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Abstract

We describe an implementation of the computable (or constructive) real numbers
as a pure Java library. To the user, the library interface appears very similar to that
of some other numeric types provided by the standard Java library. The primary
goal of the implementation is simplicity, so that the implementation could be easily
understood, and to allow simple informal correctness arguments. We hope to demon-
strate that even such a basic implementation of constructive real arithmetic can be
useful in a number of contexts, including in a desk calculator utility distributed
with the package. A secondary goal was to demonstrate that some second-order
functions on the reals, such as restricted inverse and derivative operations, can be
implemented with sufficient performance to be useful.
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1 Introduction

The computable or recursive (cf. [12]) real numbers make it possible to imple-
ment computation on the real numbers which is exact in the sense that:

(1) Computations produce a representation of the exact result.
(2) Representations of real numbers generated in this way can be used to

produce approximations guaranteed to be accurate to any error tolerance.

Effectively, the representation of a real number x is a program or function
for approximating that number to a tolerance. The tolerance is specified on
the final answer. The implementation guarantees that any rounding errors in
intermediate computations are sufficiently bounded to preserve the guaranteed
accuracy of the final result.
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The computable or recursive reals correspond to one interpretation of the
constructive reals[4], and we use all three terms interchangeably.

For the programmer, constructive real arithmetic is easier to use than floating
point arithmetic, since it largely removes the need for error analysis.

2 Our Model

We represent a real number x as a computable function fx mapping an integer
precision specification n to a scaled integer approximation fx(n) such that
|fx(n) − x/2n| < 1. Informally, fx(n) produces an approximation to x, which
is accurate to within an error of strictly < 2n. The approximation is scaled,
so that it can be represented as a (potentially very large) integer.

Basic arithmetic operations by themselves perform no numeric evaluation;
they simply return an object representing the function. This function can
then be invoked when we desire a numerical approximation to the generated
result, e.g. to print it.

The equality test on computable reals is undecidable. We instead provide a
comparison operation which may erroneously identify two values as equal if
they are within a specified tolerance, as well as one that produces correct
answers for unequal numbers, but diverges when they are equal. Like output
operations, these force immediate evaluation of approximations, as do some
transcendental functions that require prescaling.

Using our representation, addition can be implemented simply as

fx+y(n) = round(fx(n− 2) + fy(n− 2))/4)

Informally, in order to get k bits of precision in the result, we evaluate each
argument to k + 2 bits. This is necessary since each argument approximation
may then contribute an error of strictly less than 1/4 in the scaled integer
final result, while rounding may contribute an error of up to 1/2. The division
by 4 is necessary to adjust for the implicit scaling.

Unfortunately, in many other cases we cannot determine the precision required
for argument evaluation a priori; it must instead be based on an approximation
of the arguments themselves. In the case of multiplication, the larger one
argument, the more precision we need in the other in order to guarantee a
specified error bound on the result. A reciprocal computation requires less
precision in the argument if the argument is large.
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This approach leads to a relatively straightforward implementation. The al-
gorithms are fairly simple, and they rely only on large integer (“bignum”)
arithmetic. There is no need for an underlying interval or rational arithmetic
package, either of which can itself become complex.

Since we must sometimes approximate an argument in order to determine the
real evaluation precision, the same argument may be evaluated more than
once. In the case of deeply nested expressions, some subexpressions may be
reevaluated many times.

3 Other Approaches

Existing implementations of the constructive reals differ in several dimensions.
Many implementations, like ours, explicitly build up a data structure repre-
senting the function corresponding to a real number (cf. [3,7,20,10,16,8,9]).
Building the representation explicitly may consume substantial amounts of
space. Although the functions representing reals are normally treated com-
pletely extensionally, their internal representation essentially consists of the
expression which was used to generate the number. However, this approach
makes it far easier to implement the constructive reals purely as a library,
which can be used inside arbitrary programs without special precautions.

The function may be represented either as a function in the programming
language[6], as a class with an “apply” operator (our present approach), or
as a lazily evaluated data structure[7,20]. Approximations may be rational
numbers[3], prefixes of redundant decimal expansions[7], prefixes of continued-
fraction expansions[10,20], or scaled integers as in [6,8,9] or our current ap-
proach. Experience to date suggests that the scaled integer approach leads to
the best performance in this category of applications.

Other implementations [1,2,15,14,17] instead use reexecution of the original
program with increased precision, and hence the function representing a par-
ticular real number remains implicit. These implementations initially execute
the program with a fixed, somewhat arbitrary precision, and maintain ex-
plicit error bounds on results. So long as error bounds are sufficient to resolve
conditionals, avoid singularities for built-in functions, and satisfy constraints
on output statements, execution proceeds normally. When precision is insuf-
ficient, execution is restarted with a higher precision.

Reexecution-based approaches require a mechanism such as the “multi-value
cache” in [17] or the “decision histories” in [15] to ensure that repeated re-
executions appear to follow the same control path through the program. It is
also necessary to hide any side-effects from the repeated executions. Explicit
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storage of functions avoids these issues at the cost of space consumption.

Implementations that explicitly store functions representing real numbers may
determine calculation precision in one of too different ways:

(1) They may use a top-down error propagation approach, in which every
evaluation of a subexpression guarantees a requested error bound. The
error bound is a parameter to the evaluation. This approach appears to
be the simplest. Its primary disadvantage is that a given subexpression is
often reevaluated a large number of times during a single computation.

(2) It is also possible to use a bottom-up error propagation approach in which
the calculation precision, not the tolerance in the result, is the param-
eter to the evaluation. This is essentially the same approach as used
with reexecution. Implementations are based on variable precision inter-
val arithmetic, and are thus arguably a bit more complex. Unlike the
top-down approach, calculation precisions can be increased in geometric
progression; hence the cost of reevaluations tends to be far less.

Approaches based on bottom-up error propagation appear to typically out-
perform the top-down approach, especially for deeply nested computations.
However, this approach may suffer from the fact that all computations are
often carried out to the same precision. For example, if we are evaluating
10−1000π + 1 to 1000 digits, the top down approach would notice that there
is no need for any substantial evaluation of π, where the bottom up approach
would normally evaluate it to about 1000 digits.

For another more detailed discussion of comparable arithmetic packages, see
[11].

4 Implementation Strategy

The details of our implementation are affected both by the implementation
language, and by our desire for simplicity with acceptable performance rather
than optimal performance.

The Java language does not support dynamically constructed “functions”
(usually called “closures”) per se. However, Java objects and inheritance can
be used to get essentially the same effect.

A constructive real number is a member of a subclass of CR, the class of con-
structive real numbers. Each such number provides an approximate method,
corresponding to the approximation function in our original model. This is the
only essential element of the representation.
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As a concession to performance, each constructive real number representation
also includes it’s best known approximation, if any, as in [6]. This is represented
as the smallest precision argument ever passed to the approximate method,
together with the result it yielded. 2 All references to argument approxima-
tions call the get appr method. instead of calling approximate directly. The
difference is that get appr both consults and updates the cache. As a result, a
constructive real is never reevaluated with a less demanding precision request
than for a prior evaluation.

To give the flavor of the representation, we present the complete implemen-
tation of addition. The class CR contains an add method implemented as
follows:

public CR add(CR x) {

return new add_CR(this, x);

}

Addition simply returns a new object, logically a function, representing the
sum of two constructive reals. The new object is a member of the add CR
class, which is a subclass of CR. Hence every add CR can be used as a CR.

An element of the add CR class contains (in addition to the members of
CR), two fields corresponding to the two arguments, and an approximate
method which computes approximations exactly as we described above. Its
entire implementation is:

class add_CR extends CR {

CR op1;

CR op2;

add_CR(CR x, CR y) {

op1 = x;

op2 = y;

}

protected BigInteger approximate(int p) {

return scale(op1.get_appr(p-2).add(op2.get_appr(p-2)),

-2);

}

}

Here scale(...,−2) shifts its first argument right by two bits, rounding the
result. It corresponds to the rounded division by 4 above. Functions such a
get appr and scale are inherited from CR.

2 Unlike some of our earlier implementations[6], we do not include an eagerly evalu-
ated fixed precision interval approximation. This would have improved performance
at the cost of complexity.
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We have compromised and used 32-bit machine integers to represent requested
precision. This simplifies matters appreciably but can result in precision over-
flow. We check for those explicitly and raise a suitable exception if this should
occur. These checks are confined to a few methods, one of which is get appr.

The algorithms for other operations are also very similar to those in [6]. We
use Newton iteration based on the previous approximation for the sqrt imple-
mentation, but reciprocal computations are performed directly, i.e. without
reference to previous approximations. Transcendental functions use Taylor se-
ries, with suitable prescaling.

Unlike [17], we do not directly provide limit operations. We do however allow
the library user to define new constructive real operations or constants by
defining new subclasses of CR with appropriate approximate methods. Thus
arbitrary constructive real numbers can be computed. Unlike more straightfor-
ward uses of the library, this does require understanding of the representation.

5 Higher Order Functions

A number of higher order functions (or functionals) on the constructive reals
are computable (cf. [13,18]). In many cases, computation of such higher order
functions is impractical[13]. We chose to implement three for which practical
implementations do exist. In all cases we currently restrict ourselves to unary
functions from the constructive reals to the constructive reals:

• Function composition.
• The inverse of a monotone (and well-defined, hence continuous) function on

a closed interval. The arguments to this operation are the function to be
inverted, and the two constructive real endpoints of the interval.

• The monotone derivative of a function on an open interval. We assume that
the derivative is continuous and monotone in an open interval bounded by
two specified constructive real endpoints.

The implementation of the first is trivial. We briefly outline the algorithms
used for the last two.

5.1 Inverses

The inverse operation on a function f produces an object representing a func-
tion f−1 from constructive reals to constructive reals. Evaluation of a resulting
inverse function at a particular real number produces a constructive real num-
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ber r. The iterative evaluation algorithm we discuss here is contained in the
approximate method of r.

In order to make the inverse operation practically useful, we have to address
several aspects of performance:

(1) The number of evaluations of f . This is determined by the rate of con-
vergence of the iterative algorithm.

(2) The precision to which f is evaluated, since that affects the cost of the
evaluations.

(3) The precision to which the argument of f−1 is evaluated, since that affects
the cost of nested evaluations involving inverse functions.

To keep the number of function evaluations small in typical (well-behaved)
cases, but still guarantee convergence, we use a hybrid of binary search and
linear interpolation (regula falsi, cf. [19]). At every point in an approximate
computation of f−1(x), we have a (usually) rational interval [l, h] 3 such that,
assuming a monotone increasing f , f(l) < x < f(h), and thus l < f−1(x) < h.

Each iteration shrinks the interval [l, h] as follows:

• We normally carry out an interpolation step. We compute a guess of the
inverse by linear interpolation. If the guess is in the outer quarters of the
interval, we adjust it by doubling its distance to the endpoint. This usu-
ally ensures that the actual inverse value is then in the smaller interval,
thus avoiding the normal failure of regula falsi to shrink the interval un-
der consideration. We then evaluate the function at our guess, and replace
the appropriate endpoint with the guess, as if we were performing a binary
search.

It may happen that during the evaluation step the comparison between
the function value at the guess and x is indeterminate (i.e. the two are equal
to within our evaluation precision), making it impossible to determine which
endpoint should be replaced. We resolve this issue by alternately increasing
the precision to which x and f(...) are evaluated, and perturbing the guess
slightly, in case the two happen to be exactly equal. Repeatedly performing
these operations must eventually lead to an unequal comparison.

• If interpolation repeatedly fails to shrink the interval substantially, we set
the guess to the midpoint, and perform a traditional binary search step
instead of using linear interpolation. This ensures linear convergence in the
worst case.

Under normal circumstances, this converges quickly once the interval is small
enough that the derivative is close to constant. An initial interpolation step

3 L and h are of the from 2kn unless they are set to the corresponding endpoint of
fs domain, in which case they may not be rational.
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ensures that one of the interval endpoints will be very close to f−1(x), though
it may not reduce the size of the interval by much. In the next step, our guess
will be very close to the endpoint, and the resulting adjustment will reduce
the interval size to roughly twice the error in the first interpolation step.

Usually convergence is quadratic and hence the number of function evaluations
is logarithmic. We ensure that in almost all cases our guesses, the arguments
of the evaluations, are freshly constructed from rationals. Hence function eval-
uations don’t force evaluation of nontrivial arguments. We take care that the
argument to the inverse function is evaluated only to slightly more precision
than is absolutely necessary.

If a particular inverse function value has been approximated once, we use that
approximation to obtain a small starting interval for later approximations
to higher accuracy. If we need the answer to high precision, and no prior
approximation is available, we first force evaluation to a much lower precision.
This effectively ensure that only the last few iterations (typically four) are
carried out to full precision.

5.2 Derivatives

Since we only compute monotone derivatives, the algorithm is straightforward.
We compute finite approximations to the derivative from the left and right.
Since these bound the derivative, we simply need to iteratively compute the
difference approximations over smaller intervals to guarantee a sufficiently
small error.

The initial interval width is chosen based on out experience with past eval-
uations. This allows us to minimize the number of iterations. The difference
approximations themselves are computed using constructive real arithmetic;
hence the choice of evaluation precision is essentially automatic.

6 The Implementation

Our implementation has been available on the web, with occasional improve-
ments, since 1999, though it has not been well advertised. 4 . The implemen-
tation consists of both a Java library, and a calculator with a graphical user
interface.

4 It was originally available through SGIs web site. It has now been rehosted at
http://www.hpl.hp.com/personal/Hans Boehm/new crcalc
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Most uses of which we are aware involve the calculator. The canonical use
appears to be to check the accuracy of fixed precision floating point imple-
mentations, though it also seems fine as a general desk calculator replacement.

6.1 The Library

The library contains two components. As we saw before, the elements of
the class CR are constructive real numbers, and the class provides various
methods, e.g. add and sin to operate on them. It inherits from the standard
java.lang.Number class, and hence constructive reals can be used where
a java.lang.Number is required. The interface suffers slightly from Java’s
inability to overload arithmetic operators.

The elements of the class UnaryCRFunction are unary functions over the
constructive reals. It provides constants corresponding to various unary func-
tions, mostly corresponding to methods of CR. It also provides the above-
mentioned methods to compute the inverse of a function, to compute the
derivate of a function (restricted as above) and to compose unary functions,
yielding another UnaryCRFunction. UnaryCRFunction function objects
provide an execute method 5 to evaluate the function at a particular con-
structive real point. New unary functions can be constructed explicitly by
introducing a subclass of UnaryCRFunction with an explicit definition of
the execute method. This is analogous to the introduction of new CR values
by adding a subclass with an explicit approximate method.

6.2 The Calculator

The calculator provides a fairly conventional desk calculator user interface,
with the addition of a scroll bar to allow display of additional digits of the
result. 6 Movement of the scroll bar translates into reevaluation requests in
the real numbers currently displayed.

The calculator is a Java applet, and hence can either be run directly from
the web page, or downloaded and installed locally. The download size for the
calculator .class files with supporting libraries is about 53KB.

Unlike a conventional calculator, certain calculator operations, e.g. division

5 The name was chosen for consistency with some other Java interfaces which also
represent functions as objects with an execute method.
6 There is also a less natural mechanism to allow direct entry of the precision, e.g.
when more than 1000 digits of the result are required.
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by zero, potentially fail to terminate. This is addressed in several ways:

(1) The calculator keeps track of values that are known to be integers. Di-
viding by a known integer zero elicits an immediate error message.

(2) If an operation appears likely to diverge, e.g. a division by a number very
close to zero, the user is warned and asked whether to continue.

(3) All constructive real operations are run in a thread distinct from the one
supporting user interaction. The user interface provides a “stop” button
to abort a very long running or infinite computation.

Since the leading decimal digits of an arbitrary real number are not computable
(e.g. because it may be undecidable whether a number is slightly smaller than,
or greater than one), it may happen that the leading digits change as we scroll
through a number. We minimize the probability of this by always evaluating
a number to 15 more digits than we display. Given that errors are always
strictly less than one digit in the last place, this implies that such behavior is
only possible if the exact representation of the number contains at least fifteen
consecutive “9” digits. 7

The calculator uses the generic inverse function operation to compute inverse
trigonometric functions. The calculator code is also simplified by the ability to
treat functions on constructive reals as objects. All unary (or binary) operators
can be handled in a mostly uniform manner, and the logic associated with
degree vs. radian displays can be easily isolated.

7 Performance

For reasonably small precisions (at most a few hundred digits) and moderately
simple calculations, calculator evaluation is typically fast enough on a modern
machine that the reevaluation time is not noticeable, and the scrollbar gives
the desired visual effect of scrolling through an infinite number.

Based on some quick experiments using the calculator interface on some of the
examples in [5], the calculator is typically somewhere between a factor of 5
and two orders of magnitude slower than iRRAM[17], when run from Internet
Explorer with its built-in Java Virtual Machine. Given our general preference
for simple algorithms over asymptotically fast ones, and the fact that these
examples require 10,000 digits of precision, this is not surprising. We would

7 The error must be within 10−15 of the value of the last displayed digit, since we
computed 15 more digits. If it were slightly greater than the displayed number, we
would have violated the error bound by initially displaying the smaller digit. Thus
it must be slightly less than the displayed value, implying the sequence of “9”s.
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expect relatively better performance for somewhat lower precisions, and worse
performance for more deeply nested computations.

The use of the generic inverse operation clearly slows down the calculator
somewhat, but not enough to be a serious problem in this application. On a 733
MHz Pentium III running the Internet Explorer JVM, a sin(0.5) computation
to the (atypically large) precision of 5000 decimal digits takes about 4 seconds,
while asin(0.5) takes about 20 seconds.

Had we been willing to sacrifice simplicity for performance, we expect that
the most important performance improvements would be

(1) Bottom-up error propagation, with evaluation based on variable-precision
interval arithmetic, in order to improve performance on deeply nested
expressions.

(2) Asymptotically better algorithms for multiplication 8 , reciprocals, and
various transcendental functions. This could greatly improve performance
of high precision evaluations.

(3) Special treatment of some “obviously rational” values. 9
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