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Abstract

Since the most efficient waveform coding methods use linear transforms
before quantization and entropy coding, the methods designed to allow ran-
dom access to compressed data normally have to deal with the result of these
transforms. However, in some specialized technical applications the informa-
tion needed is the result of non-linear operations. For instance, it is useful to
have fast access to the minimum and maximum values in the compression of
elevation maps. In this document we show that some linear transforms have
the property of preserving order if certain conditions are satisfied. We provide
a proof that this property can be used not only for maximum and minimum,
but also for the very general class of non-linear order-statistic filters (which
includes median filters). We show that this result is valid for a set of commonly
used transforms, including the discrete cosine, Walsh-Hadamard, and dyadic
Haar transforms, and also valid for any type of order-statistic filter output.

1 Introduction

Current image compression methods that use multi-resolution representations, like
wavelets, enable users to efficiently browse or extract parts of large images without
the need to decompress the whole image [3]. While this is very convenient for natural
images, it cannot be directly applied to those applications in which the pixel range
is needed. The problem originates from the fact that low-resolution images are com-
monly obtained through averages of pixels from the original image, and the range is
not conserved.

The use of lifting with some nonlinear filters (“nonlinear wavelets” [1, 2]) provides
one type of solution. However, this simple use of nonlinear steps during lifting is not
very effective. It provides very little flexibility, and it is detrimental to compression
performance.
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In this paper we prove that we can obtain nonlinear transforms that are modi-
fications of commonly used linear transforms. The results are surprisingly general,
showing that we can obtain the desired conservation of order statistics, while having
the other transform coefficients equal to those used for coding in standard methods.
We show that because the order is preserved, the result generalizes to any type of
order-statistic filter output.

2 Order-Preserving Linear Transforms

Throughout this section we assume that all vectors are defined in an N -dimensional
space, and consider the linear transformations that are defined by an N × N non-
singular matrix T. To study the properties of a special class of transforms we first
need to define the N -dimensional vectors

u =


1
1
...
1

 , and v =


1
0
...
0

 . (1)

We say that matrix T defines an order-preserving linear transform (OPLT) if

T−1 v = γ u. (2)

which means that all elements of the first column of T−1 are equal to a constant
value γ 6= 0. Note that we restrict our definition of OPLTs to those with a constant
first column only to simplify notation. The most general case requires simply the
multiplication by a permutation matrix.

Many commonly used transforms have property (2). For example, the discrete
cosine transform (DCT), the Walsh-Hadamard transform, and the dyadic Haar trans-
form [6]. It is important to observe that all the multidimensional extensions of these
linear transforms have the same property. For instance, the 8 × 8 2-D DCT has the
same property, but in a space with dimension N = 64.

Let Ω = {1, 2, . . . , N} be the set of integers from 1 to N , and let the order of the
elements of a vector x be defined by the vector function s : RN → ΩN , such that,⋃

i∈Ω

si(x) = Ω, (3)

si(x) < sj(x) =⇒ (xi < xj) or ((xi = xj) and (i < j)). (4)

For instance, s1(x) is the index of the smallest element of x, s2(x) the second smallest,
up to sN(x), which is the index of the largest element of x. Note that this definition
of s(x) is unique, since it also specifies the order when more than one element has
the same value.
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The reason we call these transforms order-preserving is because changes in the
first component of the transform do not change the order when the inverse transform
is computed.

Lemma 2.1 Let T be a non-singular matrix that defines an order-preserving linear
transform. For all α and x, if a = Tx and y = T−1(a + αv) then x and y have the
same order, i.e., s(x) = s(y).

Proof: From the definition of a and y, and (2), we have

y = T−1 a + αT−1v = x + αγ u. (5)

thus, for any i, j ∈ Ω

xi < xj ⇐⇒ yi = xi + αγ < xj + αγ = yj,
xi = xj ⇐⇒ yi = xi + αγ = xj + αγ = yj,

(6)

which means that the order is identical.

We define an order-statistic filter (OSF) [4, 5] with coefficient vector c as

µc(x) =
N∑

i=1

ci xsi(x). (7)

This linear combination of the sorted elements of x defines several commonly used
filters. For instance, if only c1 (cN) is different from zero, then µc(x) is proportional
to the minimum (maximum) element of x. If N is an odd number and only c(N+1)/2

is different from zero, then µc(x) is proportional to the median of the elements of x.

Lemma 2.2 For any δ, any vector x, and any order-statistic filter with coefficient
vector c we have

µc(x + δu) = µc(x) + δ c′u. (8)

Proof: As shown in the proof of Lemma 2.1, order is preserved with the addition of
vectors proportional to u, i.e., s(x) = s(x + δu). Thus,

µc(x + δu) =
N∑

j=1

cj [xsj(x+δu) + δ] =
N∑

j=1

cj xsj(x) + δ

N∑
j=1

cj = µc(x) + δ c′u. (9)

Using the definitions and results above we can define a family of reversible non-
linear transforms as follows.
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Proposition 2.3 Let c be any vector such that c′u 6= 0, and let T be a non-singular
matrix that defines an order-preserving linear transform, with ti being the i-th row of
T. The nonlinear transformation f(x) defined by

fi(x) =

{
µc(x), i = 1,
ti x, i = 2, 3, . . . , N,

(10)

is reversible, and the inverse is defined by

x = T−1f +
f1 − µc(T

−1f)

c′u
u. (11)

Proof: Let us define
y = T−1f(x). (12)

From the definition of f(x) we know that

f(x) = Tx + [µc(x)− t1 x] v, (13)

and using (2) we obtain

y = x + [µc(x)− t1 x] T−1 v = x + γ[µc(x)− t1 x] u = x + δ u. (14)

The value of δ is not directly known for computation of the inverse transform because
t1 x is not in the transform vector (10). However, we can compute the value of δ from
f(x) using the fact that T defines an order-preserving linear transform, since

µc(y) = µc(x + δu) = µc(x) + δc′u. (15)

and thus

δ =
µc(y)− µc(x)

c′u
=

µc(y)− f1

c′u
(16)

In conclusion, to compute the inverse transform we first compute y using (12), then
compute µc(y), and finally recover x using

x = y − µc(y)− f1

c′u
u, (17)

which is equal to the desired result.

3 Extension to Groups of Coefficients

In the last section we defined a transform that is linear except for one of its elements.
We can generalize the order-preserving linear transforms to obtain transforms with
similar properties, and with a larger number of non-linear coefficients.
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First, we should define sets of indexes {σ1, σ2, . . . , σP} which define a partition of
the set Ω = {1, 2, . . . , N} in P disjoint groups, i.e.,⋃P

p=1 σp = Ω,

p 6= q ⇐⇒ σp ∩ σq = ∅, p, q = 1, 2, . . . , P.
(18)

We also define the set of vectors u(p) and v(p), p = 1, 2, . . . , P , such that

u
(p)
i =

{
1, i ∈ σp

0, i ∈ Ω− σp
(19)

and

v
(p)
i =

{
1, i = p
0, i ∈ Ω− {p} (20)

We say that a non-singular matrix T defines an group-order-preserving linear
transform (GOPLT) if

T−1 v(p) = γp u(p), (21)

with γp 6= 0, p = 1, 2, . . . , P.

The advantage of this type of transform is that it preserves the order inside each
of the groups defined by sets σp. For a more formal presentation of this property we
have to define new notation to describe the order inside each group. This can be done
by defining a set of vector functions s(p) : RN → ΩN , p = 1, 2, . . . , P such that,⋃

i∈Ω

s
(p)
i (x) = Ω, (22)

s
(p)
i (x) = i, ∀ i 6∈ σp, (23)

s
(p)
i (x) < s

(p)
j (x) =⇒ (xi < xj) or ((xi = xj) and (i < j)), ∀ i, j ∈ σp. (24)

Note that to be compatible with the notation we use later, the order is defined
using the indexes of each group. For instance, if we have σp = {4, 5, 7, 9} then

s
(p)
4 (x) (s

(p)
9 (x)) is the index of the smallest (largest) element of {x4, x5, x7, x9}. In

the definition of s(p)(x) the order outside the group defined by σp does not depend

on x, but we chose to define it as s
(p)
i (x) = i, so that we can still use (22), and have

each index used only once.

Using this new notation we can generalize Lemma 2.1 as follows.

Lemma 3.1 Let T be a non-singular matrix that defines a group-order-preserving
linear transform for groups defined by partition {σ1, σ2, . . . , σP}. In addition, let
s(p)(x) be the order defined only on the elements of x belonging to σp. For all α, x,
and all p, q ∈ {1, 2, . . . , P}, if a = Tx and y = T−1(a + αv(q)) then x and y have
the same order in the group defined by σp, i.e., s(p)(x) = s(p)(y).
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Proof: We start using definition (21) to obtain

y = T−1 a + αT−1v(q) = x + αγq u(q). (25)

The proof for case q 6= p is straightforward: we have s(p)(x) = s(p)(y) because

u
(q)
i = 0 for all i ∈ σp and thus xi = yi for all i ∈ σp.

The proof for case q = p is similar to the proof of Lemma 2.1: for all i, j ∈ σp we
have

xi < xj ⇐⇒ yi = xi + αγp < xj + αγp = yj,
xi = xj ⇐⇒ yi = xi + αγp = xj + αγp = yj,

(26)

which means that the order is identical in the subset defined by σp. The order outside
this subset does not change either because xi = yi for all i 6∈ σp.

In our definition of new nonlinear transforms we assume that we use P different
order-statistic filters, one for each group, and each using as input only the elements
belonging to that group. One important property of such filters is defined as follows.

Lemma 3.2 Given a set of group indexes {σ1, σ2, . . . , σP}, and a particular set index
1 ≤ p ≤ P , for any vector x, and any order-statistic filter with coefficient vector c(p)

such that
(c(p))′u(p) 6= 0, (27)

c
(p)
i = 0, ∀ i ∈ Ω− σp, (28)

we have

µc(p)

(
x +

P∑
q=1

δqu
(q)

)
= µc(p)(x) + δp (c(p))′u(p). (29)

Proof: From the proof of Lemma 3.1 we know that order is preserved with the
addition of vectors proportional to u(q), and thus

µc(p)

(
x +

P∑
q=1

δqu
(q)

)
= µc(p)(x) +

P∑
q=1

δq (c(p))′u(q). (30)

From the pre-defined condition (28) we conclude that

p 6= q ⇐= (c(p))′u(q) = 0, (31)

and consequently
P∑

q=1

δq (c(p))′u(q) = δp (c(p))′u(p), (32)

which completes the proof.

At this point we can use Lemmas 3.1 and 3.2 to generalize Proposition 2.3.
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Proposition 3.3 Let T be a non-singular matrix that defines an group-order-preserving
linear transform, for groups defined by sets {σ1, σ2, . . . , σP}, and with ti being the i-th
row of T. Let c(p), p = 1, 2, . . . , P < N be any set of vectors such that

(c(p))′u(p) 6= 0, (33)

c
(p)
i = 0, ∀ i ∈ Ω− σp. (34)

The nonlinear transformation f(x) defined by

fi(x) =

{
µc(i)(x), i = 1, 2, . . . , P,
ti x, i = P + 1, P + 2, . . . , N,

(35)

is reversible, and the inverse is defined by

x = T−1f +
P∑

p=1

fp − µc(p)(T−1f)

(c(p))′u(p)
u(p). (36)

Proof: This proof is similar to the proof of Proposition 2.3, but now we have

f(x) = Tx +
P∑

i=1

[µc(i)(x)− ti x] v(i). (37)

Multiplying the transform f(x) by T−1 now yields

y = T−1f(x) = x +
P∑

i=1

[µc(i)(x)− ti x] T−1 v(i)

= x +
P∑

i=1

γi[µc(i)(x)− ti x] u(i) (38)

= x +
P∑

i=1

δi u
(i).

The values δi are now computed using Lemma 3.2

µc(p)(y) = µc(p)(x +
P∑

i=1

δiu
(i)) = µc(p)(x) + δp(c

(p))′u(p). (39)

and thus

δi =
µc(i)(y)− µc(i)(x)

(c(i))′u(i)
=

µc(i)(y)− fi

(c(i))′u(i)
. (40)
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4 Quantization of the Transform Coefficients

Since the objective of the last sections was only to introduce this new class of non-
linear transforms, we did not consider some details of practical implementations. For
instance, it is also important to consider that for waveform compression the transform
coefficients are quantized before coding. However, the main results also apply to the
combination of transforms and quantization.

Let z = Tx represent the transform of x, and let ẑ = Q(ẑ) be the vector with
quantized transform coefficients. We just have to change definition (10) so that the
OSF output is computed not from the original vector x but from the recovered data
available at the decoder, µc(T

−1ẑ).

fi(x) =

{
µc(T

−1ẑ) i = 1,
ẑi, i = 2, 3, . . . , N.

(41)

The inverse transform is the same

x̂ = T−1f +
f1 − µc(T

−1f)

c′u
u. (42)

Different from the linear transform, this requires the encoder to compute an inverse
transform (T−1ẑ) before encoding.

5 Integer-to-Integer Transforms

Transforms for lossless compression do not have the same type of quantization used
by lossy compression, but may have nonlinear truncation [7]. In this case lossless
transform as long as a property similar to (2) is valid. For example, there is a
unitary Walsh-Hadamard transform for lossy compression, while a version for lossless
compression uses integer coefficients and truncation. The modified Walsh-Hadamard
transform applied to groups of 2× 2 pixels (x00, x01, x10, x11) is defined as

f00 = b(x00 + x01 + x10 + x11)/4c , (43)

f01 = b(x00 + x01 − x10 − x11)/2c , (44)

f10 = b(x00 − x01 + x10 − x11)/2c , (45)

f11 = x00 − x01 − x10 + x11. (46)

The inverse transform is

x00 = f00 + b(2f01 + 2f10 + 4f11 − 6 bf11/2c+ 3)/4c , (47)

x01 = f00 + b(2f01 − 2f10 − f11 + 3)/4c , (48)

x10 = f00 + b(2f10 − 2f01 − f11 + 3)/4c , (49)

x11 = f00 + b(f11 − 2f01 − 2f10 + 2)/4c . (50)

Note that the order of the recovered values is not altered by changes in f00, so it too
can be replaced with the output of a proper order-statistic filter (OSF).
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6 Conclusion

In this report we present proofs of some properties of a family of nonlinear transforms
based on the property of certain linear transforms, called order-preserving linear trans-
forms (OPLTs). Examples of OPLTs include the discrete cosine, Walsh-Hadamard,
and dyadic Haar transforms. We first define the new transforms by replacing a sin-
gle OPLT coefficient with a nonlinear component—the result of an order-statistics
filter applied to the original data. This is advantageous for coding purposes because
most of the the well-known properties of these transforms are preserved, together
with the nonlinear component. We present a proof of the perfect reversibility of these
non-linear transforms by showing how to compute the inverse transform.

Next, we generalize these results to transforms that contain several nonlinear co-
efficients, computed from disjoint subsets of coefficients of certain linear transforms
(called group-order-preserving, GOPLT). The proof of the reversibility of these trans-
forms is also done by showing how the inverse is computed. We observe that while the
nonlinear components of these transforms must be computed using only some linear
transform coefficients in a pre-defined set, the other linear components do not need
to satisfy any restriction other than the reversibility of the original linear transform.

In the last sections we explain how the properties can be preserved if we apply
some simple nonlinear transformations, like quantization, to the coefficients of these
nonlinear transforms. We discuss the changes required by the quantization of coeffi-
cients, as required in coding applications, for both lossy and lossless compression.
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