

Automated System Design for Availability

G. (John) Janakiraman, Jose Renato Santos, Yoshio Turner
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2004-54
March 31, 2004*

E-mail: {john.janakiraman,joserenato.santos,yoshio.turner}@hp.com

availability,
automated design,
availability
modeling, utility
computing,
failures, faults

Large-scale systems experience frequent failures which can result in
unacceptably high service downtime or application execution time. To
meet performance and availability requirements, the user must perform a
complex design task including the selection and configuration of
hardware and software components and mechanisms for handling
failures. We believe users should be relieved of this burden by
automating the design process in order to generate cost-effective
solutions from high- level application requirements. In this paper, we
present Aved, a proof of concept design automation engine which is a
first step toward this goal. We describe how infrastructure choices,
application models, and user requirements are represented with Aved to
automate design space search and reason about design alternatives. We
additionally present examples to illustrate how Aved can generate a
complete picture of the cost-availability and cost-performance tradeoffs
for the infrastructure design.

* Internal Accession Date Only
To be published in and presented at the International Conference on Dependable Systems and Networks, 28 June-1
July 2004, Florence, Italy Approved for External Publication
 Copyright IEEE

Automated System Design for Availability

G. (John) Janakiraman Jose Renato Santos Yoshio Turner
Hewlett-Packard Laboratories

{john.janakiraman,joserenato.santos,yoshio.turner}@hp.com

Abstract

Large-scale systems experience frequent failures which
can result in unacceptably high service downtime or appli-
cation execution time. To meet performance and availability
requirements, the user must perform a complex design task in-
cluding the selection and configuration of hardware and soft-
ware components and mechanisms for handling failures. We
believe users should be relieved of this burden by automating
the design process in order to generate cost-effective solu-
tions from high-level application requirements. In this paper,
we present Aved, a proof of concept design automation engine
which is a first step toward this goal. We describe how infras-
tructure choices, application models, and user requirements
are represented with Aved to automate design space search
and reason about design alternatives. We additionally present
examples to illustrate how Aved can generate a complete pic-
ture of the cost-availability and cost-performance tradeoffs
for the infrastructure design.

1. Introduction

The computing infrastructure which supports a service or
application must be designed carefully to meet requirements
for service performance and availability. In large-scale sys-
tems, these requirements must be met despite the occurence
of frequent failures of hardware and software components.
For enterprise services, such failures can result in unaccept-
ably high levels of service unavailability. For applications,
component failures can result in lost computation which must
be re-executed, potentially leading to unacceptably long ap-
plication execution time.

To meet service availability and performance require-
ments, a complex design task must be performed to judi-
ciously select and configure hardware and software compo-
nents, and also mechanisms for handling failures. The design
space that must be explored can be large and consist of multi-
ple dimensions such as choice of hardware components, soft-
ware configurations such as state checkpointing interval, use
of redundancy through active, standby, or cold sparing, re-
dundancy in network paths, and the use of software rejuve-
nation techniques. Each choice presents a different tradeoff
among availability, performance, and cost of ownership. The

problem is to find a solution from this multi-dimensional de-
sign space that provides the best cost-benefit tradeoff to
the user. This tradeoff can be modeled with a utility func-
tion of cost, performance, and availability. In a simple case,
the problem can be reduced to finding a minimum cost solu-
tion that meets the user’s availability and performance goals
specified as simple thresholds.

In current practice, users explore the design space by
drawing on their expertise and experience to manually gen-
erate system design alternatives. To evaluate the availability
of the generated design alternatives, users invoke an availabil-
ity modeling tool [4][2][12], and databases of component fail-
ure rates and repair times, in order to predict service down-
time.

We believe that users should be relieved of the burden of
low-level infrastructure design and configuration. Instead, the
design process should be automated, freeing users to focus
on service and application logic. An automated system de-
sign engine should require users to specify only high-level ap-
plication requirements, and the engine should automatically
generate cost-effective solutions that satisfy the requirements.
An automated design process may generate optimal designs
more rapidly than a human user. In addition, it may improve
solution quality by covering a wider range of design alterna-
tives than is usually feasible with a manual approach. More-
over, automated design can quickly generate a complete char-
acterization of the tradeoffs of cost, availability, and perfor-
mance for the infrastructure design.

In this paper, we present Aved, a proof of concept auto-
mated system design engine which is a first step toward this
goal. Aved currently targets the automated design of clustered
systems to support multi-tier enterprise services (e.g., an In-
ternet service with web, application, and database tiers) and to
support parallel compute-intensive applications (e.g., scien-
tific applications). Aved automatically generates designs and
evaluates them inside an execution loop that iterates to find a
design that meets availability and performance requirements
at minimum cost. To evaluate generated designs, Aved inter-
faces to an external availability modeling tool, which is used
to predict service uptime. The predictions are predicated on
the use of best practice IT management [11] and thus pro-
vide an upper limit on the availability that can be achieved.
For applications that must recover lost work after component
failures, Aved additionally invokes a model to predict appli-
cation execution time, taking into account re-execution of lost

computations.
Aved can improve the design process compared to tra-

ditional manual approaches. In addition, Aved is useful for
emerging utility computing environments [7][13][8][15][3].
In these environments, a user who wishes to deploy an appli-
cation or a service can issue a request to a computing utility,
which in response automatically allocates and configures ap-
propriate resources from pools of compute, storage, and net-
working resources to create a secure, virtualized computing
environment that realizes the service. A more ambitious goal
for utility computing is to automatically manage the provi-
sioned service throughout its lifetime by dynamically tuning
the design and deployment of the service’s computing infras-
tructure in response to changes in service workload, compo-
nent failures, etc. In this vision, the computing utility would
continuously manage the service infrastructure to ensure that
service availability and performance are at levels that are
adequate for the user. A critical component of such a self-
managing computing utility is an automated design engine,
as exemplified by Aved, which would design a service’s com-
puting infrastructure and dynamically re-design it whenever
necessary throughout the service’s lifetime.

The key challenge in creating a design engine such as Aved
is to devise practical techniques for modeling and searching
the design space. The design space model used by Aved must
describe application characteristics and the various infrastruc-
ture choices. The model must represent the impact of different
infrastructure options on system attributes that can affect ser-
vice performance or availability. The infrastructure options
include the components that can be used in a design and
how they can be configured, composed, and interconnected
to form a complete system. The infrastructure options also
include the various combinations and configurations of avail-
ability mechanisms that can be used to reduce downtime or
lost computation. For Aved to be practical, the model must
not be so complex that it is infeasible to specify. However,
the system model must also be powerful enough to represent
infrastructure choices for a large and important class of ser-
vices and applications.

The next section presents an overview of Aved. Section 3
describes the design space model used by Aved. Section 4
discusses availability evaluation of designs and how Aved
searches the design space. Section 5 presents examples to il-
lustrate how Aved can be used to generate a complete picture
of the cost-availability and cost-performance tradeoffs for the
infrastructure design. Finally, Section 6 summarizes related
work.

2. Overview of Aved

The overall architecture of Aved is shown in Fig. 1. Aved
takes as input service requirements which specify the desired
performance and availability levels for the service or appli-

Design Generator

Translator
availability

model

Availability
Evaluation

Engine

Translator

Service Model Infrastructure Model

final
design

candidate
design

final design

AVED

availability
estimate

Output

Service Requirement

Figure 1. Aved architecture

cation, and a design space model which describes the entire
space of choices about the computing infrastructure for the
service/application. The design space model consists of an in-
frastructure model that describes the building blocks that can
be selected and configured as part of a design, and a service
model that describes how the service or application would be-
have on the building blocks. Whereas a user would provide a
different service model for each new service or application to
be deployed, the infrastructure model could be maintained in
a repository and be used for all services and applications.

Aved searches the design space by generating and evaluat-
ing a series of individual designs. Each design is obtained by
resolving all the design choices that are defined in the design
space model (e.g., selecting the type of resource, the number
of resources, the configuration of availability mechanisms,
etc.). Aved evaluates each design that it generates by feed-
ing an availability model of the design to an external avail-
ability evaluation engine. After searching the design space,
Aved outputs the minimum cost design that satisfies the ser-
vice requirements.

The service requirements inputs to Aved are specified dif-
ferently depending on the type of application. Aved currently
targets the design of cluster systems to support two types of
applications: multi-tier enterprise services and parallel sci-
entific applications. For enterprise services that are intended
to service client requests indefinitely, the service require-
ments include a performance metric and an availability met-
ric. The performance metric is specified as the desired min-
imum throughput in service-specific units such as requests
per second for the expected type of request, and the avail-
ability metric is specified as the maximum annual downtime
allowed. We use the term annual downtime or simply down-
time to indicate the expected time a service will be unavail-
able in a year. We consider a service to be unavailable when-
ever the number of active resources is not sufficient to meet
the service performance requirement.

Component

Component

Component

Resource

Tier

Tier

Tier

Service

Failure
mode

Failure
mode

Failure
mode

Component

Figure 2. Design model

For jobs, such as scientific applications, that execute a fi-
nite computation, the critical metric for users is the expected
time to complete the job. Therefore, the service requirements
specified to Aved for these applications include only a per-
formance requirement, expressed as job execution time. Al-
though Aved considers the effects of availability metrics such
as downtime on the time it takes to complete a job success-
fully, the values of these availability metrics are irrelevant to
the end user as long as the job completion time requirement
is satisfied.

3. Design Space Model

A high level representation of a design model is shown in
Fig. 2. A service or application is composed of one or more
tiers. A service is considered up if and only if all tiers are up;
otherwise the service is considered down. Each tier is com-
posed of a set of resources, which must be selected by Aved.
A resource is the basic unit of allocation of infrastructure ele-
ments to a service or application. Currently, we assume all re-
sources within a tier are identical, but different tiers can use
different types of resources. During operation, a resource can
be in one of two operational modes: active or spare mode.
A resource is active if it is being used to support the service
workload, and is in spare mode if it is set aside to replace an
active resource upon its failure. A resource consists of a set of
components. A component is an element that can fail and thus
is the basic unit of fault management. A resource fails if any
of its components fails. Components can correspond to hard-
ware elements (e.g., an IA-32 compute node) or software ele-
ments (e.g., an operating system, or an application software).
Each component can have multiple failure modes which indi-
cate different ways in which a component can fail. For exam-
ple, a hardware element can experience a permanent failure
that requires component repair or replacement, or it can suf-
fer a temporary failure that can be fixed by simply resetting
the component.

The design space model used by Aved must represent the
different choices to select designs. Sections 3.1 and 3.2 ex-
plain how these choices are represented in the infrastructure
and service models used by Aved.

3.1. Infrastructure Model

The infrastructure model describes availability and cost at-
tributes of the possible building blocks of designs. It describes
various types of components, their failure modes, availabil-
ity mechanisms and their configuration options and impacts,
and the composition of components into resources. The in-
frastructure model is specified as a structured list of attribute-
value pairs. An example infrastructure model specification is
shown in Fig. 3.

3.1.1. Components To properly balance modeling preci-
sion against specification simplicity, we limit the granularity
of component description. For example, a computer’s hard-
ware is modeled as a single component, but low-level details
such as the number of redundant fans in the computer are not
modeled explicitly. The specification of a component type de-
scribes its failure modes, the component’s cost, and option-
ally the maximum number of instances of the component type
that can be used in a design. Each failure mode is described by
its Mean Time Between Failures (MTBF), the time required
to detect the failure of this type, and the Mean Time To Repair
(MTTR) the component after the failure is detected. Applica-
tion software component types optionally have an attribute
loss window that represents the maximum amount of compu-
tation that may have to be re-executed to regenerate lost re-
sults or application state upon each failure event. For applica-
tions of finite duration, the loss window size critically affects
the expected job completion time. In the worst case, the loss
window equals the total job, but it may also be a fraction of
the job, if the job has well defined points at which it saves in-
termediate results1. A component has a cost attribute which
includes the component’s annual operational cost (energy, an-
nual software license, etc.) and the initial (capital) cost of the
component annualized by dividing by its useful lifetime in
years. A component instance in a design can be configured in
one of two operational modes: inactive (powered-off) or ac-
tive. All components of an active resource must be in active
mode, but spare resources can have some or all resources in
inactive mode. The model allows defining a component’s cost
as a function of its operational mode to model cases where,
for example, electricity costs are incurred only when a hard-
ware component is powered on, or where inactive mode soft-
ware components are free of license costs. By using inactive
components in spare resources, the infrastructure cost can be
reduced, but the failover time is usually increased due to the
time required to activate the components.

3.1.2. Availability Mechanisms Availability mecha-
nisms are modeled as configurable operators that spec-
ify or modify the values of other attributes of the design

1 loss window can be defined either in units of application work or in units
of time. If necessary, Aved will convert from one unit to the other using
the performance model of the application.

\\ Units - s:seconds, m:minutes, h:hours, d:days
\\ COMPONENTS DESCRIPTION
component=machineA cost([inactive,active])=[2400 2640]

failure=hard mtbf=650d mttr=<maintenanceA> detect_time=2m
failure=soft mtbf=75d mttr=0 detect_time=0

component=machineB cost([inactive,active])=[85000 93500]
failure=hard mtbf=1300d mttr=<maintenanceB> detect_time=2m
failure=soft mtbf=150d mttr=0 detect_time=0

component=linux cost=0
failure=soft mtbf=60d mttr=0 detect_time=0

component=unix cost([inactive,active])=[0 200]
failure=soft mtbf=60d mttr=0 detect_time=0

component=webserver cost=0
failure=soft mtbf=60d mttr=0 detect_time=0

component=appserverA cost([inactive,active])=[0 1700]
failure=soft mtbf=60d mttr=0 detect_time=0

component=appserverB cost([inactive,active])=[0 2000]
failure=soft mtbf=60d mttr=0 detect_time=0

component=database cost([inactive,active])=[0 20000]
failure=soft mtbf=60d mttr=0 detect_time=0

component=mpi cost=0 loss_window=<checkpoint>
failure=soft mtbf=60d mttr=0 detect_time=0

\\AVAILABILITY MECHANISMS
mechanism=maintenanceA

param=level range=[bronze,silver,gold,platinum]
cost(level)= [380 580 760 1500]
mttr(level)=[38h 15h 8h 6h]

mechanism=maintenanceB
param=level range=[bronze,silver,gold,platinum]
cost(level)=[10100 12600 15800 25300]
mttr(level)=[38h 15h 8h 6h]

mechanism=checkpoint
param=storage_location range=[central,peer]
param=checkpoint_interval range=[1m-24h;*1.05]
cost=0
loss_window=checkpoint_interval

\\ RESOURCES DESCRIPTION
resource=rA reconfig_time=0

component=machineA depend=null startup=30s
component=linux depend=machineA startup=2m
component=webserver depend=linux startup=30s

resource=rB reconfig_time=0
component=machineB depend=null startup=60s
component=unix depend=machineA startup=4m
component=webserver depend=linux startup=30s

resource=rC reconfig_time=0
component=machineA depend=null startup=30s
component=linux depend=machineA startup=2m
component=appserverA depend=linux startup=2m

resource=rD reconfig_time=0
component=machineA depend=null startup=30s
component=linux depend=machineA startup=2m
component=appserverB depend=linux startup=30s

resource=rE reconfig_time=0
component=machineB depend=null startup=60s
component=unix depend=machineB startup=4m
component=appserverA depend=unix startup=2m

resource=rF reconfig_time=0
component=machineB depend=null startup=60s
component=unix depend=machineA startup=4m
component=appserverB depend=unix startup=30s

resource=rG reconfig_time=0
component=machineB depend=null startup=60s
component=unix depend=machineA startup=4m
component=database depend=unix startup=30s

resource=rH reconfig_time=0
component=machineA depend=null startup=30s
component=linux depend=machineA startup=2m
component=mpi depend=linux startup=2s

resource=rI reconfig_time=0
component=machineB depend=null startup=60s
component=unix depend=machineB startup=4m
component=mpi depend=unix startup=2s

Figure 3. Infrastructure specification example

(e.g. MTBF, MTTR, etc.), thus changing the availabil-
ity characteristics of the system. An example of an avail-
ability mechanism is a maintenance contract with a con-
figurable level which determines the response time of
repair staff. Another example is a checkpoint-restart mech-
anism that periodically saves the state of an application to
stable storage to limit the loss window. A mechanism is spec-
ified by defining a list of configuration parameters, each
with a defined range of possible settings, and a list of at-
tributes whose values are affected by the mechanism and
its configuration parameter settings. For example, in the se-
lection of a maintenance contract, the level of the mainte-
nance service (e.g. bronze, silver, gold, platinum, etc.) can
be defined as a parameter whose value is used to deter-
mine the repair times (mttr) of components. Each availability
mechanism also has a cost attribute which indicates the an-
nual cost of using the mechanism. The cost can be a function
of the mechanism’s parameter settings (e.g., cost can in-
crease with the level of maintenance contract).

Availability mechanisms can affect the attributes of
more than one failure mode or component type (e.g., an
application-transparent checkpointing mechanism could be
applied to both scientific applications and databases). There-
fore, we chose to separate the availability mechanism de-
scription from the component specification and allow mech-

anisms to be applied and configured independently for each
component at design time.

3.1.3. Resources A resource type is defined as a combina-
tion of components that can be allocated as a unit to a service.
Attributes of a resource include the startup times of each of its
components, and the dependencies among components. Com-
ponent dependencies indicate both the order in which com-
ponents of a resource must be started, as well as which com-
ponents are affected by a failure of another component. For
example, an operating system can only be started after the
hardware is started, and a hardware failure causes the operat-
ing system to fail as well. Finally, a resource has an attribute
giving the reconfiguration time incurred upon failover to a
spare resource of this type. Reconfiguration time includes,
for example, time to reconfigure load balancers and to trans-
fer needed data to the spare resource instance.

3.2. Service Model

The service model describes a service as a set of tiers,
where each tier is a cluster of resource instances. Example
service model descriptions are shown in Figs. 4 and 5. For
each tier, the service model defines a list of possible resource
types that can be used to support that tier. For each of these

resource options, the service model must capture the result-
ing model of parallelism for the tier for analysis of the perfor-
mance and availability behavior of the tier and the overall ser-
vice. Thus for each resource option for each tier, the service
model defines the freedom in setting and varying the num-
ber of active resources, the impact of the failure of a single
resource instance, and the performance characteristics of the
tier if the resource is selected for a design. The attribute nAc-
tive specifies the set of possible number of active resources.
This allows specifying, for example, that a scientific applica-
tion requires the number of resources to be a power of 2, or
that a non-parallel application requires exactly one resource.
The attribute sizing determines whether during the lifetime of
a service the number of resource instances can be changed
(dynamic) or not (static). An example of static sizing is a sci-
entific application that partitions the data across the nodes at
initialization time and cannot support subsequent data redis-
tribution. An example of dynamic sizing is a web tier where
the number of web servers can change arbitrarily. A failure
scope attribute defines whether failure of a single resource in-
stance affects the operation of the whole tier or whether the
impact is limited to the failed resource instance. Finally, the
performance associated with a resource option is specified in
service-specific units of work per units of time and is typi-
cally defined as a function of the number of active resources.

Although availability mechanisms are part of the infras-
tructure model, their performance impact depends on charac-
teristics of the specific service. Therefore, we currently define
performance impact of availability mechanisms as service at-
tributes associated with each resource alternative of the tier
affected by the mechanism2. In the future, we plan to specify
parameterized performance functions as part of the infrastruc-
ture model rather than the service model, in order to simplify
the task of specifying services. Services would only have to
specify parameters for the performance functions.

Finally, for applications of finite duration for which the
service requirement is the expected time to complete the job,
the service model has an attribute which specifies the job size
in application-specific units (e.g., the number of frames in a
rendering application).

4. Searching the Design Space

Aved searches the design space specified by the infras-
tructure and service model to identify the optimal design that
meets service requirements. This optimal design specifies, for
each tier, values for: 1) the type of resource selected for the
tier, 2) the number of active resources, 3) the number of spare
resources, 4) the operational mode of each component in the
spare resources, and 5) each parameter of availability mecha-
nisms. We describe the algorithm used to search the design

2 Currently, mechanisms affecting more than one tier cannot be modeled.

application=ecommerce
tier=web

resource=rA sizing=dynamic failurescope=resource
nActive=[1-1000,+1] performance(nActive)=perfA.dat

resource=rB sizing=dynamic failurescope=resource
nActive=[1-1000,+1] performance(nActive)=perfB.dat

tier=application
resource=rC sizing=dynamic failurescope=resource

nActive=[1-1000,+1] performance(nActive)=perfC.dat
resource=rD sizing=dynamic failurescope=resource

nActive=[1-1000,+1] performance(nActive)=perfD.dat
resource=rE sizing=dynamic failurescope=resource

nActive=[1-1000,+1] performance(nActive)=perfE.dat
resource=rF sizing=dynamic failurescope=resource

nActive=[1-1000,+1] performance(nActive)=perfF.dat
tier=database

resource=rG sizing=static failurescope=resource
nActive=[1] performance=10000

Figure 4. Service model example: e-commerce

application=scientific jobsize=10000
tier=computation

resource=rH sizing=static failurescope=tier
nActive=[1-1000,+1] performance(nActive)=perfH.dat
mechanism=checkpoint mperformance(storage_location,
checkpoint_interval,nActive)=mperfH.dat

resource=rI sizing=static failurescope=tier
nActive=[1-1000,+1] performance(nActive)=perfI.dat
mechanism=checkpoint mperformance(storage_location,
checkpoint_interval,nActive)=mperfI.dat

Figure 5. Service model example: scientific

space first in Section 4.1 and then describe how each de-
sign generated in the design space search is evaluated in Sec-
tion 4.2.

4.1. Search Algorithm

The design space search algorithm first examines each tier
in isolation and determines the optimal design for each tier as-
suming the other tiers do not experience failures. If the overall
design combining these individually optimal designs satisfies
the high level requirements, this is the optimal design. If not,
the search continues by refining the design of each tier un-
til the optimal multi-tier design is identified. To refine the de-
sign of a tier, Aved computes the best “next” design by mak-
ing the requirements for that tier incrementally more aggres-
sive.

The design space search for each tier considers all possi-
ble choices of resource types for that tier to find the best solu-
tion for each possible resource type. For each resource type,
Aved first evaluates designs using the minimum number of re-
sources required to meet the performance requirement in the
absence of any failures. The number of resources is succes-
sively incremented in subsequent search steps. For each se-
lected number of resources, all possible combinations of the
number of active resources, the number of spare resources,
the operation mode of spare resources, and values for the pa-
rameters of availability mechanisms are considered and eval-
uated. For each design, Aved evaluates both its cost and avail-
ability until a design that satisfies the service requirements is

found. Once such a solution is found, subsequent designs are
evaluated for cost first (which is simple and fast) and higher
cost designs are rejected without evaluating their availability.
If a feasible solution is not found and the availability metric
starts to degrade when the number of resources is increased,
no feasible solution exists and the search stops. The search
ends successfully when increasing the number of resources
generates only designs with costs higher than the current so-
lution.

4.2. Design Evaluation

The evaluation of designs generated by the design search
process has two parts: evaluation of cost and evaluation of
availability. The cost of a design is simply calculated as the
sum of the cost of all components at their selected opera-
tional mode (active or inactive) and the cost of the availabil-
ity mechanisms for the selected values of their parameters.

To evaluate availability, Aved generates an availability
model for the design. Multiple tiers in a design are modeled
as an association in series, where the whole design is consid-
ered up only when each tier is up. The availability model for
each tier specifies the following parameters:

1. n, the number of active resources.

2. m, the minimum number of active resources required for
the tier to be considered up. This is equal to n when siz-
ing is declared as static or failure scope is declared as
tier for the resource used in this tier. Otherwise, this
value is computed using the performance requirement
combined with the performance model of the service as-
sociated with the resource used in this tier.

3. s, the number of spare resources. Spare resources can
be used to replace failed resources if the number of ac-
tive resources drops below the minimum m, but incur-
ring downtime during the failover.

4. MTBFi, the MTBF of each failure mode i that is pos-
sible for each component that is included in the resource
used in this tier. The MTBFs are the same as defined in
the design space model.

5. MTTRi, the MTTR for the repair of each failure mode
i that is possible for each component that is included in
the resource used in this tier. The MTTR is computed as
the sum of the failure detection time, the component re-
pair time for that failure mode, and the startup times of
the components affected by the failure.

6. FailoverT imei, the failover time for each failure mode
i that is possible for each component that is included in
the resource used in this tier. The failover time is com-
puted as the sum of the failure detection time, the re-
configuration time, and the startup latencies of compo-
nents that are in inactive operational mode in the spare
resource.

When generating an availability model, Aved only considers
failover for failure modes in which MTTR is greater than the
failover time. While this is the common case for permanent
hardware failure, it may not be the case for software and hard-
ware glitches that can be fixed by just restarting the compo-
nent with a corresponding repair time equal to zero.

This availability model can be evaluated using a traditional
availability evaluation engine, such as Avanto [4], Mobius[2],
and Sharpe[12] to compute the expected annual downtime of
the design. Aved currently generates representations of this
availability model that can be used with Avanto [4] and our
own simplified Markov Model (this can be easily translated to
work with other engines). These availability evaluations as-
sume failures are independent but their distributions depend
on the assumptions of the specific availability evaluation en-
gine (e.g., exponential interarrival for the Markov model).

For applications with a specific job size (e.g., scientific ap-
plications), Aved must also estimate the expected job comple-
tion time. The job completion time is derived analytically us-
ing the average annual downtime estimate from the availabil-
ity engine. For this analysis, we assume failure modes are in-
dependent with the time between failures and the time to re-
pair components being exponentially distributed. If the appli-
cation has a loss window lw (which is the maximum amount
of work that can be lost due to a single failure event), we de-
fine Tlw (Tlw ≥ lw) as the mean computation time necessary
to execute an lw amount of useful work. Based on the as-
sumption of exponential distributions, Tlw can be computed
as:

Tlw = mtbf
Pf

(1 − Pf)
, Pf = 1 − e−lw/mtbf (1)

This formula can be obtained using a formal analytical
derivation, but we provide a simple interpretation here. Pf

is the probability that there is at least one failure during an
interval of duration lw. The ratio (1 − Pf)/Pf is the aver-
age ratio of the number of intervals of duration lw that do
not experience failures to the number of intervals that do ex-
perience failures. In an interval of duration MTBF, there is
only one failure on average. Thus, there are approximately
(1 − Pf)/Pf intervals of duration lw that do not experi-
ence failures for each MTBF interval (ignoring intervals with
multiple failures). Since Tlw is defined as the mean time re-
quired to execute lw time units of useful work, there should
be (1 − Pf)/Pf intervals of duration Tlw in an MTBF inter-
val as indicated by the equation above.

With this equation we can compute the fraction of the com-
putation time that is used for useful work as lw/Tlw. Given
the uptime Tup computed by the availability model engine,
we can compute the effective uptime that the system is ex-
ecuting useful work as Tef = Tup ∗ (lw/Tlw). We can then
easily compute the expected job execution time using the per-
formance model of the application and the job size.

tier, resource attribute function
application, rC performance(n) 200*n
application, rD performance(n) 200*n
application, rE performance(n) 1600*n
application, rF performance(n) 1600*n
computation, rH performance(n) (10*n)/(1+0.004*n)
computation, rI performance(n) (100*n)/(1+0.004*n)

tier, resource attribute function
computation, mperformance(central,cpi,n) max(10/cpi,100%) (n < 30)
rH max(n/(3*cpi),100%) (n ≥ 30)

mperformance(peer,cpi,n) max(20/cpi, 100%)
computation, mperformance(central,cpi,n) max(5/cpi,100%) (n < 30)
rI max(n/(6*cpi),100%) (n ≥ 30)

mperformance(peer,cpi,n) max(100/cpi, 100%)

(cpi is checkpoint interval expressed in minutes)

Table 1. Performance functions for examples

5. Examples

We illustrate the value of Aved using two simple exam-
ple scenarios. In the first we consider the design of the com-
puting environment for the application tier of an e-commerce
service, whose model is described in Fig. 4. In the second ex-
ample we consider the design of the computing environment
for a compute intensive scientific application whose model
is described in Fig. 5. For both examples we assume infras-
tructure model and attribute values defined in Fig. 3 and Ta-
ble 1. The examples shown in this section are hypothetical but
based on realistic parameters expected for these types of ap-
plication. The goal of this section is not to describe the de-
tailed characteristics of a specific real scenario, but to illus-
trate how Aved could be useful for designing the computing
infrastructures for different classes of application.

5.1. Application Tier Example

In this example, the following design dimensions are ex-
plored by Aved: i) resource type, ii) number of active ma-
chines, iii) number of spare machines3, iv) selection of main-
tenance contract. We assume the service can be supported
on two different types of machine: a dual processor machine
(machineA) which can run Linux, and a more powerful 16-
way machine (machineB) which runs a proprietary version of
UNIX. In addition, one of two different types of J2EE ap-
plication server software, appserverA and appserverB, can
be installed on either hardware platform. By combining the
two hardware options with the two software options, Aved
can explore four different resource options. We obtained fail-
ure rates or MTBF values for hardware components from the
manufacturer historical database. We selected costs and re-
sponse times for service maintenance contracts based on typ-
ical contracts offered by the hardware vendors. Software and
hardware costs were obtained from vendors’ published prices.

3 For simplicity, in this example we restricted components of spare re-
sources to be inactive.

However, software failures rates were estimated based on the
authors’ intuition, since this data was not readily available.

We have used Aved to identify the optimal designs for
this example scenario over a range of service performance
and availability requirements. Fig. 6 shows these optimal de-
signs as a function of the performance requirement (appli-
cation units of load) and the availability requirement (an-
nual downtime). In this Figure, designs are grouped in fam-
ilies, represented by tuples of the form (resource, contract,
n extra, n spare), where resource indicates the selected type
of resource; contract indicates the selected service mainte-
nance contract; n extra indicates the number of extra active
machines used for availability (i.e. the extra machines in ad-
dition to the minimum number of machines needed for perfor-
mance in case of no failure); and n spare indicates the num-
ber of inactive spares Each design in a family can use a differ-
ent number of machines depending on the load, i.e., a design
family with m spares has a fixed number of redundant ma-
chines, in addition to the number of primary machines which
can vary as a function of a load. To facilitate the discussion in
the rest of the paper we also refer to the design families using
numbers as identified in Fig. 6. The load range shown on the
x axis varies from 400 to 5000 load units. The y axis shows
the range of practical annual downtime values, from a frac-
tion of a minute to 10,000 minutes, i.e., approximately one
week. In the two-dimensional space of requirements mapped
by the performance requirement and the availability require-
ment, each curve corresponds to a particular design family
that is cost optimal for all requirement points above the curve
(and points on the curve) and beneath the immediately higher
curve. Furthermore, the curve plots the downtime estimate for
each design of this family at various load levels where it is
the optimal solution. Therefore, for requirement points above
the curve, the downtime estimated with this design family is
less (i.e., better) than the requirement. For example, for a re-
quirement (load = 1000, downtime = 100) in Fig. 6, the
curve immediately below this point corresponds to the opti-
mal design family (number 9), which has downtime of ap-
proximately 50 minutes.

The results in Fig. 6 show that despite the small size of our
example design space, the number of optimal solutions dis-
tributed across the requirements space is large and would be
tedious to evaluate manually. The results also show that Aved
filters out suboptimal solutions. For example, design family
3 is not selected for loads above 1400 units. For loads above
that, design family 6, which provides lower downtime, is se-
lected instead of family 3. For low loads the extra cost of the
gold maintenance contract is lower than the cost of an addi-
tional resource and designs of family 3 are preferred. As the
load increases, the extra cost of the gold contract becomes
higher than an extra resource, since the cost of a maintenance
contract is proportional to the number of machines it covers.
Thus for higher loads it is better to use an extra resource than

0.1

1

10

100

1000

10000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
nn

ua
l D

ow
nt

im
e

L
im

it
[m

in
s]

Units of load (service specific)

1 - machineA/linux/appserverA, bronze, 0, 0
2 - machineA/linux/appserverA, silver, 0, 0
3 - machineA/linux/appserverA, gold, 0, 0
4 - machineA/linux/appserverB, gold, 0, 0
5 - machineA/linux/appserverA, platinum, 0, 0
6 - machineA/linux/appserverA, bronze, 0, 1
7 - machineA/linux/appserverB, bronze, 0, 1
8 - machineA/linux/appserverB, silver, 0, 1
9 - machineA/linux/appserverA, bronze, 1, 0

10 - machineA/linux/appserverA, silver, 1, 0
11 - machineA/linux/appserverA, gold, 1, 0
12 - machineA/linux/appserverB, gold, 1, 0
13 - machineA/linux/appserverA, platinum, 1, 0
14 - machineA/linux/appserverB, platinum, 1, 0
15 - machineA/linux/appserverA, bronze, 2, 0
16 - machineA/linux/appserverA, silver, 2, 0
17 - machineA/linux/appserverA, bronze, 3, 0

Figure 6. Optimal solution for a range of ser-
vice requirements: load and annual downtime
limit.

to pay for a higher maintenance contract.
As shown in Fig. 6, the more powerful machineB is never

selected. This is expected since we assumed linear scalabil-
ity for the application (Table 1), and the low end machines
have a better cost-performance ratio (i.e., lower cost per unit
of load). However, the situation may be different if the appli-
cation performance scales sublinearly with the number of re-
sources as in the case of the scientific application described
in section 5.2.

We observe in Fig. 6 that the downtime estimated for
a particular design family increases with load. This is ex-
pected since higher load levels require a larger number of re-
sources which results in a higher failure rate (because if any of
these resource fail, the service cannot meet its minimum per-
formance requirement and the service is considered down).
Therefore, the optimal design family may change as the load
level fluctuates. In a utility computing environment, where the
infrastructure can be easily reconfigured, an automated de-
sign engine such as Aved could dynamically re-evaluate and
change designs as conditions change.

5.2. Scientific Application Example

In a second usage scenario for Aved, we consider the de-
sign of a system for supporting a long running scientific
application which is described in Fig. 5. For such applica-
tions a checkpointing mechanism can significantly reduce re-
execution of computation after failures. As described in the
infrastructure model shown in Fig. 3, we consider a check-

point mechanism with two configuration parameters: check-
point interval and storage location where the application state
is saved. The storage location parameter indicates if the the
state is saved in a central network attached file system (cen-
tral); or alternatively in both the local disk and in the disk
of a peer resource (peer). The checkpoint mechanism deter-
mines the value of the loss window associated with the appli-
cation, based on the selected checkpoint interval. The perfor-
mance impact of the mechanism is defined as a function of
the selected storage location, checkpoint interval, and num-
ber of resources.

To avoid overloading the graphs, we fixed the maintenance
contract to the bronze level in this example. The job can be
supported on machineA running linux and mpi or on the more
powerful machineB running unix and mpi. The other design
options are the same as used in the first example, but the
values of the attributes in the service model descriptions are
different since the applications have different characteristics.
The only high level service requirement for the job is the ex-
pected execution time of the job.

Fig. 7 shows the optimal design choices made by Aved as
a function of the job execution time requirement, for a wide
range of values. As opposed to the first example in which
just one type of resource was selected for all range of re-
quirements, in the second scenario both resource types are se-
lected depending on the specified requirement. When higher
job execution time is tolerated, the system selects a lower
cost resource based on machineA (e.g. a dual processor ma-
chine); and when a lower execution time is required the more
expensive component machineB (e.g. a 16-way machine) is
selected. For lower execution times a huge number of low
cost machines would be required, but this is not cost effec-
tive because of the sublinear scalability of the scientific ap-
plication. In addition, the large number of resources would
increase the failure rate and thus increase the system over-
head of re-executing lost computation. Unlike the application
tier scenario in which adding resources is always beneficial
(since a resource failure does not affect other resources in the
tier), in this scientific application scenario we assume a fail-
ure causes the whole tier to be down. Thus adding resources
can reduce the availability of the system and increase job ex-
ecution time.

As expected, for the same resource type the number of
resources decreases as the user tolerates a longer execution
time. The number of resources is determined not only by the
performance characteristics of the application, but also by the
availability characteristics of the system, for example the time
lost to redo computation after a failure. The figure also shows
that the number of spare resources increases as the number of
total resources increases.

We also observe in Fig. 7 that the checkpoint interval in-
creases as we relax the execution time requirement. A short
checkpoint interval reduces re-execution after failures but in-

1

1.5

2

3

4

6

8
10

15

20

1 2 5 10 20 50 100 200 500 1000
1

2

5

10

20

50

100

200

ch
ec

kp
oi

nt
 in

te
rv

al
 (

ho
ur

s)

nu
m

be
r

of
 r

es
ou

rc
es

job execution time (hours)

(spare resources)

(resource type)

(checkpoint location)

01230123

<machineA-linux-mpi><machineB-linux-mpi>

<central><peer><central><peer>

checkpoint interval
number of resources

Figure 7. Scientific Application Example. Opti-
mal design as function of execution time

creases the overhead in normal operation. Both types of over-
head increase job execution time. Thus the optimal configu-
ration is an intermediate value which balances the overhead
due to lost work at failures and the overhead during normal
operation. As the number of resources increases, the failure
rate increases and the overhead due to failures becomes more
important, causing the optimal checkpoint interval to be re-
duced.

Fig. 7 also shows the choice of the storage location used
to store the application state at each checkpoint. As expected,
for a small number of nodes the best option is to save the state
at a central storage location, since the other alternative, stor-
age on a peer node, has a higher overhead per node. But for a
large number of nodes, the central location becomes a bottle-
neck and storing the state on a peer node becomes more ef-
fective4.

5.3. Cost, performance and availability tradeoff

Although the curves shown in Fig. 6 and Fig. 7 enable
the selection of the optimal design for a given application re-
quirement, the knowledge of the cost associated with each de-
sign can help the user make cost/benefit tradeoffs. Aved can
be used to generate plots of the costs of optimal designs at
various levels of availability and performance requirements.
Fig. 8 shows the cost associated with the optimal designs at
various levels of availability and performance requirements,
for the application tier example shown in Fig. 6. Each curve
shows, for a particular level of load, the additional annual
cost as a function of the required downtime. This is the ex-
tra annual cost necessary to provide the required availabil-
ity when compared to a minimum cost design that can sup-

4 We assumed that the central storage is based on a highly reliable system,
such as a high end RAID system, and does not fail.

0

2000

4000

6000

8000

10000

12000

14000

0.1 1 10 100 1000 10000

A
dd

iti
on

al
 A

nn
ua

l C
os

t f
or

 A
va

ila
bi

lit
y

Downtime (minutes)

Load= 3200 units
Load= 1600 units

Load= 800 units
Load= 400 units

Figure 8. Cost/availability/performance trade-
off for application tier example

port the same load when there is no availability requirement.
Fig. 8 reveals the tradeoffs among cost, availability, and per-
formance that must be understood to make a judicious design
choice. For example, in some cases a large improvement in
downtime can be achieved with a low additional cost. Alter-
natively, slightly relaxing the downtime requirement can sig-
nificantly reduce the cost overhead for availability.

6. Related Work

The idea of automating the design and configuration of
systems to meet user-specified availability requirements is
relatively recent. We are only aware of a few examples, each
of which is focused on a limited domain. The Oracle database
implements a function that automatically determines when
to flush data and logs to persistent storage such that the re-
covery time after a failure is likely to meet a user-specified
bound [10]. Automated design has been proposed for stor-
age systems to meet user requirements for data dependability,
which encompasses both data availability and data loss [9].
Their approach is complementary and could be combined
with ours to obtain a comprehensive solution that designs sys-
tems based on performance, availability, and data protection
requirements.

Most other work on system automation for manag-
ing availability has been limited to automated monitoring
and automated response to failure events and other such trig-
gers. For example, cluster failover products such as HP
MC/Serviceguard [5] SunCluster [14] and Trucluster [6] de-
tect nodes that fail, automatically failover application com-
ponents to surviving nodes, and reintegrate failed nodes into
active service when they recover from failure. IBM Direc-
tor [1] detects resource exhaustion in its software compo-
nents and automates the rejuvenation of these components at
appropriate intervals. Various utility computing efforts un-

derway will also automatically detect failed components
and automatically replace them with equivalent compo-
nents from a free pool [7][13][8].

7. Conclusions

In this paper, we have presented Aved, an automated sys-
tem design engine which determines the minimum cost de-
sign and configuration of computing infrastructure that satis-
fies service level performance and availability requirements.
Automating the design and configuration of computing in-
frastructure improves the design process compared to a tra-
ditional manual approach, and will be particularly useful in
emerging self-managing utility computing environments.

To enable automatic exploration of the design space, we
proposed a model which can represent various options for de-
signing and configuring the infrastructure. A primary chal-
lenge in developing our design space model and its specifi-
cation approach was to satisfy competing goals of generality
and practicality. That is, the model should enable represen-
tation of a wide variety of system infrastructure choices and
service types. At the same time, the practicality of the model
should be preserved by enabling it to be specified at a con-
ceptual level that is close to the actual, real-life properties of
services and system building blocks. Our solution approach
is to define a structured model which uses a small number of
fundamental constructs (components, failure modes, mecha-
nisms, etc.) which are intuitive to map to real-life entities. We
carefully selected the attribute set for each construct, and de-
fined clear dependencies between attributes in different con-
structs in the model which are related. This allows the con-
structs to be interconnected or composed in well defined ways
to construct models describing a wide variety of complex sys-
tems. To demonstrate the applicability of this approach, we
presented examples that show the model can represent infras-
tructure design options for two completely different environ-
ments, an E-Commerce service and a scientific application.

Our examples additionally illustrate the need for auto-
mated design. Although the examples include only a small
number of configuration parameters, they result in a large set
of possible designs. Moreover, the examples show that the op-
timal design can be different as the requirements change, for
example as the service’s throughput requirement is increased
as a result of an increase in client demand. Therefore, in self-
managing environments, an engine such as Aved is needed to
automatically reevaluate and reconfigure designs in response
to changes in such parameters.

Although Aved is a good first step towards automated sys-
tem design, there are several remaining issues that need to be
addressed as future research. To address overall service avail-
ability, the design engine must examine the impact of the net-
work and storage subsystems. Thus we plan to extend Aved
to factor LAN topologies and network failures. We also plan

to integrate Aved with an automatic process for storage sys-
tem design and management for data dependability[9]. We
plan to integrate Aved with online mechanisms to continu-
ously monitor service performance and other infrastructure
attributes to dynamically refine Aved’s models and to gener-
ate design changes in response to environment changes. This
would eliminate the need for precise initial performance mod-
els that may be difficult to obtain and specify. Finally, we plan
to conduct case studies of real environments to identify addi-
tional design choices encountered in practice and to evaluate
what extensions would be needed in Aved to support them.

References

[1] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S.
Trivedi, K. Vaidyanathan, and W. P. Zeggert. Proactive man-
agement of software aging. IBM Journal of Research and De-
velopment, 45(2):311–332, March 2001.

[2] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M.
Doyle, W. H. Sanders, and P. Webster. The Möbius model-
ing tool. In 9th Int’l Workshop on Petri Nets and Performance
Models, pages 241–250, Sep 2001.

[3] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Services
for distributed system integration. Computer, 35(6), 2002.

[4] Hewlett Packard Company. Availability advantage.
h18005.www1.hp.com/services/advantage/
aa_avanto.html, January 2003.

[5] Hewlett Packard Company. HP MC/ServiceGuard. www.hp.
com/products1/unix/highavailability/ar/
mcserviceguard/index.html, January 2003.

[6] Hewlett Packard Company. TruCluster software. www.
tru64unix.compaq.com/cluster/, January 2003.

[7] Hewlett Packard Company. Utility computing.
devresource.hp.com/topics/utility_comp.
html, January 2003.

[8] International Business Machines, Inc. Autonomic comput-
ing. www.ibm.com/autonomic/index.shtml, Jan-
uary 2003.

[9] K. Keeton and J. Wilkes. Automating data dependability. In
10th ACM-SIGOPS European Workshop, Sep 2002.

[10] T. Lahiri, A. Ganesh, R. Weiss, and A. Joshi. Fast-Start: quick
fault recovery in Oracle. In ACM SIGMOD, pages 593–598,
2001.

[11] Office of Government Commerce. ITIL Service Support. IT In-
frastructure Library. The Stationery Office, United Kingdom,
June 2000.

[12] R. A. Sahner and K. S. Trivedi. Reliability modeling using
SHARPE. IEEE Transactions on Reliability, R-36(2):186–
193, June 1987.

[13] Sun Microsystems, Inc. N1: Revolutionary IT architecture for
business. www.sun.com/software/solutions/n1/
index.html, January 2003.

[14] Sun Microsystems, Inc. Sun[tm] Cluster. www.sun.com/
software/cluster/, January 2003.

[15] vmware. VirtualCenter white paper. www.vmware.com/
pdf/vc_wp.pdf.

