

TriX : RDF Triples in XML

Jeremy J. Carroll, Patrick Stickler1
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2004-56
May 13, 2004*

E-mail: firstname_lastname@hp.com

semantic web,
RDF, XML

Many approaches to writing RDF in XML have been proposed. The
revised standard RDF/XML still has many known problems. It is not
intrinsically difficult to have a clear serialization of RDF in XML, and we
present a simple solution. We add the ability to name graphs, noting that
in practice this is already widely used. We use XSLT as a general
syntactic extensibility mechanism to provide human friendly macros for
our syntax.

* Internal Accession Date Only
 1 Nokia, Tampere, Finland Approved for External Publication
 Copyright Hewlett-Packard Company 2004

TriX: RDF Triples in XML
Jeremy J. Carroll
Hewlett-Packard Labs

Patrick Stickler
Nokia

Keywords: Semantic Web; RDF; XML

Abstract

Many approaches to writing RDF in XML have been proposed. The
revised standard RDF/XML still has many known problems. It is
not intrinsically difficult to have a clear serialization of RDF in
XML, and we present a simple solution. We add the ability to name
graphs, noting that in practice this is already widely used. We use
XSLT as a general syntactic extensibility mechanism to provide
human friendly macros for our syntax.

Introduction

It is well known that RDF/XML presents problems.

A cursory search with Google reveals half-a-dozen suggestions for alternative XML
syntaxes for RDF.

This paper presents another. Distinctively we select the simplicity of N-triples [RDF
Tests] as our guide, and have an explicitly minimalist set of requirements.

For cases where this set of requirements is insufficient we indicate the use of the
stylesheet processing instruction to provide general purpose syntactic extensibility
using XSLT [XSLT] .

A further distinctive feature of our syntax is explicit support for naming of graphs.

Examples

Example 1: Here is a TriX document:

<TriX xmlns="http://www.w3.org/2004/03/trix/trix-1/ ">
 <graph>
 <uri>http://example.org/graph1</uri>
 <triple>
 <uri>http://example.org/Bob</uri>
 <uri>http://example.org/wife</uri>
 <uri>http://example.org/Mary</uri>
 </triple>
 <triple>
 <uri>http://example.org/Bob</uri>
 <uri>http://example.org/name</uri>
 <plainLiteral>Bob</plainLiteral>
 </triple>
 <triple>
 <uri>http://example.org/Mary</uri>
 <uri>http://example.org/age</uri>
 <typedLiteral
datatype="http://www.w3.org/2001/XMLSchema#integer" >32</typedLiteral>
 </triple>
 </graph>
</TriX>

Syntactic extensions to the minimalist core, require a processing instruction. Example
2 is the same graph expressed using qnames and XSD type support:

<?xml-stylesheet type="text/xml"
href="http://www.w3.org/2004/03/trix/all.xsl"?>
<TriX xmlns="http://www.w3.org/2004/03/trix/trix-1/ "
xmlns:eg="http://example.org/">
 <graph>
 <uri>http://example.org/graph2</uri>
 <triple>
 <qname>eg:Bob</qname>
 <qname>eg:wife</qname>
 <qname>eg:Mary</qname>
 </triple>
 <triple>
 <qname>eg:Bob</qname>
 <qname>eg:name</qname>
 <plainLiteral>Bob</plainLiteral>
 </triple>
 <triple>
 <qname>eg:Mary</qname>
 <qname>eg:age</qname>
 <integer>32</integer>
 </triple>
 </graph>
</TriX>

The Requirements

The requirements we address are the following:

1. The format serializes the RDF graph.
2. The format is compatible with XML tools, such as XML Schema [XML Schema

Structures], DTDs [XML] , XPath [XPath] , XSLT [XSLT] . In particular, it is
straight forward to access the graph structure using such tools.

3. As few other features are included as possible.

The last requirement is the most important. We will see that one of the problems with
RDF syntax is an excess of requirements from different communities creating a
political problem that may get solved with a technical hack.

We argue later that the two additional features we add, naming of graphs and
syntactic extensibility, are well-chosen and appropriate. Moreover they do not reflect
the needs of any specific community, but meet general requirements of many RDF
users.

What's Wrong with RDF/XML?

A Brief History of RDF Syntax

The original RDF Syntax working group took input from Guha's MCF [GuhBra1997],
Microsoft's Web Collections [HopBerHat1997], and Lassila's Lisp oriented PICS-NG
format [Las1997].

Mixing these together, taking something from everything, resulted in RDF/XML in
1999 [RDF M&S] . Since its publication, there have been a steady stream of
alternatives.

Berners-Lee started the process, by proposing an unstriped syntax [TBL1999]. Melnik
followed up with an attribute based proposal [Mel1999a] which could be used to bridge
[Mel1999b] between XML and RDF.

The next year (2000), Berners-Lee gave up on a usable XML syntax for RDF, and
proposed N3 [N3].

In 2001, the RDF Core Working Group started, partly to fix the RDF/XML syntax.
Adobe launched XMP [XMP] , which uses a proper subset of RDF/XML. Robie
[Rob2001] showed that a normalized subset of RDF/XML could be used effectively
with XQuery [XQuery] .

Seeing that RDF/XML was being revised rather than replaced, Bray proposed another
XML syntax RPV [Bra] in 2002.

In 2003, while completing the revision of RDF/XML [RDF Syntax], Beckett proposed
a simple XML form [Bec2003] inspired by N-triples [RDF Tests], a simple subset of N3

[N3]. Both N-triples, and Beckett's proposals stick very closely to the abstract syntax
[RDF Concepts], which is a great strength. Meanwhile, Dubinko proposed another
syntax [Dub2002], more suited for embedding within HTML. The problem of
embedding RDF inside HTML is itself non-trivial [Pal2002], and is the topic of a
recent W3C taskforce [ReaHaz2003]. Walsh tried a different approach, addressing the
problem of RDF/XML syntax with extensions to XSLT [Wal2003].

Our history closes by returning to Berners-Lee, who in a recent keynote presentation
[TBL2003] referred to the 'RDF syntax shock'.

RDF/XML Revised, but not Fixed

The W3C has just completed a major clean up of the syntax [RDF Syntax], along with a
clarification of the underlying data model [RDF Concepts], and its intended
interpretation [RDF Semantics].

While many syntactic problems have been fixed, and it is at least plausible to have
interoperability between RDF/XML implementations, some of the 'postponed issues'
[McB2003] indicate the extent of the original mess.

• 'RDF embedded in XHTML and other XML documents is hard [i.e.
impossible] to validate.'

• 'it is not possible to define [...] a subset [of RDF/XML] that [...] can represent
all [...] RDF graphs [and] can be described by an DTD or an XML Schema'

In brief, RDF/XML does not layer RDF on top of XML in a useful way.

Meanwhile, there are other unresolved syntactic issues, involving qnames, collections,
literals as subjects, blank nodes as predicates, reification and quoting. Hence, a further
round of work on RDF/XML is likely to be a continuation of legacy hell, with
additional requirements pulling in different directions, and old requirements not
getting dropped.

Our Requirements and Prior Work

The requirement that the graph be simply reflected in the XML, rules out most of the
previous proposals. Many are based too closely on RDF/XML to be salvagable, for
example: XMP [XMP] , Dubinko [Dub2002] and Robie's normalized RDF/XML
[Rob2001].

The two early proposals from Berners-Lee [TBL1999] and Melnik [Mel1999a] both use
attributes that can be added to an arbitrary XML document, in a way that breaks
DTDs and XML Schemata.

Bray's RPV [Bra] does not address blank nodes. This leaves Beckett's proposals
[Bec2003], which, while incompletely worked out, do show that it is simple and
straightforward to represent an RDF graph as a set of elements each with three
children.

What's Right With RDF/XML?

Given the number of suggestions for change and RDF/XML's lack of popularity with
the practioners, why does it continue?

Once you get used to it, it is surprisingly concise. The RDF data model, in which
everything is triples, is inevitable verbose - but writing these triples in RDF/XML
tends to ameliorate things.

The use of qnames to abbreviate URI references is concise, and sufficiently liked that
this convention is widely used, also in non-XML contexts, e.g. in N3 [N3], and the
OWL Semantics [OWL S&AS] document. The use of typed nodes, to avoid making a
common triple explicit, adds to the efficiency with which RDF/XML encodes the
RDF graph, and permits syntaxes which, to some extent, hide the underlying triple
structure.

This hiding of the triple structure makes it easy for users to get into an RDF
application such as OWL with only a partial understanding of its representation in
RDF.

However, RDF/XML neithers permits complete hiding of the underlying RDF, nor
does it make it clear what that underlying RDF is. We suggest that it is better to have
clarity in the basic syntax, with hiding achieved by using alternative syntactic forms
that are transformed into the basic syntax.

RDF/XML also provides a number of syntactic features which are useful for certain
sorts of construct:

• rdf:parseType="Literal" is the only sensible way of embedding XML into
the RDF graph. (The alternative requires knowledge of Exclusive XML
Canonicalization [Excl XML C14N]).

• rdf:parseType="Collection" is useful when writing OWL Ontologies [OWL
Ref].

• rdf:parseType="Resource" is used extensively in XMP [XMP] .
• The use of property attributes is useful when embedding RDF in HTML.

Thus many communities find that while RDF/XML has many features they do not
like, certain key features are highly attractive and keep them enagaged.

TriX Syntax

The core of TriX is the triple element, which contains three children, the subject,
predicate and object of the triple.

Each of these children is either a uri element, an id element, a plainLiteral or a
typedLiteral element depending on whether the corresponding node in the graph is
an RDF URI reference, a blank node or a literal (plain or typed).

The element content contains the label of the node (or the blank node identifier).
Whitespace normalization is applied to uri 1 and id element content.

We strongly prefer the use of absolute URI references in uri . This ensures that XML
based tools can easily compare two uri nodes for equality. Relative URIs, if used, are
resolved against the base URL used to retrieve the document (as in RDF/XML
without xml:base).

plainLiteral elements can be modified by an xml:lang attribute. xml:lang is
prohibited elsewhere in the document (for example, it is not permitted on the root
element). This avoids any confusion as to whether it applies to typed literals. It does
not.

typedLiteral elements require a datatype attribute. As in RDF/XML. no whitespace
processing is performed. We note it is difficult to write the legal lexical forms for
rdf:XMLLiteral which have to be exclusive canonical XML [Excl XML C14N] , which
is escaped either with a CDATA block, or using XML character escaping
conventions.

A graph element starts with a uri child element which names the graph, and then has
any number of triple elements as children.

The root element of the document is a trix element, which has zero or more graphs as
its child elements.

The ability to have more than one graph in a document and the ability to name graphs
are both motivated by the extension of associating names with graphs.

TriX is described by a DTD, shown in figure 1 and by an XML Schema, shown in
figure 2. This format is very close to the RDF abstract syntax [RDF Concepts], the only
deviation being the ability to name graphs.

Figure 1: Trix DTD

<!-- TriX: RDF Triples in XML -->
<!ELEMENT TriX (graph*)>
<!ATTLIST TriX xmlns CDATA #FIXED
"http://www.w3.org/2004/03/trix/trix-1/">
<!ELEMENT graph (uri*, triple*)>
<!ELEMENT triple ((id|uri|plainLiteral|typedL iteral), uri,
(id|uri|plainLiteral|typedLiteral))>
<!ELEMENT id (#PCDATA)>
<!ELEMENT uri (#PCDATA)>
<!ELEMENT plainLiteral (#PCDATA)>
<!ATTLIST plainLiteral xml:lang CDATA #IMPLIED>
<!ELEMENT typedLiteral (#PCDATA)>
<!ATTLIST typedLiteral datatype CDATA #REQUIRED>

Figure 2: An XML Schema for TriX

<?xml version="1.0" encoding="UTF-8"?>

<!-- TriX: RDF Triples In XML -->

<schema xmlns = "http://www.w3.org/2001/X MLSchema"
 xmlns:xsd = "http://www.w3.org/2001/X MLSchema"
 xmlns:trix = "http://www.w3.org/2004/0 3/trix/trix-1/"
 targetNamespace = "http://www.w3.org/2004/0 3/trix/trix-1/">

 <import namespace="http://www.w3.org/XML/1998/nam espace"
schemaLocation="xml.xsd"/>

 <element name="TriX">
 <complexType>
 <sequence>
 <element ref="trix:graph" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>

 <element name="graph">
 <complexType>
 <sequence>
 <element ref="trix:uri" minOccurs="0" maxOc curs="unbounded"/>
 <element ref="trix:triple" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>

 <element name="triple">
 <complexType>
 <sequence>
 <choice>
 <element ref="trix:id"/>
 <element ref="trix:uri"/>
 <element ref="trix:plainLiteral"/>
 <element ref="trix:typedLiteral"/>
 </choice>
 <element ref="trix:uri"/>
 <choice>
 <element ref="trix:id"/>
 <element ref="trix:uri"/>
 <element ref="trix:plainLiteral"/>
 <element ref="trix:typedLiteral"/>
 </choice>
 </sequence>
 </complexType>
 </element>

 <element name="id" type="string"/>

 <element name="uri" type="anyURI"/>

 <element name="plainLiteral">

 <complexType>
 <simpleContent>
 <extension base="xsd:string">
 <attribute ref="xml:lang"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="typedLiteral">
 <complexType>
 <simpleContent>
 <extension base="xsd:string">
 <attribute name="datatype" type="anyURI" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>

</schema>

Naming Graphs

TriX provides for graph naming by the use of an optional uri element before the
triples of a graph. Example 3 shows a named graph including its own provenance
information:

<TriX xmlns="http://www.w3.org/2004/03/trix/trix-1/ ">
 <graph>
 <uri>http://example.org/graph3</uri>
 <triple>
 <uri>http://example.org/aBook</uri>

<uri>http://purl.org/dc/elements/1.1/title</uri>
 <typedLiteral
datatype="http://www.w3.org/1999/02/22-rdf-syntax-
ns#XMLLiteral">
 <ex:title xmlns:ex="http://example.org/ ">
 A Good Book
 </ex:title>
 </typedLiteral>
 </triple>
 <triple>
 <uri>http://example.org/aBook</uri>
 <uri>http://www.w3.org/2000/01/rdf-
schema#comment</uri>
 <plainLiteral xml:lang="en">This is a real ly
good book!</plainLiteral>
 </triple>
 <triple>
 <uri>http://example.org/graph3</uri>
 <uri>http://example.org/source</uri>
 <uri>http://example.org/book-
description.rdf</uri>
 </triple>
 </graph>
</TriX>

Since we take an explicitly minimalist stance, we have to make a strong case for this
feature in TriX.

We first give examples of naming of graphs in the field, showing how the current
technology is used for this. We find the current solutions muddled and ad hoc, and
believe a standardized approach will be highly beneficial.

Moreover, the requirement for graph naming, is not from one community within the
Semantic Web, but a requirement that goes across the board. It is needed for metadata
repositories, and for ontological systems. Graph naming occurs in Semantic Web
programming environments and query languages. Nearly all users of the Semantic
Web name their graphs, the base syntax should provide explicit support.

Do Graphs need Naming?

Syndication

An obvious use for naming graphs is when many different sources need to be
aggregated, and it is desired to retain clarity about which information came from
which source. This is straightforward if there are distinct graphs, and also a union
graph. If the graphs have names, then the provenance information can be attached to
the names. Example 3 shows a graph including its provenance information.

Semantic Web Languages and Frameworks

One approach to graphs as first class objects occurs in N3 [N3], which provides
contexts: these are sets of triples which are treated as anonymous resources. They can
then be named using owl:sameAs. Alternatively they can participate in other graphs
simply like a blank node.

Query languages such as RQL [KarAleChrPleSch2002] and RDQL [MilSeaReg2002]
obviously require the ability to refer to graphs. Often the document URL is used as
the name of the graph it contains.

Systems with views, such as TRIPLE [MikNeuZduSin2003], RVL [MagTanChrPle2003]
and Jena2 [CarDicDolReySeaWil2004], not only use the naming of graphs of actual
triples, but permit the naming of views of virtual triples (in some systems the views
may potentially be infinite). In RVL, the views are named using XML Namespaces
names; in TRIPLE the views are named using resources.

Within the Standards

One place in which graphs are named and referred to extensively is in the RDF Test
Cases [RDF Tests] and OWL Test Cases [OWL Test] . In order to be able to name many
graphs, and describe the relationships between them, each of these depends on a
repository of hundreds of files. The relationships described in the test manifest files,
such as entailment or equivalence, are described as relationships between documents.
What is intended is in fact a relationship between the graphs contained within the
documents.

The RDF recommendations provide for reification of statements as a mechanism for
using RDF to talk about RDF. However, it is known not to work well. In typical use
cases, such as adding provenance information, their is a large triple bloat. Adding a
reification quad for every triple causes a five fold increase. Doing anything with these
then requires minimally one extra triple to link the reified triple in with say a 'reified
graph'. More frequently, the same provenance information, perhaps four or five
triples, are duplicated and added to every reified triple. Thus the use of reification
results in maybe a tenfold blow up. What is worse, is that having done this, the triples
do not mean what one might hope. As is clarified in the RDF Semantics [RDF
Semantics], reification is not a quoting mechanism.

The OWL Ontology element and the OWL imports mechanisms both try to refer to
named graphs. They use the document URL as the name. This creates somewhat
unclear semantics, stated in operational terms. The subject of owl:imports triples gets
almost entirely ignored. The OWL recommendations fail to adequately account for
the intended relationship between the ontology name and the ontology content
(whether thought of as abstract syntax trees or RDF triples [BecCar2004]). This is
particularly clear when trying to convert the imports closure of a document, which is a
large graph, into a set of abstract syntax trees, one corresponding to each ontology
element. There is no method for determining which triple is mapped into which tree.
Explicit graph naming would help to make the intensions clearer.

Signing Graphs

Carroll [Car2003] presents an algorithm for generating a canonical names for the blank
nodes and hence a canonical ordering of the triples of a (possibly slightly modified)
RDF graph.

This could become a core part of the Semantic Web infrastructure by permitting
verification of provenance information.

However, it requires the ability to separate out separate subgraphs of whatever data a
system is using, so that the various pieces from different sources can have their
signatures verified.

A Minimalist Graph Naming Mechanism

The name associated with a graph is a way of referring to the syntactic object. In RDF
terms, it is the equivalence class of RDF graphs. Blank node labels, and the order of
the triples, do not matter. The choice of which URI we use to refer to each resource in
the graph does matter. Contrast with the semantics of reification which concerns the
interpretation of, for example, the predicate URI, rather than the URI itself.

To say anything about the graph, e.g. provenance information, some triples are needed
that involve this node. These triples can be included within the graph, which then
includes assertions about itself, or they can be in a separate graph in the same
document, or they can be in a separate document. Example 3 shows the first of these
possibilities. In the second case, we may wish to state the provenance information, in
a separate graph which can be believed even when the original graph is not. This is
shown in example 4, modified from example 3:

<TriX xmlns="http://www.w3.org/2004/03/trix/trix-1/ ">
 <graph>
 <uri>http://example.org/graph4</uri>
 <triple>
 <uri>http://example.org/aBook</uri>

<uri>http://purl.org/dc/elements/1.1/title</uri>
 <typedLiteral
datatype="http://www.w3.org/1999/02/22-rdf-syntax-
ns#XMLLiteral">
 <ex:title xmlns:ex="http://example.org/ ">
 A Good Book
 </ex:title>
 </typedLiteral>
 </triple>
 <triple>
 <uri>http://example.org/aBook</uri>
 <uri>http://www.w3.org/2000/01/rdf-
schema#comment</uri>
 <plainLiteral xml:lang="en">This is a real ly
good book!</plainLiteral>
 </triple>
 </graph>
 <graph>
 <uri>http://example.org/graph5</uri>
 <triple>
 <uri>http://example.org/graph4</uri>
 <uri>http://example.org/source</uri>
 <uri>http://example.org/book-
description.rdf</uri>
 </triple>
 </graph>
</TriX>

Other possible additional requirements are dealt with in the next section as syntactic
extensions. Graph naming might have been provided in a similar style by mapping a
syntactic extension to the RDF reification vocabulary. However, this would be limited
by the meaning of the reification vocabulary, as described in RDF semantics [RDF
Semantics]. Since the intent is to provide a mechanism that can be used for quoting,
which is explicitly excluded by the RDF semantics, providing core syntax is
necessary.

The Semantics of Graph Naming

The formal semantics of this construct is given by Carroll et al. [CarBizHaySti2004].

The intended informal semantics is that the URI used for naming a graph is
interpreted as the RDF graph specified within the <graph> element. Thus, statements
about the URI are statements about the graph. More strictly such a URI denotes an
equivalence class of RDF graphs. RDF graph equivalence, as defined by RDF
Concepts permits reordering of the triples, and relabelling of the blank nodes.

This differs from merely extending RDF triples to RDF quads, in that the full extent
of the graph is known, and is not treated with the open world assumption. Unlike a
subject resource, which may have additional properties not mentioned in a document,
the assertion of a named graph asserts that this graph is exactly the triples given, and
there are not any others that have been omitted. Significantly, this intended semantics
is a quoting mechanism and does not suffer the 'two-stage interpretation process'
discussed for RDF reification in RDF Semantics. A naive extension of the RDF model
theory to cover quads rather than triples would replicate this defect in the reification
semantics.

The formal semantics does not address the case when two graphs within a trix
document share a blank node. Hence, this is not permitted. The formal semantics does
describe how some graphs can be asserted and others not asserted within the same
trix document.

A Further Example

As well as provenance information, named graphs can be used to encode rules (such
as using the log:implies connective in N3), and test cases.

Example 5 shows how an RDF test case might be formulated in TriX. The
vocabulary is closely based on the vocabulary used in the RDF Test Cases [RDF Tests].

<TriX xmlns="http://www.w3.org/2004/03/trix/trix-1/ ">
 <graph>
 <uri>http://example.org/graph6</uri>
 <triple>
 <uri>http://example.org/tests/language-tag -
case</uri>
 <uri>http://example.org/entailmentRules</u ri>
 <uri>http://www.w3.org/1999/02/22-rdf-synt ax-
ns#</uri>
 </triple>
 <triple>
 <uri>http://example.org/tests/language-tag -
case</uri>
 <uri>http://example.org/premise</uri>
 <uri>http://example.org/tests/graph1</uri>
 </triple>
 <triple>
 <uri>http://example.org/tests/language-tag -
case</uri>
 <uri>http://example.org/conclusion</uri>
 <uri>http://example.org/tests/graph2</uri>
 </triple>
 </graph>
 <graph>
 <uri>http://example.org/tests/graph1</uri>
 <triple>
 <id>x</id>
 <uri>http://example.org/property</uri>
 <plainLiteral xml:lang="en -

us">a</plainLiteral>
 </triple>
 </graph>
 <graph>
 <uri>http://example.org/tests/graph2</uri>
 <triple>
 <id>x</id>
 <uri>http://example.org/property</uri>
 <plainLiteral xml:lang="en-
US">a</plainLiteral>
 </triple>
 </graph>
</TriX>

The Liar's Paradox

Unfortunately, named graphs combined with 'logical' vocabulary (concerning logical
metaproperties such as entailment) can be used to encode the liar's paradox.

For example, in N3, we can say:

@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix eg: <http://example.org/> .
{
 eg:liar
 log:implies {
 eg:noone a owl:Nothing .
 } .
} owl:sameAs eg:liar .
eg:liar a log:Truth .

The same example could be encoded in TriX, with the N3 formula construct using {
and } corresponding to a skolemized URI naming a graph with the given triples. We
could also make a similar example using vocabulary like the RDF Test Cases [RDF
Tests] vocabulary (replacing the test:premiseDocument and
test:conclusionDocument with eg:premise and eg:conclusion, as in example 5).

This is not an error with our proposal for graph naming. This is a pre-existing problem
caused by poorly thought out descriptions of classes and properties in RDF. Such
descriptions can be self-contradicatory, even without graph naming (for example, the
Russell class). Great care in class and property definitions is needed when trying to
define a 'logical' vocabulary, as described by Carroll [Car2004].

Extensibility

We have seen in section “What's Wrong with RDF/XML?”, that there are many
different communities with an interest in XML syntaxes for RDF. Each community
brings their own requirements.

Moreover requirements related to ease of writing and reading an XML syntax for
RDF tend, in general, to conflict with the core requirements of giving a transparent
representation of the graph in a way that can easily be processed with XML tools.
This is because the RDF graph tends to be too fine-grained and detailed for direct
human consumption, and user-friendly syntaxes need to use 'macros' of some sort. In
RDF/XML macros are provided for typed nodes, property attribtues, three
parseTypes, striping, reification and container membership. These macros then create
problems for XML tools.

The answer we suggest is to have a general purpose and interoperable extensibility
mechanism. Each community can then define and use whatever syntactic extensions
they wish, declaring the extensions they are using at the top of the data files. As long
as the extensions are described in a standard way and are identified with URLs, any
processor can apply them.

To be more specific we use XSLT as the syntactic extensibility mechanism, and the
stylesheet processing instruction [XML Stylesheet] as the declaration.

We start by showing in detail how the TriX syntax can be made more user-friendly
using qnames, using this mechanism. We then sketch other useful extensions, for
xml:base, XMLLiterals, collections, and typed literals.

QNames

Using qnames to abbreviate URI references is popular, appearing most noticeably in
many e-mail messages discussing RDF triples.

This convention is not strictly necessary, similar effect can be achieved in TriX using
XML entities. If the size of documents using full URIrefs is an issue then standard
compression techniques can be used.

However, human readers and writers of RDF documents would like to see and use
qnames. We hence, extend the TriX syntax to include a qname element. Its content is
a qname which abbreviates a URI reference, in the normal way. This can be
transformed into a uri element using an XSLT program with the following rule:

<xsl:template match="trix:qname">
 <uri>
 <xsl:value-of select="namespace::*[local-
name()=substring-before(text(),':')]"/>
 <xsl:value-of select="substring-
after(text(),':')"/>
 </uri>
</xsl:template>

Example 2, in the introduction, shows this being used.

xml:base

The use of relative URIs is often convenient when writing documents. They also may
make a document easier to read, by eliminating redundant information.

A further transformation resolves any relative URIs inside uri elements, using the
inscope xml:base value [XML Base].

Hence, the first triple of example 1 can be written using this extension:

<?xml-stylesheet type="text/xml"
href="http://www.w3.org/2004/03/trix/xmlbase.xsl"?>
<TriX xmlns="http://www.w3.org/2004/03/trix/trix-1/ "
xml:base="http://example.org/">
 <graph>
 <uri>http://example.org/graph7</uri>
 <triple>
 <uri>Bob</uri>
 <uri>wife</uri>
 <uri>Mary</uri>
 </triple>
 .
 .
 .
 </graph>
</TriX>

Typed literals

Always using datatype with a URI for typed literals is repetitive. A solution for the
XML Schema builtin simple types [XML Schema Datatypes], is to provide a transform
that permits each such simple type as an element name, and converts it into an
appropriate literal. This transform can perform the appropriate whitespace processing,
as given by the whitespace facet of the datatype.

A sample XSLT template is as follows:

<xsl:template match="trix:decimal">
 <typedLiteral
datatype="http://www.w3.org/2001/XMLSchema#decimal" >
 <xsl:value-of select="normalize-space(text())"/ >
 </typedLiteral>
</xsl:template>

which transforms, for example, <decimal>4.0</decimal> into <typedLiteral
datatype="http://www.w3.org/2001/XMLSchema#decimal">4.0</typedLiteral>.
Again, this is illustrated in example 2.

XMLLiterals

Since the lexical form of an XMLLiteral has to be in exclusive Canonical XML, it is
virtually impossible to create these except with machine support.

Since the definition of these in RDF concepts specifies that the InclusiveNamespaces
PrefixList is empty, all the information needed to perform the canonicalization is in
the XPath nodeset, and so, the transformation can be performed with XSLT (with
some difficulty)2

So, the extensibility mechanism is powerful enough to support a transform that
transforms say:

<xmlliteral><foo b="B" a="A"/></xmlliteral>

into

<typedliteral datatype="http://www.w3.org/1999/02/2 2-
rdf-syntax-ns#XMLLiteral">
 <foo a="A" b="B"></foo>
</typedliteral>

Collections

The rdf:parseType="Collection" construct of RDF/XML introduces many triples
and blank nodes to represent list structures in RDF.

A similar TriX extension can be defined using an XSL transfrom. One slightly tricky
detail concerns the names of blank nodes. Since the transform needs to introduce new
nodes, it must be sure not to use names being used elsewhere. One way is to rename
all preexisting blank nodes using a rule such as:

<xsl:template match="trix:id">
 <id>
 <xsl:text>u.</xsl:text>
 <xsl:value-of
 select="normalize-space(text())"/>
 </id>
</xsl:template>

Using this, and a more complex set of rules for the collections themselves, a transfrom
can be defined that converts:

<triple>
 <id>aDescription</id>
 <uri>&owl;intersectionOf</uri>
 <collection>
 <id>one</id>
 </collection>
</triple>

into

<triple>
 <id>u.aDescription</id>
 <uri>&owl;intersectionOf</uri>
 <id>t.23</id>
</triple>
<triple>
 <id>t.23</id>
 <uri>&rdf;first</uri>
 <id>u.one</id>
</triple>
<triple>
 <id>t.23</id>
 <uri>&rdf;rest</uri>
 <id>&rdf;nil</id>
</triple>

Such a transform is indifferent to the nature of the collection content, and so can also
be used with a collection of literals (or a mixed collection). This addresses the
problem seen with the datarange construct in OWL DL exhibited in test oneof-004 of
the OWL Test Cases [OWL Test] .

RDF/XML as a TriX Extension

In fact, it is possible to write an RDF/XML parser using XSLT. An example is Snail
[Car2001], which while unusably slow3, does show that it can be done.

Hence it would be possible to view RDF/XML as a syntactic extension to TriX.
Prepending an appropriate stylesheet processing instructions provides backward
compatibility.

An Evolving Set of Syntactic Extensions

With such a web based approach to syntactic extensibility anyone can define their
own extensions. Those that are useful will be used; those that are not, will not.

This will form an evolutionary system for designing useful XML serializations for
RDF.

Since XSLT is not always the most efficient processing environment some TriX
processors may be coded with prior knowledge of well-known extensions. For these,
the stylesheets would not be invoked, but instead some equivalent code would be
used.

Canonical TriX

Canonical TriX documents can be defined by:

• Requiring each graph in the graphset to have a name.
• Canonical assigning identifiers for the blank nodes.
• Lexicographically ordering the triples in each graph.
• Sorting the graphs into lexicographic order by their names
• Following a set of rules concerning the optional whitespace.

Blank node labels can be assigned using the techniques described for signing RDF
graphs in [Car2003].

The simplest rule for optional whitespace would be that there is none. It may be
preferred to have a newline before each start element (except the document root),
possibly indented by one space for children of the root, two spaces for grandchildren
of the root, and three spaces for great grandchildren.

This suffers from the same limitations as for signing RDF graphs, and some graphs
need to be modifed to semantically equivalent ones, before canonicalization. Details
are in [Car2003].

Evaluation

Comparison with RDF/XML

TriX achieves the goal of being generically processable by XML tools. XPath [XPath]
expressions to pick out triples and/or resources, are straightforward. Queries can be
reformulated from RDF query languages, such as RDQL [MilSeaReg2002] into XML
languages such as XQuery [XQuery] .

RDF/XML is more user friendly and more concise.

TriX with syntactic extensions achieves both sets of goals, in that, by applying the
transfroms, the advantages of TriX can be realized, or by not applying the transforms,
the advantages of RDF/XML can be realized.

The simplicity of the TriX serialization reflects the underlying simplicity of the RDF
conceptual model, rather than the misleading impression left by the baroqueness of
RDF/XML.

Comparison with Beckett's Proposals

In section “A Brief History of RDF Syntax”, we identified Beckett's proposals
[Bec2003] as the most promising.

He identifies choices such as:

• whether to use named elements for subject, predicate and object or to rely on
position within a triple.

• whether to permit the use of qnames to abbreivate urirefs.
• whether to use attributes or element content.

We have used position to identify the role in the triple, the proposed subject element
gives redundant information that might be useful to a human reader, but we do not
really expect TriX to be very human readable.

For similar reasons, we avoid allowing qnames as abbreviations, except as a syntactic
extension. The uniformity makes it easier to process the RDF graph with XML tools,
since there is no need to consider the case where a node is represented by a qname
element in one triple, and by a uri element in another. It also avoids the difficulties
caused by the differences in treatment of qnames between RDF and XML. In RDF, a
qname is merely an abbreviation, whereas in XML a qname is a pair: a namespace
name and a local name.

We determined that using attributes for literal content creates unnecessary problems,
concerning XML attribute value normalization [XML] . Hence, literal values, as in the
examples in [Bec2003], must be expressed as element content. For uniformity, we
hence also express urirefs and blank node identifiers using element content.

The naming of graphs and syntactic extensibility are not discussed by Beckett in
[Bec2003].

Conclusions

The problem of how to serialize RDF in XML has produced many proposals. Most,
particularly RDF/XML, obscure the nature of the RDF graph, hence making the
problem seem difficult. Despite the revision of RDF/XML, discussions continue.

With little difficulty, we have produced a thought-out and simple proposal. We
suggest that it is time that the Semantic Web community choose a simple serialization
such as ours, and stopped wasting time with this problem.

The use of XSLT as an extensibility mechanism permits the inevitably rather
unreadable machine-friendly syntax to be represented in a more human-friendly
fashion. It also permits backward compatibility with RDF/XML.

Naming graphs is a necessary part of the Semantic Web, and should be included in the
core syntax. More work on the semantics of graph naming is needed, particularly to
address the difficulties of logical predicates.

Notes

1. The XML Schema in figure 2 uses the xsd:anyURI simple type for these elements. The
whitespace facet with value collapse converts two successive spaces to a single space. This
limits the ability to represent all RDF URI references, which may include multiple
successive spaces. These problems will be resolved when the Internationalized Resource
Identifier proposal[DuerSui2003], which prohibits spaces, works its way through to the
definition of both anyURI and RDF URI references.

2. The sort in XSLT 1.0 leaves too much as implementation defined. It is possible in XSLT 2.0
to specify precisely the sort needed for attribute ordering in XML Canonicalization.

3. Snail's purpose was to illustrate an approach to defining RDF/XML rather than to be a
serious implementation.

Bibliography

[Excl XML C14N] J. Boyer, D.E.Eastlake 3rd, J. Reagle, Exclusive XML
Canonicalization Version 1.0, http://www.w3.org/TR/2002/REC-xml-exc-c14n-
20020718/, W3C, 2002

[N3] T. Berners-Lee and R. R. Swick and J. Reagle and S. Hawke and D. Connolly,
Primer: Getting into RDF & Semantic Web using N3,
http://www.w3.org/2000/10/swap/Primer, 2000

[OWL Ref] M. Dean and G. Schreiber, OWL Web Ontology Language Reference,
http://www.w3.org/TR/owl-ref/, W3C, 2004

[OWL S&AS] P. F. Patel-Schneider and P. Hayes and I. Horrocks, OWL Web
Ontology Language Semantics and Abstract Syntax, http://www.w3.org/TR/owl-
semantics/, W3C, 2004

[OWL Test] J. J. Carroll and J. de Roo, Web Ontology Language (OWL) Test Cases,
http://www.w3.org/TR/owl-test/, W3C, 2004

[RDF Concepts] G. Klyne and J.J. Carroll, Resource Description Framework (RDF):
Concepts and Abstract Syntax, http://www.w3.org/TR/rdf-concepts/, W3C, 2004

[RDF M&S] O. Lassila and R.R.Swick, Resource Description Framework (RDF)
Model and Syntax Specification, http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/, W3C, 1999

[RDF Semantics] P. Hayes, RDF Semantics, http://www.w3.org/TR/rdf-mt/, W3C,
2004

[RDF Syntax] D. Beckett, RDF/XML Syntax Specification (Revised),
http://www.w3.org/TR/rdf-syntax-grammar/, W3C, 2004

[RDF Tests] J. Grant and D. Beckett, RDF Test Cases, http://www.w3.org/TR/rdf-
testcases/, W3C, 2004

[XML Base] J. Marsh, XML Base, http://www.w3.org/TR/2001/REC-xmlbase-
20010627/, W3C, 2001

[XML Schema Datatypes] P.V. Biron and A.Malhotra, XML Schema Part 2:
Datatypes, http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/, W3C, 2001

[XML Schema Structures] H.S.Thompson, D. Beech, M. Maloney, and N.
Mendelsohn. XML Schema Part 1: Structures. http://www.w3.org/TR/2001/REC-
xmlschema-1-20010502/, 2001.

[XML Stylesheet] J. Clark, Associating Style Sheets with XML documents Version
1.0, http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/, W3C, 1999

[XML] T. Bray and J. Paoli and C.M. Sperberg-McQueen and E. Maler, Extensible
Markup Language (XML) 1.0 (Second Edition), http://www.w3.org/TR/2000/REC-
xml-20001006, W3C, 2000

[XMP] Adobe, XMP -- Extensible Metadata Platform,
http://partners.adobe.com/asn/developer/xmp/pdf/MetadataFramework.pdf, 2001

[XPath] J. Clark and S. DeRose, XML Path Language (XPath) Version 1.0,
http://www.w3.org/TR/1999/REC-xpath-19991116, W3C, 1999

[XQuery] S. Boag and D. Chamberlin and M.F.Fernandez and D. Florescu and J.
Robie and J. Simeon, XQuery 1.0: An XML Query Language,
http://www.w3.org/TR/2003/WD-xquery-20030822/, W3C, 2003

[XSLT] J. Clark, XSL Transformations (XSLT) Version 1.0,
http://www.w3.org/TR/1999/REC-xslt-19991116, W3C, 1999

[Bec2003] D. Beckett, A retrospective on the development of the RDF/XML Revised
Syntax, http://ilrt.org/people/cmdjb/2003/05/iswc/, 2003

[BecCar2004] Sean Bechhofer and Jeremy Carroll, Parsing OWL DL: Tress or
Triples?, WWW 2004

[Car2001] J.J. Carroll, Snail: Excruciatingly Slow RDF Parsing, http://www-
uk.hpl.hp.com/people/jjc/snail/, 2001

[Car2003] J.J. Carroll, The Semantic Web - ISWC 2003, Signing RDF Graphs,
LNCS, 2870, 369--384, Springer, 2003

[Car2004] J. J. Carroll, Comment on log: vocab,
http://lists.w3.org/Archives/Public/www-rdf-logic/2004Apr/0029

[CarBizHaySti2004] J.J. Carroll, C. Bizer, P. Hayes, P. Stickler, Named Graphs,
Provenance and Trust HP Labs Tech Report HPL-2004-57,
http://www.hpl.hp.com/techreports/2004/HPL-2004-57.html, 2004

[CarDicDolReySeaWil2004] J.J. Carroll and I.Dickinson and C. Dollin and D.
Reynolds and A. Seaborne and K. Wilkinson, Jena: Implementing the Semantic Web
Recommendations, WWW 2004

[Dub2002] M. Dubinko, Metadata for Grandma,
http://www.dubinko.info/writing/meta/, 2002

[DuerSui2003] M. Duerst and M. Suignard, Internationalized Resource Identifiers
(IRIs) draft-duerst-iri-04, http://www.w3.org/International/iri-edit/draft-duerst-iri-04,
2003

[GuhBra1997] R.V. Guha and T. Bray, Meta Content Framework Using XML,
http://www.w3.org/TR/NOTE-MCF-XML-970624/, W3C, 1997

[HopBerHat1997] A. Hopmann and S. Berkun and G. Hatoun, Web Collections
using XML, http://www.w3.org/TR/NOTE-XMLsubmit, W3C, 1997

[Las1997] O.Lassila, Web Collections using XML, http://www.w3.org/TR/NOTE-
pics-ng-metadata-970514.html, W3C, 1997

[McB2003] B. McBride, RDF Issue Tracking, http://www.w3.org/2000/03/rdf-
tracking/, 2003

[Mel1999a] S. Melnik, Simplified Syntax for RDF, http://www-
db.stanford.edu/~melnik/rdf/syntax.html, 1999

[Mel1999b] S. Melnik, Bridging the Gap between RDF and XML, http://www-
db.stanford.edu/~melnik/rdf/fusion.html, 1999

[MikNeuZduSin2003] Z. Miklos and G. Neumann and U. Zdun and M. Sintek, The
Semantic Web - ISWC 2003, Querying Semantic Web Resources Using TRIPLE
Views, LNCS, 2870, pp 517-532, Springer, 2003

[MilSeaReg2002] L. Miller and A. Seaborne and A. Reggiori, Three Implementations
of SquishQL, a Simple RDF Query Language, The Semantic Web - ISWC 2002,
423ff., 2002

[Pal2002] S.B. Palmer, RDF in HTML: approaches,
http://infomesh.net/2002/rdfinhtml/, 2002

[Bra] T. Bray, The RPV (Resource/Property/Value) Syntax for RDF,
http://http://www.textuality.com/xml/RPV.html

[KarAleChrPleSch2002] G. Karvounarkis, S. Alexaki, V. Christophides, D.
Plexousakis, and M. Scholl. Rql: A declarative query language for rdf. In Proceedings
of the Eleventh International World Wide Web Conference, pages 592-603, 2002.

[MagTanChrPle2003] A. Magkanarki, V. Tannen, V. Christophides, and D.
Plexousakis. Viewing the semantic web through rvl lenses. In The Semantic Web -
ISWC 2003, number 2870 in LNCS, pages 96-112. Springer, 2003.

[ReaHaz2003] J. Reagle and D. Hazael-Massieux, RDF in XHTML,
http://www.w3.org/2003/03/rdf-in-xml.html, W3C, 2003

[Rob2001] XML 2001, J. Robie, The Syntactic Web, 2001

[TBL1999] T. Berners-Lee, A strawman Unstriped syntax for RDF in XML,
http://www.w3.org/DesignIssues/Syntax, 1999

[TBL2003] Keynote address at ISWC 2003, T. Berners-Lee, SW status and direction,
http://www.w3.org/2003/Talks/1023-iswc-tbl/all.htm, 2003

[Wal2003] Norm Walsh, RDF Twig: accessing RDF graphs in XSLT, Extreme 2003

