send
text, xml or html messages back and forth to form a con-
versation. It is generally also possible to send files, join
chat rooms and access other services e.g. stock quotes
using IM. There are a variety of IM systems including
MSN Messenger, AOL Instant Message (AIM), Yahoo
Instant Messenger (YIM) and Jabber.

There are two main ways that IM systems are archi-
tected: server proxy and server broker. In the server
proxy architecture, all messages are passed through the
server. If two users A and B want to communicate, A
sends a message to the server, which passes it to B and
vice versa. This is the most common arrangement.

The alternative is server brokering. Here the server only
handles the setup of the communication, and the mes-
sages are sent directly between the two users. So if A
wants to chat with B, she sends a message to the server.
The server then contacts B and tells him that A wants
to chat. If B agrees, B’s contact information (normally
the IP address of his machine and a port number) are
forwarded to A, and they exchange messages directly.

This mechanism involves less load on the server, but it
is often blocked by firewalls. Many systems use both
arrangements. For example, the Yahoo Instant Messages
first attempts server brokering and if that fails it reverts
to server proxying. Server brokering is the main method
used for file transfer.

In both cases, the messaging server has control of the
initiation of the communication, and in the proxy case,
the server also has control over the whole conversation.

3 Instant Messaging Networks

Computer worms spread over networks, the particular
network determined by how the worm finds the ad-
dresses of machines to attack. For IM worms, this means
the connectivity of the buddy lists on each users ma-
chine. For example, if A has 10 friends in her buddy

Pajek

Figure 1: The network of IM users. There is a link be-
tween users if they appear in each others buddy lists.
Graph plotted with Pajek [3].

list, a worm infecting A’s computer and spreading over
IM would spread to her 10 friends.

We collected the buddy lists of 710 users of a corporate
IM server (Jabber [9]) and have analysed them. Figure 1
shows the network structure, showing the connections
between the buddies on that server, and ignoring links
to buddies hosted on other servers. Rather surprisingly
the network forms two large disconnected clusters, and
a great number of small clusters where a few users are
connected. This means that a single worm cannot infect
all the users of this server by spreading within it. These
clusters might be connected through the buddy lists of
users on other servers, but that would be impossible to
deduce from our data. Another interesting aspect is that
there appear to be a number of individuals with many
connections that lie at the heart of each larger cluster.

There are different types of network, and each type
has different properties with respect to how viruses can
propagate over them. Examples are random graphs
(nodes connected randomly), lattices, small world net-
works [17] and scale-free networks [14]. Kephart [10,
11] gives a good analysis of how quickly viruses can
spread on some of these networks.

Epidemiologists characterise networks with what is
called the epidemic threshold. In a fully connected net-
work (each node connected to every other node), if an
infected node has a chance

�
of infecting another, and a

chance � of being cured, then the virus will have a sus-
2

tained population if
��� ����� . The critical value of

��� �
is called the epidemic threshold [13]. With networks that
are less fully connected, this threshold may vary, for ex-
ample

��� � might need to be greater than 0.3 for a virus
to establish an epidemic. Scale-free networks are a spe-
cial class of networks for which the epidemic threshold
is zero, i.e. it is very easy for viruses to spread [14].

Because of this property, scale-free networks have been
the subject of much study[14]. They have been observed
in email contacts [6], the structure of the world wide web
[2] and the routing infrastructure [7]. In structure, they
are networks where a significant proportion of the nodes
are highly connected. More precisely, the proportion of
nodes with � links (also called degree �) is proportional
to �	�	
 , where � is a constant. The behaviour of the
network is dominated by the highly connected nodes:
viruses spread quickly because they can easily reach
large parts of the network. The structure also means
that any node chosen at random is likely to have a small
number of links (the highly connected nodes are a small
proportion), so immunising (e.g. with a virus signature)
at random has a weak effect on the overall virus spread.
Targeting immunisation on the most highly connected
nodes has a much stronger effect, indeed only a small
proportion of nodes need to be immunised in order to
make the network much harder for viruses to traverse
[5, 15]. Unfortunately in practise it is quite difficult to
find the highly connected nodes, and the exact topology
is more determined by how the virus is written: if Code
Red [4] had used the URLs in web pages on infected
servers to spread, rather than guessing IP addresses ran-
domly, the its topology would have been quite different
(something more like scale-free [2], as opposed to fully
connected [1]).

One way to determine the type of a network is to plot the
degree distribution. This is the histogram of the num-
ber of nodes with a certain degree (number of links).
A scale-free graph’s histogram plotted using logarithmic
scales gives a straight line with gradient �
� .

Figure 2 shows the histogram for the IM buddy list net-
work above. The histogram on the left is plotted with lin-
ear axes, and shows that a small proportion of the users
have large buddy lists (only 3 users have lists larger than
100). The right hand plot is the same data plotted with
logarithmic axes. The linear nature of the plot suggests
that this IM network has a scale-free property.

In order to assess the speed that a worm could propagate
on this network, a simple simulation was used. At time�����

, a single node was infected. After some infection
time

���������
the worm will propagate to all the buddies of

0 100 200 300
0

50

100

150

Size of buddy list

N
um

be
r

of
 u

se
rs

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Size of buddy list

N
um

be
r

of
 u

se
rs

Figure 2: Histogram of number of users with different
size buddy lists. The right hand graph is the same data
plotted with logarithmic scales.

the infected machine, taking
� �������� !�

for each neighbour.
It is assumed that the infection takes place with a single
message. These machines would then wait and infect
their buddies in turn. Using conservative estimates of
these parameters e.g.

�"�������#�$���%������ !�&� � second, and
using the real network above, the time course of the in-
fection is as shown in Figure 3.

The plot shows the two large clusters being infected, and
also how for some starting infections the overall infec-
tion can be very low. It also shows the speed of infection.
The time from initial infection to saturation (no more
machines infected) is generally less than 20 seconds,
with the bulk of machines infected after 10 seconds. The
lower plot shows the traffic (in messages/minute) gener-
ated by the virus, showing considerable loading on the
messaging server during an outbreak.

This is a relatively small network, but one would ex-
pect similar characteristics and properties from larger
ones. The clusters, and the difference in buddy list
sizes reflect the different behaviour of different people
and their social interactions. One would thus expect
larger IM networks to also exhibit scale free properties,
some large disconnected clusters and many small iso-
lated ones. Would a virus spread so quickly in a larger
network? It would probably be slower, but not much,
because any highly connected nodes allow the virus to
quickly spread over large portions of the network.

This analysis of a real IM network thus brings both good
and bad news. Firstly the actual outbreak is likely to
be smaller than the total number of users (since not ev-

3

0
10

20
30

40

0

200

400

600

800
0

100

200

300

400

500

Time (seconds)starting node

nu
m

be
r

of
 in

fe
ct

ed
 m

ac
hi

ne
s

0
10

20
30

40

0

200

400

600

800
0

20

40

60

80

100

120

Time (seconds)starting node

tr
af

fic

Figure 3: Figures showing the time course of a virus
spreading from a sample of nodes in the network. The
upper graph shows the number of infected machines, and
the lower graph the traffic generated.

ery user is connected to every other one) and might be
considerably smaller (there are many small isolated clus-
ters). On the other hand, should an outbreak occur, it is
likely to spread very quickly, infecting many machines
and causing large loads at the messaging server.

4 Virus Throttling

Virus Throttling [18, 16, 19] is an approach that restricts
the spread of a worm or virus after it has infected a ma-
chine. It is based on the observation that the normal traf-
fic from a machine tends to be directed to a slowly vary-
ing set of other machines, and that this is quite different
from the behaviour of a virus, which sends messages to
many different machines. Restricting the rate that a ma-
chine can communicate with “different” machines thus
does not impede normal usage, but will restrict the rate
that a virus can propagate. Restricting propagation will
cause the virus to spread more slowly, giving more time

rate limiter clock

process

Queue
length
detectora b c d

n = 4
working set

g

e

f

delay
queue

request

update

not−new new
add

h

Figure 4: Throttle algorithm. Every time a message is
sent, its destination (“h” in the figure) is compared with
the working set. If it is in the set, it is passed, if not,
it is placed on the delay queue for sending later. Mes-
sages are removed from the queue at regular intervals,
sent, and the working set updated. If the queue gets too
large—evidence that a virus is attempting to spread—all
further messages can be blocked.

for slower more definite mechanisms (e.g. signatures),
and also reduce the amount of traffic generated by the
virus.

Luckily this observation is true for many TCP/IP proto-
cols [18] and email [19]. In order to determine if it also
holds for IM traffic, we logged the time, sender and re-
cipient of all messages sent through the IM server of a
large corporate department. In all 39740 messages from
223 senders were sent in a 72 day period. This data is a
good representation of corporate use of IM. It may not
be such a good representation of home use, but without
any data it is hard to comment.

The throttle implements a rate limit on messages to “dif-
ferent” destinations, where “different” is determined as
“not in a short recent history list”. The algorithm is il-
lustrated in Figure 4.

Every time a message is sent, the destination of the mes-
sage is compared with the recent history list or working
set. If the address is in the set, it is passed and if not that
message is queued in the delay queue for sending later.
At regular intervals messages are removed from the de-
lay queue, their destinations added to the working set
and the message passed. This mechanism ensures that
the throttle allows a message to one new destination per
time period.

Under normal operation, the majority of messages will
be to destinations already in the working set, and only

4

the occasional message will be delayed. If a virus at-
tempts to spread, some of its messages will be passed
(if they are to destinations in the working set), but oth-
ers will be placed on the queue. The size of the queue
can thus grow quickly (especially if the virus spreads
much faster than the allowed rate) and be detected using
a simple threshold. If the queue reaches the threshold it
is pretty clear that a virus is attempting to spread and all
further communication can be stopped.

The throttle thus has two responses: a delay to main-
tain the allowed rate, and a more severe block if the
queue goes over the threshold. There are of course many
variations possible, e.g. how the working set is main-
tained (a simple First-In-First-Out buffer, or using Least-
Recently-Used replacement), whether the throttle allows
credit i.e. free destinations if there has been no activity
for a while [19], etc. It is also possible to run the throttle
in “no-delay” mode, passing all the messages but updat-
ing the delay queue and working set as before. In this
case the only response of the throttle is a block.

This algorithm would be best implemented at the mes-
saging server, because that server either processes all the
messages, or is responsible for the initiation of commu-
nication depending on configuration. Using the server
also means that users would not be able to bypass the
throttle. The server could be modified to run this throttle
algorithm on behalf of each user of the server, holding
messages to delay them, or refusing to accept messages
in order to block the virus spread.

The first test is to see if IM traffic is suitable for throttling
i.e. “to a slowly varying subset of buddies”. To do this
the throttle was simulated for each sender, and the to-
tal number of “different” recipients counted for different
sized working sets. If this number is low, it shows that
most messages are sent to destinations already within the
working set. Figure 5 plots the results for all users who
sent more than 100 messages, showing that the working
set accounts for the large proportion of messages sent.
For most of the users, a working set size of 5 gives less
than 10% of messages to “different” destinations. It is
important that this working set is kept as small as pos-
sible, as should a virus attempt to spread, messages to
addresses in the working set are allowed without delay.
The working set also forms a limit on the number of
simultaneous conversations possible without delay. A
value of 5 would appear to be reasonable in this regard.

There may be situations where this simple analysis does
not hold. For example “group chat” applications where
a message is sent to multiple recipients simultaneously.
This was not used by any of the users in this dataset, but

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

working set size

pe
rc

en
ta

ge
 n

ew

Figure 5: The number of “different” recipients for differ-
ent sized working sets, with a different line for each user.
A least-recently-used replacement strategy was used for
the working set.

if it were, those messages would likely look to the throt-
tle as if a virus were spreading. Some different mecha-
nisms might be needed to handle this, but first some data
on the usage of group chat would have to be collected.
A similar situation occurs with email messages, and the
design of the throttle for email has extra features to deal
with multiple recipient emails. For details see [19].

The second major parameter of the throttle is the rate
limit itself, i.e. how many new messages are allowed per
minute, hour or day. Initial analysis shows that reason-
able message delays are obtained if the allowed rate is
around one new destination per minute. This makes in-
tuitive sense: it takes time to compose, send, get the re-
ply and send the next message.

Unfortunately, one of the ways for a virus to evade the
throttle is to spread more slowly, e.g. sending messages
every 2 minutes instead of every second. While this is
an improvement (the loading on the messaging server
would be much reduced) the speed of virus propagation
would still be very fast. If a virus spreading at 1 mes-
sage/second can infect the whole network in around 20
seconds, one sending messages every 2 minutes would
take 40 minutes, which is still very fast. What is really
needed is another order of magnitude, say a limit of 1
message/day. This would force the virus to spread so
slowly (20 days to infect all) that other anti-virus mech-
anisms (patching, signatures) could be expected to work
well.

One way to achieve this would be to run the throttle in
5

“no-delay” mode, passing all messages but maintaining
the delay queue as described above. For each message
the size of the delay queue is checked, and if greater than
a threshold then all further communication is stopped. In
practise, all communication would be stopped while the
user was warned and asked to vouch for the queued mes-
sages, perhaps by sending the user an instant message
with the list of offending destinations. They could then
override the server if this was a false positive (mistaken
worm detection).

Since this version of the throttle works by calculating the
rate of new addresses used, it would work independent
of whether the messaging server was acting as a broker
or a proxy. In the proxy case, the server would compare
the destination address of each message with the work-
ing set maintained for each users, and update the delay
queues, take action etc. if necessary. With the broker
architecture, the same process could be used, the server
checking working sets whenever users initiate chat ses-
sions. To work well, this requires the IM client to not
cache the connection details for a particularly long time,
as if that were the case, the server would not see all at-
tempts to chat with other users. However, given the time
scales involved for the throttle (days), and given that the
throttle limits messages to different destinations, the ef-
fect of any caching at the client will be minimal.

Figure 6 shows the maximum size of the delay queue
(calculated as the number of unique recipients in the
queue, not the number of messages) as a function of
working set size for a throttle allowing 1 new recipient
address per day.

The figure shows that even with this large time scale, re-
markably small values e.g. working set size of 5, thresh-
old of 2, would result in no warning for the majority
of users. There are two or three users that would re-
quire higher values. This could be handled fairly auto-
matically. Every user could be initialised with a default
working set size of 5 and a threshold of 2. Every time
a user goes over the threshold and it turns out to be nor-
mal usage, the size of that user’s working set could be
increased. Only a small proportion of users (2 or 3 out
of 700) would be troubled by this learning process.

The low values for working set and thresholds are very
good news for catching and stopping worms. It essen-
tially means that if the virus sends to more than two des-
tinations different from those in the working set over a
1 day period it will be detected and stopped. This will
thus catch any virus sending messages at a higher rate
than one per day, and will quickly catch a virus sending
messages faster than this. To evade the throttle viruses

0

5

10

15

20 0
10

20
30

40
50

60

0

2

4

6

8

10

12

14

userworking set size

m
ax

 s
iz

e
of

 d
el

ay
 q

ue
ue

Figure 6: Maximum delay queue versus working set size
for different users and an allowed rate of 1 recipient/day,
with a least-recently-used replacement for the working
set. The queue lengths for most users are low, even for
small working sets. This means that the virus detection
threshold could also be set low.

would have to spread extremely slowly.

5 Effect of throttling on spread

Given that a certain set of throttle parameters is un-
likely to interfere with the normal messaging behaviour
of users, the question remains as to what effect this will
have on the overall spread of the virus.

Since the virus detects when messages have been sent
to too many different destinations, some messages will
be sent before the throttle stops the virus. Those mes-
sages will infect other users and the virus will continue
to spread. It is important that the number of escaped
messages is small, as the more that escape, the larger
and faster the infection will be. The primary effect of
the throttle will be for the total number of infected ma-
chines to be smaller than without it.

When the virus infects a machine there is in general a
fixed number of addresses (equal to the size of the buddy
list �)2 that it can use to spread. It chooses a recipient,

2It would be difficult for an IM worm to guess new addresses. This
is because of the difficulty of guessing correct user names, and also
because IM protocols only add addresses to a buddy list if both parties
agree. This is to protect privacy. If A wants to add B to his list, the
server will send a message to B saying “A wants to add your address

6

constructs the payload and sends the message. If the re-
cipient matches the working set it will get passed, and
if not, that recipient will be added to the delay queue.
When the queue length reaches a threshold, the virus
will be stopped. The question is: how many messages
will escape before the queue length reaches the thresh-
old?

If the threshold is � , the number of escaped messages
is ��� � where � is the number of recipients that the
virus chooses that match the working set. � must be less
than the working set size � . This means that the fewest
number of escapees will be � (� � �

), and the most �����
(� � �).

If the virus chooses sequentially from the buddy list,
and the � elements of the working set are distributed
randomly throughout the buddy list, then the probability
that � will match the working set is

��� ��	 ��
 ��� � � �
�

 � � � ��� ��	� � �
 �
 ���
 (1)

where � � ��� is the number of different ways to choose � out
of � items, or ��� � ��� � � ����	�� . This formula makes intuitive
sense: the virus is stopped on its ��� ����� attempt, having
found � recipients in ��� � � � elements. There are�! #"%$ �'&$ �

ways of doing that. The other � � � entries

must be in the rest of the buddy list i.e ��(�*) �"%$�+�
� $ �

, and
the total number of ways of choosing � in the buddy list
is � (� � .
Given this probability, the expected value of � is,-� �%. �0/0�1/0�2	 � �3$�465 � ��� ��	 (2)

making the total number of escaped messages7
� if �98:���;�,-� �6. �0/0�1/#�<	%�=� otherwise

(3)

Evaluating this for � �?>
, � ��@

gives the behaviour
shown in Figure 7. As the size of the buddy list in-
creases, the number of escaped messages decrease. The
best and worst cases are also plotted, showing that the
number of escaped messages is likely to be small for
reasonable sized buddy lists.

Going back to the topology described in Section 3, those
users with the largest buddy lists are the ones that are

to his buddy list”, to which B replies.

0 5 10 15 20 25 30 35 40
1

2

3

4

5

6

7

8

Size of buddy list

N
um

be
r

of
 e

sc
ap

ed
 m

es
sa

ge
s

Figure 7: Expected number of escaped messages as a
function of buddy list size for � �A> /0� �A@

. Also
plotted are the best and worst cases (the two horizon-
tal lines). The figure shows that if the buddy list is large,
then the average number of escapees will be very close
to the best case.

most important for spreading the virus. This analysis
shows that these are the ones that are likely to release
the fewest messages before being throttled. This should
have a profound effect on how the virus can spread.

The effect of the throttle on virus propagation was sim-
ulated on the original network, using a slightly modi-
fied version from that described in Section 3. Four cases
were calculated: no throttling; worst case (���B� es-
capees); average case (

,C� �6. �D/#�1/0�<	 escapees) and best
case (� escapees). Figure 8 shows the results for the pa-
rameter setting above.

The best case outbreak is very small compared to with-
out throttling, and the worst and average give outbreaks
of around 2/3 and 1/3 of the unthrottled outbreak size
respectively. This means that throttling has a signifi-
cant impact on the spread of the viruses. The lower plot
shows the effect on the traffic. The effect of the throttle
is more strong here, with a large reduction in traffic in
the average case.

6 Conclusion

Malware that spreads over instant messaging has the po-
tential to cause a great deal of damage, and to cause that
damage quickly. Current techniques to deal with such

7

none

worst

average

best 0
200

400
600

800

0

100

200

300

400

500

starting node

in
fe

ct
io

n

none

worst

average

best 0
200

400
600

800

0

500

1000

1500

starting node

tr
af

fic

Figure 8: Effect of throttling on virus propagation. The
upper plot shows the maximum size of the outbreak
for different infection starting points, for four different
conditions (no throttling, worst case, average case, best
case). The lower plot shows the effect on the maximum
traffic loading observed (messages/second).

threats are slow and reactive, and as such are likely to be
ineffective [8].

This paper has presented a variation of Virus Throttling
that can quickly detect when a worm or virus is sending
messages over IM and stop the spreading further. This
has been shown to not impact normal usage, and to be a
sensitive detector of spreading malware. Throttling traf-
fic in this way has a significant impact on both the size
of the outbreak and the traffic generated.

The approach would be relatively straightforward to im-
plement at the messaging server, and if used could dras-
tically reduce the threats while maintaining the usability
of instant messaging.

References

[1] J. Balthrop, S. Forrest, M. E. J. Newman, and M. M.
Williamson. Technological networks and the spread of
computer viruses. Science, 304:527–529, Apr. 2004.

[2] A.-L. Barabási, R. Albert, and H. Jeong. Scale free
characteristics of random networks: the topology of the
world-wide web. Physica A, 281:69–77, 2000.

[3] V. Batagelj and A. Mrvar. Pajek – program for large
network analysis. Connections, 21:47–57, 1998.

[4] CERT. CERT Advisory CA-2001-19 “Code Red”
Worm Exploiting Buffer Overflow In IIS Indexing
Service DLL, July 2001. Available at http://www.
cert.org/advisories/CA-2001-19.html.

[5] Z. Deszö and A.-L. Barabási. Halting viruses in scale
free networks, 2002. In cond-mat/0107420. Available
from http://www.arxiv.org/PS_cache/
cond-mat/pdf/0107/0107420.pdf.

[6] H. Ebel, L.-I. Mielsch, and S. Bornholdt. Scale free
topology of email networks, 2002. In
cond-mat/0201476. Available from
http://www.arxiv.org/PS_cache/
cond-mat/pdf/0201/0201476.pdf.

[7] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
ACM SIGCOMM, pages 251–262, 1999.

[8] N. Hindocha and E. Chien. Malicious threats and
vulnerabilities in instant messaging. In H. Martin,
editor, Proceedings 13th Virus Bulletin Conference,
pages 114–124, Toronto, CA, Sept. 2003. Virus
Bulletin, Virus Bulletin.

[9] Jabber.org: Open source instant messaging, 2004.
www.jabber.org.

[10] J. O. Kephart and S. R. White. Directed graph
epidemiological models of computer viruses. In
Proceedings IEEE Symposium on Security and Privacy,
1991.

[11] J. O. Kephart, S. R. White, and D. M. Chess.
Computers and epidemiology. IEEE Spectrum, pages
20–26, May 1993.

[12] Microsoft windows update, 2004.
http://windowsupdate.microsoft.com/.

[13] J. D. Murray. Mathematical Biology, (2nd, corrected
edition). Springer Verlag, New York, 1993.

[14] R. Pastor-Satorras and A. Vespignani. Epidemic
spreading in scale-free networks. Physical Review
Letters, 86(14):3200–3203, Apr. 2001.

[15] R. Pastor-Satorras and A. Vespignani. Immunization of
complex networks. Physical Review E, 65:036104,
2002.

[16] J. Twycross and M. M. Williamson. Implementing and
testing a virus throttle. In Proceedings 12th USENIX
Security Symposium, 2003, pages 285–294, Washington
DC, Aug. 2003. USENIX. Available from
http://www.hpl.hp.com/techreports/
2003/HPL-2003-103.html.

[17] D. J. Watts and S. H. Strogatz. Collective dynamics of
small world networks. Nature, 393:440–442, 1998.

8

[18] M. M. Williamson. Throttling viruses: Restricting
propagation to defeat malicious mobile code. In
Proceedings of ACSAC Security Conference, pages
61–68, Las Vegas, Nevada, Dec. 2002. Available from
http://www.hpl.hp.com/techreports/
2002/HPL-2002-172.html.

[19] M. M. Williamson. Design, implementation and test of
an email virus throttle. In Proceedings of ACSAC
Security Conference, Las Vegas, Nevada, Dec. 2003.
Available from http://www.hpl.hp.com/
techreports/2003/HPL-2003-118.html.

9

