

Node-centric RDF Graph Visualization

Craig Sayers
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2004-60
April 7, 2004*

RDF, visualization,
Resource
Description
Framework, graph,
browser, node-
centric

This paper describes a node-centric technique for visualizing Resource
Description Framework (RDF) graphs. Nodes of interest are discovered
by searching over literals. Subgraphs for display are constructed by using
the area around selected nodes. Wider views are created by sorting and
displaying nodes based on the number of incoming and outgoing arcs.

The visualization provides a consistent left-to-right orientation for node
connectivity and the user browses by simply selecting nodes or arcs of
interest.

An example interaction is presented along with a discussion of the design
and implementation tradeoffs. Providing an acceptable interactive
response time required introducing a preprocessing step and trading space
for speed by creating large cross-referenced indexes.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

1 Introduction

In the Resource Description Framework (RDF) information is encoded as
a set of statements about resources. Those statements may be abstractly
viewed as a graph [5].

While visualizing tree-like structures (such as filesystems or XML docu-
ments) is relatively easy, visualizing a graph is complicated by the possible
presence of cycles and the fact that there is no unique root node. The
difficulties of graph visualization have been well studied. See [4] for review.

In the case of RDF, one natural technique is to translate the RDF statements
into a graph notation and then view that using standard graph visualization
tools (such as GraphViz developed at AT&T [1]). There have been a number
of implementations of this approach - see for example Pietriga’s IsaViz [9]
or Brinkley’s RDFViz [2]. There are also several graph visualization tools
designed for use with ontologies - see for example the range of plugins for
the Protégé ontology editor [10].

These graph-based techniques work very well for small graphs, but as the
graphs become larger it is increasingly difficult to find a layout which is
readable. This is not unique to RDF. It is merely a consequence of the
general difficulty in rendering graphs well.

It is also possible to view RDF as plain text using one of the RDF serial-
ization syntaxes [6, 3]. While these can work well for small files, it can be
difficult to see relationships between nodes scattered throughout the serial-
ization. For example it is relatively easy to see the arcs from a node, but
very hard to see all the arcs to a node.

The text-based view can be improved using a text-based browser such as
BrownSauce [13]. This focuses on a node and shows related information
in a human-readable form. Other text-based alternatives include viewing
the RDF resources in a tree-like filesystem view as in the RDF Model
Browser [12] or using ontological information to view RDF using a faceted
browser (for an introduction to faceted browsing see [16]).

In this paper we describe a graphical tool for visualizing arbitrary RDF
graphs. A search tool is provided to find a portion of the graph likely to
be of interest, and the system then focuses on providing a clear graphical

1

visualization of that portion using a node-centric view.

The paper begins with an example visualization, discusses the design and im-
plementation and then provides some recommendations regarding the han-
dling of additional information about a resource.

2 Example Interaction

To show an example interaction we’ll look over the shoulder of a user brows-
ing the rdf-schema (this is a relatively small RDF file, we choose it to ease
the task for others who may wish to compare our visualization against al-
ternatives, and we note that the nature of our visualization means it is
relatively insensitive to graph size). The user begins with a search. In this
case, by selecting the file from a drop-down list and entering container*
into the search box. The results are shown in Figure 1.

The resulting display, returned in a fraction of a second, shows the matching
literals and also the nodes one arc back from those literals. It has also sorted
those nodes by type, listing those of type rdfs:Class first, then those of
type rdfs:Property. In this case, because one end of each arc is a literal,
the direction of the arcs is unambiguous, but more generally the direction
in our visualizations is always left-to-right.

Each node in this diagram is a live link, and the user may click on it for more
information. For example, when the user clicks on the node rdfs:Container
the display refreshes to show the graph around that node (see Figure 2).

We display one arc backwards and two arcs forwards from the selected node.
Again, all arcs go left-to-right, so we can see that there are three things
(Alternate, Bag, and Sequence) which are subclasses of a Container; that
a Container is itself a subclass of Resource, and that a Container is also of
type Class.

If the user now clicked on the node rdfs:Class they would see the display
shown in Figure 3.

Once again, we show one arc back and two arcs forward. By examining nodes
on the left we see that a Container is just one of many things which are of
type Class; while examining nodes on the right we see information about

2

Figure 1: Display after searching the rdf-schema for the literal text “con-
tainer*”. Matching text is highlighted in each literal.

3

Figure 2: Display after selecting the node rdfs:Container. Here the system
is showing one arc back and two arcs forward from the selected node.

4

Figure 3: Display after selecting the node rdfs:Class. Again one arc back
and two arcs forward are displayed. Notice that a Class is of type Class
resulting in a circular arc.

5

the definition of a Class. Notice that the display is focused on a particular
node, showing arcs to and from that node, including circular arcs.

To keep the display readable, we do not attempt to collapse nodes which
are reachable by both forward and backward arcs, nor do we attempt to
show each arc exactly once. Rather we show the selected node and then all
nodes reachable by following an arc backward from that node and all nodes
reachable by following arcs forward up to two steps from the selected node.
Referring to the figure, note that the node rdfs:Resource appears both
on the left and right of the diagram (since it is reachable both by following
an arc backwards and by following an arc forwards). Notice also that the
statement:

rdfs:Resource rdf:type rdfs:Class .

also appears twice - once on the left-hand-side as an arc arriving at the
rdfs:Class node and once on the right-hand-side leaving the rdfs:Resource
node. We view this duplication as desirable since it simplifies the view while
keeping everything consistent. We do collapse duplicate nodes that would
otherwise be neighbors in the diagram - an example is rdfs:Datatype since
in those cases there is no need to compromise consistency.

Each displayed arc is also a live link. Examining each arc carefully, you’ll
see that the system has done some work to generate those names. It shows
the namespace and then a human-readable label rather than the full URI. In
general, the format for a displayed node or predicate URI is selected from:

1. namespace:‘label’
2. namespace:localname
3. uri

The first option is preferred in cases where a label is available (based on the
presence of an rdfs:label property)1. The only exception is when we’re
generating a visualization centered on a particular node. In that case the
rdfs:label property is already visible as a property of the selected node
and we prefer not to hide the localname from the user. If no namespace is
available then we use the full URI.

1An idosyncrasy of the current implementation is that we only look for labels within

the file being displayed. In the future it would obviously be preferable to use node labels

from any related graphs.

6

For more information on any arc, the user simply clicks on it. Continuing
this example interaction, if the user clicked on the arc rdfs:subClassOf
they would see the display shown in Figure 4.

Here the display shows instances of the subClassOf predicate and then its
definition. Notice that we’ve made a very natural move here from viewing
statements, to viewing an ontology which describes the properties of those
statements. In this case the instances of the predicate and its definition are
all in the same file, but there is also additional information about that node
in the OWL ontology and that is also listed in the visualization.

In the example so far we started with a search. Sometimes, when viewing
unfamiliar files, it can be difficult to know where to start. To assist in such
situations we also provide a view of all nodes in the model. The user accesses
this by simply clicking the search button without entering any search text.
An example is shown in Figure 5.

Rather than trying to display all the nodes as a graph, we instead sort the
nodes based on the number of incoming or outgoing arcs: nodes with no
incoming arcs are shown on the left of the screen; those with no outgoing
arcs are shown on the right; all others fall in the middle. This gives users a
quick summary of the graph and the nodes in the center are generally good
candidates for a node-centric visualization. Again, in this view all the nodes
are live links and any may be selected for more detailed browsing.

3 Design

Having decided on a node-centric view, the design choices revolved around
how best to display the information around a node. We first experimented
with graph-based approaches, but the display was problematic: finding a
suitable layout meant compromising consistency (both for the layout of
arcs/nodes within one visualization and when navigating from node to node).
We quickly settled on a tree-based approach. Treating the selected node as
the root and forming trees of nodes visible by following arcs either forward
or backward. This causes duplication in both nodes and arcs, but that was
considered preferable to the alternative.

A characteristic of RDF is that while arc labels can usually be shortened
(using namespaces and rdf:label tags in the ontology) node labels are

7

Figure 4: Display after selecting the arc rdfs:subClassOf. This shows in-
stances of that arc in the chosen file and then the definition of that predicate.

8

Figure 5: Display showing the whole model. Nodes on the far left have no
incoming arcs; while those on the far right have no outgoing arcs. As in the
previous examples, all connections go from left-to-right and all nodes are
live links.

9

frequently less amenable to abbreviation. As a result, we choose a horizontal
layout and kept the selected node label at the top (so it can extend far to
the right without overlapping other information).

We also experimented with different levels of information and found that one
arc back and two arcs forward provided a reasonable compromise. Showing a
larger subgraph would have required using a smaller font size; which showing
any less provided insufficient context around the selected node.

One drawback to the node-centric visualization is that it only shows a small
fraction of the graph. This works well if you need detail or if you have
a specific term to search for. However, if you have little knowledge of a
file’s contents, then it is helpful to have more context with a wider view.
To this end we experimented with mechanisms for displaying a larger set
of nodes. Again considering consistency in the left-to-right arc direction
to be paramount, we chose to position the nodes based on their incoming
and outgoing arcs. The root nodes (with no incoming arcs) were placed on
the far left, while terminal nodes (with no outgoing arcs) were placed on
the far right of the screen. All other nodes fall in the middle and, having
both incoming and outgoing arcs, and are thus likely a good choice for
node-centric visualization. In this way we give users a general sense of the
graph size, some hints as to its structure, and suitable places to start a more
detailed visualization.

4 Implementation

The visualizer is implemented as an HTTP request handler. It responds
to GET requests using a style influenced by the RDFNet proposed stan-
dard [8, 11]; generating results in a combination of HTML and Scalable
Vector Graphics(SVG).

4.1 Request protocol

All requests are of the form

GET http://hostname /visualize&lang= . . . HTTP 1.1

10

Where lang is a required parameter:

• lang= [svg | visual]
use the svg option to receive a Scalable Vector Graphics (SVG) file or
the visual option to receive that same svg file, but embedded in an
HTML form with user interface controls.

and there are additional optional parameters:

• model=modelName
specifies the name of the primary model from which results should
be displayed. In the future, more than one model may be permitted,
hence this is a parameter and not part of the pathname.

• r=resourceURI
specifies a particular resource to display. This is the node for which
a node-centric display (showing one arc forward and two arcs back)
will be generated. This is an optional parameter. If missing, then the
system will return all nodes which match the specified search text.

• search=searchText
specifies text to search for in all literals. In the present implementa-
tion this is a single word, optionally ending in * to indicate a search
for all literals containing a word that starts with the search text. A
search text of * matches all literals. If no search text is specified and
no particular resource is selected then a view of the entire model is
returned.

• style= [list | arcs]
specifies the style for returned search results. The default is a list of
nodes, however for the case where the user selects an arc, we handle
that specially, returning both a list of instances of that arc along with
definitions of the arc predicate.

The visualizer is implemented in Java and uses HP’s Jena RDF library [7] for
reading and parsing input files. Source code is available under an open source
license at: http://www.hpl.hp.com/personal/Craig Sayers/rdf/visual.

11

http://www.hpl.hp.com/personal/Craig_Sayers/rdf/visual

4.2 Preprocessing

In early implementations the rendering engine operated in a stateless man-
ner; starting from scratch for each display. This was convenient for imple-
mentation, but suffered from poor performance. Rendering a node-centric
view from within a 20 Mbyte dataset could take more than 30 seconds - a
quite unacceptable time.

Thus, more recent implementations incorporate an off-line analysis phase.
The system is given a directory of RDF files at startup and examines them
to generate a set of cross-referenced indexes. For each node, it stores sorted
lists of all the forward and backward arcs from/to that node along with all
nodes reachable by following those arcs. To aid in searches, it also generates
indexes of all words used in literals. For each word, it stores the literal and
a sorted list of nodes which are reachable by following a link backward from
each literal.

On a standard 2003-era personal computer it takes around 80 seconds to
perform the analysis on a 20 Mbyte RDF file containing 57,000 nodes that
was written using the xml/rdf syntax (about 1/3 of that time is simply read-
ing and parsing the file). Thereafter, responding to search and visualization
requests takes less than 1 second.

5 Discussion

5.1 Additional Information about resources

Recently there has been considerable discussion in the RDF community
regarding mechanisms for finding more information about a resource (see
for example [15]). This has implications for our visualization system.

One proposed approach is to use a variant of the HTTP GET protocol;
where GET would obtain a resource itself, while MGET would obtain a
description of the resource [14].

Another proposed approach is to vary the name of the resource, so for exam-
ple one might use HTTP GET resourceURI to get the resource, or HTTP
GET resourceURI.rdf to get metadata about the resource [15].

12

Unfortunately, those and related techniques provide no way to know if ad-
ditional information for a resource exists unless you look for it2.

For a visualization, that is problematic. We could create a link from every
resource to potential additional information, however, the probability that
clicking on the link will work is very much less than for a link in any other
web page. We expect that after a user clicks on several bad links they
will quickly learn to ignore them. Testing each link beforehand during the
preprocessing phase would allow us to only show links which are known to
work. This is appealing until the time required is considered. We already
visualize files containing more than 57,000 nodes - trying to get each one is
just not realistic.

A much-preferable approach (at least from a visualization perspective) is to
explicitly add RDF statements to indicate the availability of additional infor-
mation. For example using predicates rdfs:seeAlso or rdfs:isDefinedBy.

In each case we see such statements we have the option to generate an
appropriate visualization with a link which we know is likely (or at least
expected) to work.

5.2 Future work

While the off-line analysis speeds processing of large files it also requires a
fixed and static information set. More dynamic and intelligent approaches
will be necessary.

Other potential areas of improvement abound in the system. In particular,
there are opportunities for enhancing the wider view to show more connec-
tivity information and to improve search and display taking into account
language or datatype, supporting multiple constraints, and making use of
namespace and ontological information.

We note that the visualization is the result of experimentation driven by
intuition and aesthetic sensibility. We have not conducted any user studies.

2There is also no guarantee that the result of attempting to look will return a definitive

answer (a server may be down or temporarily-overloaded for example)

13

6 Conclusions

A node-centric approach to RDF graph visualization has been described.
Rather than trying to show a whole graph, we instead use a search over
literal text to choose potential starting nodes and then allow the user to
browse using an interactive display which shows the area one arc back and
two arcs forward from a selected node. In cases where a wider view is desired
we sort and display nodes based on the number of incoming and outgoing
arcs.

The visualization features a consistent left-to-right orientation for node con-
nectivity and all displayed nodes and arcs are live links which may be selected
to obtain additional information.

Providing an acceptable interactive response time required introducing a
preprocessing step and trading space for speed by creating large cross-
referenced indexes.

We recommend using explicit RDF statements to indicate the location of
additional information about a resource.

7 Acknowledgements

Thanks to all those who have contributed to HP Labs Jena RDF library, and
to Mark Butler for providing a test dataset. We are especially grateful to
Steve Cayzer for suggesting a number of improvements to both the visualizer
and this document.

References

[1] AT&T. Graphviz. http://www.research.att.com/sw/tools/graphviz/,
2004.

[2] D. Brinkley. Rudolf: RDFViz. http://www.ilrt.bris.ac.uk/discovery/
rdf-dev/rudolf/rdfviz/, 2004.

14

[3] J. Grant and D. Beckett. Resource description framework (RDF) test
cases, W3C working draft. http://w3.org/TR/2002/WD-rdf-testcases-
20020429, April 2002.

[4] Herman, G. Melançon, and M. S. Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE Transactions
on Visualization and Computer Graphics, 6(1):24–43, /2000.

[5] G. Klyne and J. Carroll. Resource description framework (RDF):
Concepts and abstract syntax. http://www.w3.org/TR/rdf-concepts,
November 2002.

[6] O. Lassila and R. Swick. Resource description framework (RDF) model
and syntax specification, W3C recommendation. http://w3.org/TR/
1999/RED-rdf-syntax-19990222, February 1999.

[7] B. McBride et al. The Jena semantic web toolkit.
http://www.hpl.hp.com/semweb/, 2004.

[8] G. Moore and A. Seaborne. The RDF net API, W3C member
submission. http://www.w3.org/Submission/2003/SUBM-rdf-netapi-
20031002/, October 2003.

[9] E. Pietriga. IsaViz. http://www.w3.org/2001/11/IsaViz/, 2003.

[10] The Protégé ontology editor and knowledge acquisition system.
http://protege.stanford.edu/plugins.html, 2004.

[11] A. Seaborne. Joseki: The Jena RDF server. http://www.joseki.org/,
2003.

[12] D. Skvortsov. RDF model browser. http://visualrdf.sourceforge.net/.

[13] D. Steer. Brownsauce: an introduction. Technical Report HPL-2003-10,
Hewlett-Packard Laboratories, Bristol, England, January 2003.

[14] P. Stickler. The uri query agent model: A semantic web enabler.
http://sw.nokia.com/uriqa/URIQA.html, 2004.

[15] D.-W. van Gulik. Summary various ’about:’ solutions.
http://lists.w3.org/Archives/Public/www-rdf-interest/2004Mar/
0011.html, March 2004.

[16] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for
image search and browsing. In ACM CHI 2003, April 2003.

15

	Introduction
	Example Interaction
	Design
	Implementation
	Request protocol
	Preprocessing

	Discussion
	Additional Information about resources
	Future work

	Conclusions
	Acknowledgements

