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One major SVM weakness has been the use of generic kernel 
functions to compute distances among data points. Polynomial, 
linear, and Gaussian are typical examples. They do not take full 
advantage of the inherent probability distributions of the data. 
Focusing on audio speaker identification and verification, we 
propose to explore the use of novel kernel functions that take full 
advantage of good probabilistic and descriptive models of audio  
data. We explore the use of generative speaker identification 
models such as Gaussian Mixture Models and derive a kernel 
distance based on the Kullback-Leibler (KL) divergence between 
generative models. In effect our approach combines the best of both 
generative and discriminative methods. Our results show that these 
new kernels perform as well as baseline GMM classifiers and 
outperform generic kernel based SVM’s in both speaker 
identification and verification on two different audio databases. 
 

 

* Internal Accession Date Only                               Approved for External Publication 
Published in Eurospeech 2003, 1-4 September 2003, Geneva, Switzerland 
 Copyright IEEE 



1 Introduction

During the last years Support Vector Machines (SVM’s) [1] have become extremely successful
discriminative approaches to pattern classification and regression problems. Excellent results
have been reported in applying SVM’s in multiple classification and regression benchmarks. In
the general area of speech and speaker recognition SVM’s have also been studied over the last
years. For example, among others [2] compares the use of traditional based kernel SVM’s with
Gaussian classifiers, [3] examines the use of SVM’s for phonetic classification, and [4] studies
the use of SVM’s to classify telephone handsets based on speech signals.

SVM’s are model free methods that do not make any distributional assumptions about the data
and at the same time offer a discriminative solution to classification problems with strong
bounds on error minimization. The study of kernels has also gained importance in the last
years in the machine learning community. Most research activities however have been focused
on the underlying learning algorithms but not on the kernels themselves. Standard kernels such
as linear, Gaussian, or polynomial don’t take full advantage of the nuances of speech signals.
An example of previous attempts in speaker identification and verification using these kernels
is described in [5].

On the other hand statistical models such as Gaussian Mixture Models (GMM) or Hidden
Markov Models make strong assumptions about the data, are simple to learn and estimate,
and are well understood by the research community. It is therefore attractive to explore meth-
ods that combine generative models and discriminative models. We propose an approach that
combines both discriminative and generative methods to classification. Instead of using these
traditional kernels, we customized them for better speaker characteristics representation. We
take advantage of diagonal covariance GMM’s and full covariance Gaussian models to better
represent speech utterances. We use a distance derived from the symmetric Kullback-Leibler
(KL) divergence to effectively compare models.

The outline of this paper is as follows. In section 2 we give a brief introduction to SVM clas-
sifiers and the Fisher kernel. In section 3 we describe in detail the new kernels we introduce
for audio data. We follow in section 4 describing the experimental databases and our results on
two different speaker corpora. Finally, we conclude the paper and suggestions for future work
in section 5.

2 Kernels for SVM’s

Support Vector Machines were first introduced by Vapnik and evolved from the theory of Struc-
tural Risk Minimization [1]. SVM’s learn the boundary regions between samples belonging to
two classes by mapping the input samples into a high dimensional space and seeking a separat-
ing hyperplane in this space. The separating hyperplane is chosen in such a way as to maximize
its distance from the closest training samples (support vectors). This distance quantity is referred
to as themargin.
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An SVM classifier has the general form:

f(x) =
∑̀
i=1

yiαiK(xi,x) + b (1)

wherexi ∈ Rn, i = 1, 2, . . . , l are the training data. Each point ofxi belongs to one of the
two classes identified by the labelyi ∈ {−1, 1}. The coefficientsαi andb are the solutions
of a quadratic programming problem [1].αi are non-zero for support vectors (SV) and are
zero otherwise.K is the kernel function. Classification of a test data pointx is performed by
computing the right-hand side of Eq. (1).
Much of the flexibility and classification power of SVM’s resides in the choice of kernel. Some
examples are linear, polynomial degreep, and Gaussian. These kernel functions have two main
disadvantages for speech signals. First they only model individual data points as opposed to an
ensemble of vectors which speech classification decisions must be based on. Secondly these
kernels are quite generic and do not take advantage of the statistics of the individual speech
signals we are targeting.
The Fisher kernel approach [6] is a first attempt at solving these two issues. It assumes the
existence of generative model that explains well all possible data. For example, in the case of
speech signals the generative modelp(x|θ) is often a Gaussian mixture. Where theθ model
parameters are priors, means, and diagonal covariance matrices.
For any given sequence of vectors defining an utteranceX = {x1,x2, . . . ,xl} and assuming
that each vector in the sequence is independent and identically distributed, we can easily define
the likelihood of the ensemble being generated byp(x|θ) asP (X|θ) =

∏l
i=1 p(xi|θ). The

Fisher kernel maps utterances{X1, . . . , Xn}, each composed of a different number of feature
vectors, into a linear space of fixed dimension.
We define a new feature vector, the Fisher score, as

UX = ∇θlog(P (X|θ)) (2)

Each component ofUX is a derivative of the log-likelihood of the audio sequenceX with respect
to a particular parameter of the generative model. In our case the parametersθ of the generative
model are chosen from either the prior probabilities, the mean vector or the diagonal covariance
matrix of each individual Gaussian in the mixture model. For example, if we use the mean
vectors as our model parametersθ, i.e., for θ = µk out ofK possible mixtures, then the Fisher
score is

∇µk
log(P (X|µk)) =

l∑
t=1

P (k|xt)Σ
−1
k (xt − µk) (3)

whereP (k|xt) represents thea posterioriprobability of mixturek given the observed feature
vectorxt. Effectively we transform each utteranceX of variable length into a single vectorUX .
For more details the reader is refered to [6]. The Fisher kernel approach has been successfully
applied to speech signals before, see [7, 3].
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3 Probabilistic Distance Kernels

Our new algorithm starts with a statistical modelp(x|θi) of the data,i.e., for each utteranceXi =
{x1,x2, . . . ,xl} we estimate the parametersθi of a generic probability density function (PDF).
We pick PDF’s that have been shown over the years to be quite effective at modeling speech
patterns. In particular we use diagonal Gaussian mixture models and single full covariance
Gaussian model. In the first case the parametersθi are priors, mean vectors, and diagonal
covariance matrices while in the second case the parametersθi are the mean vector and full
covariance matrix.
Once the PDFp(x|θi) has been estimated for each training and testing utterance we replace the
kernel computation in the original utterance space by a kernel computation in the PDF space:

K(Xi, Xj) =⇒ K(p(x|θi), p(x|θj)) (4)

To compute theθi parameters for a given utteranceXi we use a maximum likelihood approach.
In the case of diagonal mixture models there is no analytical solution forθi and we use the
Expectation Maximization algorithm. In the case of single full covariance Gaussian model
there is a simple analytical solution for the mean vector and covariance matrix. Effectively we
are proposing to map the input spaceXi to a high dimensional feature spaceθi. Notice that
if the number of vector in theXi utterance is small and there is not enough data to accurately
estimateθi we can use regularization methods, or even replace the maximum likelihood solution
for θi by a maximum a posteriori solution. Other solutions like adapting theθi parameters are
possible and will be described in publications in the future.
The next step is to define the kernel distance in this new feature space. Because of the statistical
nature of the feature space a natural choice for a distance metric is one that compares PDF’s.
From the standard statistical literature there are several possible choices, however, in this paper
we only report our results on the symmetric Kullback-Leibler (KL) divergence

D(p(x|θi), p(x|θj)) =

∞∫
−∞

p(x|θi) log(
p(x|θi)

p(x|θj)
) dx +

∞∫
−∞

p(x|θj) log(
p(x|θj)

p(x|θi)
) dx (5)

Because a matrix of kernel distances directly based on symmetric KL divergence does not satisfy
the Mercer conditions,i.e., it is not a positive definite matrix, we need a further step to generate
a valid kernel. Among many posibilities we simply exponentiate the symmetric KL divergence,
scale, and shift (A andB factors below) it for numerical stability reasons

K(Xi, Xj) =⇒ K(p(x|θi), p(x|θj))

=⇒ e−A D(p(x|θi),p(x|θj))+B

(6)

In the case of Gaussian mixture models the computation of the KL divergence is non trivial. In
fact there is no analytical solution to equation 5 and we have to resort to Monte Carlo methods
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or numerical approximations. In the case of single full covariance models the KL divergence
has an analytical solution

D(p(x|θi), p(x|θj)) = tr(Σi Σ
−1
j ) + tr(Σj Σ−1

i )−

2 S + tr((Σ−1
i + Σ−1

j ) (µi − µj)(µi − µj)
T ) (7)

whereS is the dimensionality of the original feature datax. Notice that this similar to the
Arithmetic harmonic sphericity (AHS) distance quite popular in the speaker identification and
verification research community [8].

Our approach, while independently derived, shows remarkable similarity to the Information
Diffusion kernel proposed in [9]. There are however some differences. Among others, our
approach is conceptually much simpler and is applied to continuous data sets as opposed to
discrete data sets such as text corpora.

4 Experiments and Results

We chose the HUB4-96 [10] News Broadcasting corpus and the Narrowband version of the
KING corpus [11] to train and test our algorithms such that we could compare the performance
on broadcasting-quality (16kHz) speech and telephone-quality (8kHz) speech. HUB4 is not a
common corpus for speaker identification and verification. However, it contains a large number
of broadcast-quality utterances from speakers and it was readily available.
The HUB4 corpus has over 2000 speakers. However, we only used the 50 speakers who ap-
peared most frequently in this corpus. The training set contains about 25 utterances (each 3-7
seconds long) from each of the 50 speakers resulting in 1198 utterances. The test set contains
the rest of the utterances from these 50 speakers resulting in 15325 utterances.
The KING corpus is commonly used for speaker identification and verification in the speech
community. We use the narrowband version of the corpus. In order to match with the HUB4
experiments, we also picked 50 speakers in KING for training and testing. The training set con-
tains 4 utterances from each speaker, randomly chosen from S1-S10, and the test set contains
6 utterances (excluded from the training set) from each speaker. This produced a total of 200
training utterances and 300 testing utterances. We use standard Mel-Frequency Cepstral Coef-
ficients (MFCC’s) and their first and second derivatives to compose a 39 dimensional feature
vector in all our experiments.
Two types of probabilistic distance kernels were explored: the GMM/KL divergence and the
full-covariance/AHS distance. In the first kernel a sequence of feature vectors from each utter-
ance was modeled by a single GMM of diagonal covariances with 16 mixtures. Then the KL
divergences between each of these GMM’s were computed, this formed a 1198x1198 training
matrix and a 15325x1198 test matrix for the HUB4 corpus; and a 200x200 training matrix and a
300x200 test matrix for the KING corpus. For the full-covariance/AHS distance based kernel a
full covariance Gaussian was computed for each speaker, then the AHS distances between each
of these full covariances were computed.
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Our experiments trained and tested using five different types of classifiers: Baseline GMM,
Baseline AHS, SVM using Fisher kernel, SVM using GMM/KL Divergence based kernels, and
SVM using Full-Covariance/AHS distance based kernels. We compared the performance of all
these classifiers. [12] and [8] describe in detail the first and second classification approaches.
For the Fisher kernel experiments we used asθ parameters the prior probabilities of each mix-
ture Gaussian as described in section 2.
In order to identify the 50 speakers from HUB4, 50 SVM’s were trained by the 1-vs-rest ap-
proach,i.e. one speaker vs. the rest of the 49 speakers. We used a modified version of SVMFu
[13] to train and test our new kernels. We tested these SVM’s and each returned a score for
each of the 15325 test utterances. The KING speaker SVMs were trained in the same way.
For speaker verification using GMM’s or AHS probabilistic classifiers the speaker score had to
be compared with a background score. This score is computed as the arithmetic mean of the
49 speaker scores that did not belong to the actual labeled speaker. This background score is
subtracted from the actual speaker score and compared to a thresholdΘ

Scorei −
1

49

50∑
t=1,t6=i

Scoret > Θ (8)

The Detection Error Tradeoff (DET) curve as shown in Fig. (1) is computed by varyingΘ.
DET’s can be computed in two different ways based on the pool of speakers. The DET shown
in Fig. (1) was computed by using all the 50 speakers in the HUB4 corpus. Each utterance was
tested against all the 50 classifiers. However, the DET shown in Fig. (2) was computed by using
only three cohort speakers and the target speaker. Cohort speakers are a subset of speakers who
are highly confusable with the target one. The use of cohorts represents a worst case scenario
for speaker verification. We only show DET curves on the HUB4 corpus. Results on the KING
corpus are quite similar and are shown in Table 2.

Table 1:Comparison of all the classifiers used on the HUB4 corpus. Both classification accu-
racy (Acc) and equal error rates (EER) are reported in percentage points.

Type of HUB4 HUB4 HUB4
Classifier Acc EER Cohort EER

GMM NG=256 87.4 8.1 13.8
AHS 81.7 9.1 16.8

SVM Fisher 62.4 14 20.8
SVM GMM/KL 83.8 7.8 10.8

SVM AHS 84.7 7.4 10.0

We tested our probabilistic kernels and compared their results with each other, as well as with
the results of the baseline GMM classifier1, baseline AHS classifier, and the Fisher kernel SVM
in both speaker verification and identification. The following tables show the equal-error rates

1Experiments were done where we varied the number of Gaussians. We only report results on the best GMM
configuration.
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Figure 1: Speaker verification detection error tradeoff (DET) curves for the HUB4 corpus,
tested on all 50 speakers.

(EER’s) of speaker verification and the accuracies of speaker identification for both corpora
when trained and tested with all 50 speakers in the HUB4 and KING corpora.
Our approach using the probabilistic SVM kernels shows quite promising results. As we can
see in the case of the HUB4 corpus all classifiers perform similarly in the speaker identification
task with the exception of the SVM Fisher. This is mostly likely because of the availability
of sufficient training data in HUB4 for the generative classifiers (GMM’s and AHS). Similar
performance is observed when we look at the speaker verification task and the DET plot in
Fig. (1).
The results of the KING corpus are shown in Table 2. As we can see in both speaker identifica-
tion and verification tasks, our probabilistic SVM methods outperform the generative classifiers
significantly. This is because the amount of data is more limited and SVM methods can take
better advantage of fewer data points.

Table 2:Comparison of all the classifiers use on the KING corpus. Both classification accuracy
(Acc) and equal error rates (EER) are reported in percentage points.

Type of KING KING KING
Classifier Acc EER Cohort EER

GMM NG=256 70.7 16.1 25.2
AHS 48.3 26.8 28.0

SVM GMM/KL 72.7 7.9 11.1
SVM AHS 79.7 6.6 9.1

Looking at the HUB4 speaker verification DET in Fig. (2), we can see the different performance
when cohorts are used. Naturally the EER’s are worse when we look at a worse case scenario
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Figure 2:Speaker verification DET curve for the HUB4 database tested only on 3 cohort speak-
ers and the target speaker.

such as cohorts. However, the relative performance of all classifiers remains the same with the
new proposed probabilistic SVM systems outperforming all other classifiers.

5 Conclusion and Future Work

In this paper we have proposed two new methods of combining generative classifiers that max-
imize the likelihood of observed data under some model assumptions and discriminative classi-
fiers (SVM’s) that effectively minimize training error rates.
Our approach is extremely simple. For every utterance a PDF is learned using maximum likeli-
hood approaches. In the case of GMM’s we use the EM algorithm to learn the model parameters
θ. In the case of a single full covariance Gaussian we directly estimate the full covariance. Then
we introduce the idea of computing kernel distances via a direct comparison of PDF’s. In effect
we replace the traditional kernel distance on the original dataK(Xi, Xj) by a new kernel derived
from the symmetric Kullback-Leibler (KL) divergenceK(Xi, Xj) −→ K(p(x|θi), p(x|θj)).
After that a kernel matrix is computed and a traditional SVM can be used.
In our experiments we have validated this new approach to speaker identification and verifica-
tion comparing its performance with Fisher kernel SVM’s and with other well-known speaker
recognition algorithms: GMM and AHS methods. Our results show that these two new kernels
always outperform the SVM Fisher kernel and the AHS methods, and they do equally well as the
baseline GMM in the case of speaker identification when training with a large corpus (HUB4).
These new kernels outperform both the baseline classifiers and the Fisher kernel SVM when
training with a small corpus (KING). They also outperform all other classifiers in the case of
speaker verification. All these encouraging results show that SVM’s can be improved by paying
careful attention to the nature of the data being model. In the case of speech signals we just take
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advantage of previous years of research in generative methods.
The most remarkable result is the good results obtained using a full covariance single Gaus-
sian probabilistic based SVM classifier. Its simplicity and similarity with the well known AHS
method makes it a very attractive alternative to more complex methods of combining genera-
tive classifiers and discriminative methods such as Fisher SVM. Its performance is consistently
good across both databases, is specially fast to compute, and it requires no tuning of system
parameters.
We feel that this approach of combining generative classifiers via KL distances of derived PDF’s
is quite generic and can possibly be applied to other domains. We plan to explore its use in image
classification tasks and other multimedia related tasks.
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