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Abstract

A Federated Array of Bricks is a scalable distributed
storage system composed from inexpensive storage
bricks. It achieves high reliability with low cost by
using erasure coding across the bricks to maintain
data reliability in the face of brick failures. Era-
sure coding generates n encoded blocks from m data
blocks (n > m) and permits the data blocks to be re-
constructed from any m of these encoded blocks. We
present a new fully decentralized erasure-coding al-
gorithm for an asynchronous distributed system. Our
algorithm provides fully linearizable read-write ac-
cess to erasure-coded data and supports concurrent
I/O controllers that may crash and recover. Our al-
gorithm relies on a novel quorum construction where
any two quorums intersect in m processes.

1 Introduction

Distributed disk systems are becoming a popular
alternative for building large-scale enterprise stores.
They offer two advantages to traditional disk arrays or
mainframes. First, they are cheaper because they need
not rely on highly customized hardware that cannot
take advantage of economies of scale. Second, they
can grow smoothly from small to large-scale instal-
lations because they are not limited by the capacity
of an array or mainframe chassis. On the other hand,
these systems face the challenge of offering high reli-
ability and competitive performance without central-

∗This is an extended version of a paper, with the same title,
that appears in the Proceedings of the 2004 International Confer-
ence on Dependable Systems and Networks (DSN)

ized control.
This paper presents a new decentralized coordi-

nation algorithm for distributed disk systems using
deterministic erasure codes. A deterministic erasure
code, such as Reed-Solomon [12] or parity code, is
characterized by two parameters, m and n.1 It divides
a logical volume into fixed-size stripes, each with
m stripe units and computes n−m parity units for
each stripe (stripe units and parity units have the same
size). It can then reconstruct the original m stripe units
from any m out of the n stripe and parity units. By
choosing appropriate values of m, n, and the unit size,
users can tune the capacity efficiency (cost), availabil-
ity, and performance according to their requirements.
The flexibility of erasure codes has attracted a high
level of attention in both the industrial and research
communities [14, 2, 13, 11].

The algorithm introduced in this paper improves
the state of the art on many fronts. Existing erasure-
coding algorithms either require a central coordinator
(as in traditional disk arrays), rely on the ability to de-
tect failures accurately and quickly (a problem in real-
world systems), or assume that failures are permanent
(any distributed system must be able to handle tempo-
rary failures and recovery of it’s components).

In contrast, our algorithm is completely decentral-
ized, yet maintains strict linearizability [7, 1] and data
consistency for all patterns of crash failures and sub-
sequent recoveries without requiring quick or accu-
rate failure detection. Moreover, it is efficient in the
common case and degrades gracefully under failure.
We achieve these properties by running voting over a

1Reed-Solomon code allows for any combination of m and
n, whereas parity code only allows for m = n− 1 (RAID-5) or
m = n−2 (RAID-6).
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Figure 1: A typical FAB structure. Client comput-
ers connect to the FAB bricks using standard proto-
cols. Clients can issue requests to any brick to access
any logical volume. The bricks communicate among
themselves using the specialized protocol discussed
in this paper.

quorum system which enforces a large-enough inter-
section between any two quorums to guarantee con-
sistent data decoding and recovery.

In the next two sections, we provide background
information on the FAB system we have built and
quantify the reliability and cost benefits of erasure
coding. Section 1.3 articulates the challenge of the
coordination of erasure coding in a totally distributed
environment and overviews our algorithm. We define
the distributed-systems model that our algorithm as-
sumes in Section 2 and outline the guarantees of our
algorithm in Section 3. We present our algorithm in
Section 4, analyze it in Section 5, and survey related
work in Section 6.

1.1 Federated array of bricks

We describe our algorithm in the context of a Fed-
erated Array of Bricks (FAB), a distributed storage
system composed from inexpensive bricks [6]. Bricks
are small storage appliances built from commodity
components including disks, a CPU, NVRAM, and
network cards. Figure 1 shows the structure of a typ-
ical FAB system. Bricks are connected together by
a standard local-area network, such as Gigabit Ether-
net. FAB presents the client with a number of logical
volumes, each of which can be accessed as if it were a
disk. In order to eliminate central points of failure as
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Figure 2: Mean time to first data loss (MTTDL) in
storage systems using (1) striping, (2) replication and
(3) erasure coding. (1) Data is striped over conven-
tional, high-end, high-reliability arrays, using internal
RAID-5 encoding in each array/brick. Reliability is
good for small systems, but does not scale well. (2)
Data is striped and replicated 4 times over inexpen-
sive, low reliability array bricks. Reliability is highest
among the three choices, and scales well. Using in-
ternal RAID-5 encoding in each brick improves the
MTTDL further over RAID-0 bricks. (3) Data is dis-
tributed using 5-of-8 erasure codes over inexpensive
bricks. The system scales well, and reliability is al-
most as high as the 4-way replicated system, using
similar bricks.

well as performance bottlenecks, FAB distributes not
only data, but also the coordination of I/O requests.
Clients can access logical volumes using a standard
disk-access protocol (e.g., iSCSI [8]) via a coordina-
tor module running on any brick. This decentralized
architecture creates the challenge of ensuring single-
copy consistency for reads and writes without a cen-
tral controller. It is this problem that our algorithm
solves.

1.2 Why erasure codes?

While any data storage system using large numbers
of failure-prone components must use some form of
redundancy to provide an adequate degree of reliabil-
ity, there are several alternatives besides the use of
erasure codes. The simplest method for availability
is to stripe (distribute) data over conventional, high-
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Figure 3: Storage overheads (raw capacity/logical ca-
pacity) of systems using replication and erasure cod-
ing. The storage overhead of replication-based sys-
tems rises much more steeply with increasing relia-
bility requirements than for systems based on erasure-
coding. Using RAID-5 bricks reduces the overhead
slightly. The MTTDL of a storage system that stripes
data over RAID-5 bricks is fixed, and hence this is
omitted from this plot; the storage overhead of such a
system is 1.25.

reliability array bricks. No redundancy is provided
across bricks, but each brick could use an internal re-
dundancy mechanism such as RAID-1 (mirroring) or
RAID-5 (parity coding). The second common alter-
native is to mirror (i.e., replicate) data across multiple
bricks, each of which internally uses either RAID-
0 (non-redundant striping) or RAID-5. This section
compares erasure coding to these methods and show
that erasure coding can provide a higher reliability at
a lower cost.

Figure 2 shows expected reliability of these
schemes. We measure the reliability by the mean time
to data loss (MTTDL), which is the expected number
of years before data is lost for the first time. For ex-
ample, in a stripe-based system, data is lost when any
one brick breaks terminally. On the other hand, in
a system using m out of n erasure coding, a piece of
data is lost when more than n−m of n bricks that store
the data terminally break at the same time. Thus, the
system-wide MTTDL is roughly proportional to the
number of combinations of brick failures that can lead

to a data loss. We used the component-wise reliability
numbers reported in [3] to extrapolate the reliability
of bricks and networks, and calculated the MTTDL
assuming random data striping across bricks. This
graph shows that the reliability of striping is adequate
only for small systems. Put another way, to offer ac-
ceptable MTTDL in such systems, one needs to use
hardware components far more reliable and expensive
than the ones commonly offered in the market. On the
other hand, 4-way replication and 5-of-8 erasure cod-
ing both offer very high reliability, but the latter with
a far lower storage overhead. This is because relia-
bility depends primarily on the number of brick fail-
ures the system can withstand without data loss. Since
both 4-way replication and 5-of-8 erasure coding can
withstand at least 3 brick failures, they have similar
reliability.

Figure 3 compares the storage overhead (the ratio
of raw storage capacity to logical capacity provided)
for sample 256TB FAB systems using replication and
erasure coding, and with the underlying bricks inter-
nally using RAID-5 or RAID-0 (non-redundant). In
order to achieve a one million year MTTDL, com-
parable to that provided by high end conventional
disk arrays, the storage overhead for a replication-
based system is 4 using RAID-0 bricks and approx-
imately 3.2 using RAID-5 bricks. By contrast, an
erasure code based system with m = 5 can meet the
same MTTDL requirement with a storage overhead of
1.6 with RAID-0 bricks, and yet lower with RAID-5
bricks.

The storage efficiency of erasure-coded systems
comes at some cost in performance. As in the case
of RAID-5 arrays, small writes (writes to a subregion
of the stripe) require a read of the old data and each of
the corresponding parity blocks, followed by a write
to each. Thus, for an m-of-n erasure coded system, a
small write engenders 2(n−m + 1) disk I/Os, which
is expensive. Nonetheless, for read-intensive work-
loads (such as Web server workloads), systems with
large capacity requirements, and systems where cost
is a primary consideration, a FAB system based on
erasure codes is a good, highly reliable choice.

1.3 Challenges of distributed erasure coding

Implementing erasure-coding in a distributed sys-
tem, such as FAB, presents new challenges. Erasure-
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coding in traditional disk arrays rely on a centralized
I/O controller that can accurately detect the failure
of any component disk that holds erasure-coded data.
This assumption reflects the tight coupling between
controllers and storage devices—they reside within
the same chassis and communicate via an internal bus.

It is not appropriate to assume accurate failure de-
tection or to require centralized control in FAB. Stor-
age bricks serve as both erasure-coding coordinators
(controllers) and storage devices. Controllers and de-
vices communicate via a standard shared, and poten-
tially unreliable, network. Thus, a controller often
cannot distinguish between a slow and failed device:
the communication latency in such networks is un-
predictable, and network partitions may make it tem-
porarily impossible for a brick to communicate with
other bricks.

Our algorithm relies on the notion of a quorum sys-
tem, which allows us to handle both asynchrony and
recovery. In our algorithm, correct execution of read
and write operations only requires participation by a
subset of the bricks in a stripe. A required subset
is called a quorum, and for an m-out-of-n erasure-
coding scheme the underlying quorum system must
only ensure that any two quorums intersect in at least
m bricks. In other words, a brick that acts as erasure-
coding controller does not need to know which bricks
are up or down, it only needs to ensure that a quorum
executes the read or write operation in question. Fur-
thermore, consecutive quorums formed by the same
controller do not need to contain the same bricks,
which allows bricks to seamlessly recover and rejoin
the system.

Compared to existing quorum-based replication al-
gorithms [4, 9, 10], our algorithm faces new chal-
lenges that are partly due to the fact that we use
erasure-coding instead of replication, and partly due
to the fact that we apply the algorithm to storage
systems. Using erasure-coding instead of replication
means that any two quorums must intersect in m in-
stead of 1 bricks. We define a new type of quo-
rum system, called an m-quorum system, that provides
this intersection property. Using erasure-coding also
means that it is more difficult to handle partial writes
where the erasure-coding controller crashes after up-
dating some, but not all, members of a quorum. Exist-
ing quorum-based replication algorithms rely on the

ability to write-back the latest copy during a subse-
quent read operation, essentially having read opera-
tions complete the work of a partial write. However,
with erasure coding, a partial write may update fewer
than m stripe units, rendering subsequent read opera-
tions unable to reconstruct the stripe. We use a notion
of versioning in our algorithm so that a read operation
can access a previous version of the stripe if the lat-
est version is incomplete. In existing quorum-based
algorithms, a read operation always tries to complete
a partial write that it detects. This means that a par-
tially written value may appear at any point after the
failed write operation, whenever a read operation hap-
pens to detect it. Having partial write operations take
effect at an arbitrary point in the future is not appro-
priate for storage systems. Our algorithm implements
a stronger semantics for partial writes: a partial write
appears to either take effect before the crash or not at
all. Implementing these stronger semantics is chal-
lenging because a read operation must now decide
whether to complete or roll-back a partial write that
it detects.

2 Model

We use the abstract notion of a process to repre-
sent a brick, and we consider a set U of n processes,
U = {p1, . . . , pn}. Processes are fully connected by a
network and communicate by message passing. The
system is asynchronous: there is no bound on the time
for message transmission or for a process to execute
a step. Processes fail by crashing—they never behave
maliciously—but they may recover later. A correct
process is one that either never crashes or eventually
stops crashing. A faulty process is a process that is
not correct.

Network channels may reorder or drop messages,
but they do not (undetectably) corrupt messages.
Moreover, network channels have a fair-loss property:
a message sent an infinite number of times to a correct
process will reach the destination an infinite number
of times.

2.1 Erasure-coding primitives

We use the term block to refer to the unit of data
storage. Processes store data using an m-out-of-n
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Figure 4: Use of the primitives for a 3-out-of-5 era-
sure coding scheme. Data blocks b1 to b3 form a
stripe. The encode function generates two parity
blocks c1 and c2. When b3 is updated to become b′3,
we call modify3,1(b3,b′3,c1) to update c1 to become
c′1. Finally, we use decode to reconstruct the stripe
from b1, b2, and c′1.

erasure-coding scheme. A stripe consists of m data
blocks, and we generate n−m parity blocks from
these m data blocks. Thus, each stripe results in the
storage of n blocks; each process stores one of these
n blocks.

The primitive operations for erasure coding are
listed in Figure 4:

• encode takes m data blocks and returns n blocks,
among which the first m are the original blocks
and the remaining n−m are parity blocks. We
define encode to return the original data blocks as
a matter of notational convenience.

• decode takes any m out of n blocks generated
from an invocation of encode and returns the orig-
inal m data blocks.

• modifyi, j(bi,b′i,c j) re-computes the value of the
j’th parity block after the i’th data block is up-
dated. Here, bi and b′i are the old and new values
for data block i, and c j is the old value for parity
block j.

2.2 m-quorum systems

To ensure data availability, we use a quorum sys-
tem: each read and write operation requires participa-
tion from only a subset of U , which is called a quo-
rum. With m-out-of-n erasure coding, it is necessary
that a read and a write quorum intersect in at least m
processes. Otherwise, a read operation may not be
able to construct the data written by a previous write
operation. An m-quorum system is a quorum system

where any two quorums intersect in m elements; we
refer to a quorum in an m-quorum system as an m-
quorum.

Let f be the maximum number of faulty processes
in U . An m-quorum system is then defined as follows:

Definition 1 An m-quorum system Q ⊆ 2U is a set
satisfying the following properties.

∀Q1,Q2 ∈ Q : |Q1∩Q2| ≥ m.

∀S ∈ 2U s.t. |S|= f ,∃Q ∈ Q : Q∩S = /0.

The second property ensures the existence of an m-
quorum for any combination of f faulty processes. It
can be shown that f = b(n−m)/2c is a necessary and
sufficient condition for the existence of an m-quorum
system (we prove this claim in Appendix A). Thus,
we assume that at most f = b(n−m)/2c processes
are faulty.

We use a non-blocking primitive called quorum()
to capture request-reply style communication with an
m-quorum of processes. The quorum(msg) primitive
ensures that at least an m-quorum receives msg, and
it returns the list of replies. From the properties of
an m-quorum system defined above, we can imple-
ment quorum() in a non-blocking manner on top of
fair-lossy channels by simply retransmitting messages
periodically.

2.3 Timestamps

Each process provides a non-blocking operation
called newTS that returns a totally ordered times-
tamp. There are two special timestamps, LowTS and
HighTS, such that for any timestamp t generated by
newTS, LowTS < t < HighTS. We assume the fol-
lowing minimum properties from newTS.

UNIQUENESS: Any two invocations of newTS (pos-
sibly by different processes) return different
timestamps.

MONOTONICITY: Successive invocations of newTS

by a process produce monotonically increasing
timestamps.

PROGRESS: Assume that newTS() on some process
returns t. If another process invokes newTS an
infinite number of times, then it will eventually
receive a timestamp larger than t.
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A logical or real-time clock, combined with the is-
suer’s process ID to break ties, satisfies these proper-
ties.

3 Correctness

For each stripe of data, the processes in U collec-
tively emulate the functionality of a read-write regis-
ter, which we call a storage register. As we describe
below, a storage register is a special type of atomic
read-write register that matches the properties and re-
quirements of storage systems.

A storage register is a strictly linearizable [1]
atomic read-write register. Like traditional lineariz-
ability [7], strict linearizability ensures that read and
write operations execute in a total order, and that
each operation logically takes effect instantaneously
at some point between its invocation and return. Strict
linearizability and traditional linearizability differ in
their treatment of partial operations. A partial oper-
ation occurs when a process invokes a register, and
then crashes before the operation is complete. Tradi-
tional linearizability allows a partial operation to take
effect at any time after the crash. That is, if a stor-
age brick crashes while executing a write operation,
the write operation may update the system at an ar-
bitrary point in the future, possibly after the brick has
recovered or has been replaced. Such delayed updates
are clearly undesirable in practice—it is very compli-
cated, if not impossible, for the application-level logic
that recovers from partial writes to take future updates
into account.

Strict linearizability ensures that a partial operation
appears to either take effect before the crash or not
at all. The guarantee of strict linearizability is given
relative to external observers of the system (i.e., ap-
plications that issue reads and writes). The only way
for an application to determine if a partial write actu-
ally took effect is to issue a subsequent read. In our
algorithm, the fate of a partial write is in fact decided
by the next read operation on the same data: the read
rolls the write forward if there are enough blocks left
over from the write, otherwise the read rolls back the
write.

We allow operations on a storage register to abort
if they are invoked concurrently. It is extremely rare

that applications issue concurrent write-write or read-
write operations to the same block of data: concur-
rency is usually resolved at the application level, for
example by means of locking. In fact, in analyzing
several real-world I/O traces, we have found no con-
current write-write or read-write accesses to the same
block of data [6]. An aborted operation returns a spe-
cial value (e.g., ⊥) so that the caller can distinguish
between aborted and non-aborted operations. The
outcome of an aborted operation is non-deterministic:
the operation may have taken effect as if it were a
normal, non-aborted operation, or the operation may
have no effect at all, as if it had never been invoked.
Strict linearizability incorporates a general notion of
aborted operations.

In practice, it is important to limit the number of
aborted operations. Our algorithm only aborts opera-
tions if they actually conflict on the same stripe of data
(i.e., write-write or read-write operations), and only
if the operations overlap in time or generate times-
tamps that do not constitute a logical clock. Both
situations are rare in practice. First, as we have al-
ready observed, it is extremely rare for applications to
concurrently issue conflicting operations to the same
block of data. Moreover, we can make stripe-level
conflicts unlikely by laying out data so that consec-
utive blocks in a logical volume are mapped to dif-
ferent stripes. Second, modern clock-synchronization
algorithms can keep clock skew extremely small [5].
Finally, it is important to notice that the absence of
concurrency and the presence of clock synchroniza-
tion only affect the abort rate, not the consistency of
data.

4 Algorithm

Our algorithm implements a single storage regis-
ter; we can then independently run an instance of this
algorithm for each stripe of data in the system. The
instances have no shared state and can run in parallel.

In Section 4.1, we give describe the basic princi-
ples behind the algorithm and the key challenges that
the algorithm solves. Section 4.2 describes the data
structures used by the algorithm. Section 4.3 gives the
pseudo-code for reading and writing stripes of data,
and Section 4.4 gives the pseudo-code for reading and
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writing individual blocks within a stripe. We prove
the algorithm correct in Appendix B.

4.1 Overview

Our algorithm supports four types of operations:
read-stripe and write-stripe to read and write the en-
tire stripe, and read-block and write-block to read and
write individual blocks within the stripe.2 A read op-
eration returns a stripe or block value if it executes
successfully; a write operation returns OK if it ex-
ecutes successfully. Both read and write operations
may abort, in which case they return the special value
⊥.

A process that invokes a register operation be-
comes the coordinator for that operation. Any process
can be the coordinator of any operation. The designa-
tion of coordinator is relative to a single operation:
consecutive operations on the same data can be coor-
dinated by different processes.

Each process stores a single block for each storage
register. To simplify the presentation, we assume that
process j always stores block j. That is, processes
p1 . . . pm store the data blocks, and pm+1 . . . pn store
the parity blocks. It is straightforward to adapt the
algorithm to more sophisticated data-layout schemes.
In the following, we refer to pm+1 . . . pn as the parity
processes.

To implement a total order for operations, each pro-
cess stores a timestamp along with each block of data.
The timestamp denotes the time when the block was
last updated. The basic principle of our algorithm is
then for a write coordinator to send a message to an
m-quorum of processes to store new block values with
a new timestamp. A read coordinator reads the blocks
and timestamps from an m-quorum and reconstructs
the most recent register value.

A key complexity of the algorithm stems from the
handling of a partial write operation, which stores a
value in fewer than an m-quorum of replicas, either
because the coordinator crashes or proposes too small
a timestamp. Such a partial write causes two potential
problems: inability to recover the previous value, and
violation of strict linearizability.

2The single-block methods can easily be extended to access
multiple blocks, but we omit this extension to simplify the pre-
sentation.

4.1.1 Recovering from partial writes

The challenge with erasure coding is that, during a
write operation, a process cannot just overwrite its
data block with the new data value. For example, con-
sider an erasure-coded register with m = 5,n = 7 (the
m-quorum size is 6). If a write coordinator crashes
after storing the new value on only 4 processes, we
have 4 blocks from the new stripe and 3 blocks from
the old, which means that it is impossible to construct
either the old or the new stripe value.

To handle such situations, each process keeps a
log of 〈block-value, timestamp〉 pairs of past write
requests. A write request simply appends the new
value to the log; a read coordinator collects enough
of the most recent blocks from the logs to recover the
last register value. We discuss log trimming in Sec-
tion 5.1.

4.1.2 Linearizing partial operations

After a partial write, a read operation cannot simply
pick the value with the highest timestamp, since this
may violate strict linearizability. For example, con-
sider the execution in Figure 5. To satisfy strict lin-
earizability, a storage-register implementation must
ensure the following total order: write1 → read2 →
read3. In other words, read3 must return v even though
it finds the value v′ with a higher timestamp. That is,
we need to detect partial write operations and abort
them to handle such a situation. We accomplish this
by executing a write operation in two phases. In the
first phase, a write operation informs an m-quorum
about the intention to write a value; in the second
phase, a write operation actually writes the value to
an m-quorum. A read operation can then detect a par-
tial write as an unfulfilled intention to write a value.

Our approach of explicit partial-write detection has
a pleasant side effect: an efficient single-round read
operation in the common case. A read operation first
checks if an m-quorum has no partial write; if so, it
simply returns the current register value: the value re-
ceived from the process that stores the requested data,
or the stripe value derived from any m processes in
the case of a full stripe read. Failing the optimistic
phase, the read operation reconstructs the most recent
register value and writes it back to an m-quorum.
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Figure 5: To ensure strict linearizability, read opera-
tions cannot simply pick, and possibly write-back, the
value with the highest timestamp. In the example, the
processes a, b and c implement a storage register; for
simplicity, we use an erasure-coding scheme with a
stripe size of 1 and where parity blocks are copies of
the stripe block (i.e., replication as a special case of
erasure coding). The label 〈v, t〉 indicates that a pro-
cess stores a value v with timestamp t. The first re-
quest write1(v′) crashes after storing v′ on only a; the
second read2 request contacts processes b and c and
returns value v. Then a recovers, and the subsequent
read3 returns v′, even though write1 seems to have
happened before read2 in the eye of an observer.

4.2 Persistent data structures

Each process has persistent storage that survives
crashes. In general, the store(var) primitive atomi-
cally writes the value of variable var to the persistent
storage. When a process recovers, it automatically
recovers the most recently stored value for each vari-
able.

The persistent state of each process consists of a
timestamp, ord-ts, and a set of timestamp-block pairs,
called the log. The initial values for ord-ts and log are
LowTS and {[LowTS,nil]}, respectively. (Remem-
ber that, for any timestamp t generated by newTS,
LowTS < t < HighTS.) The log captures the history
of updates to the register as seen by an individual pro-
cess. To update the timestamp information in the log
without actually storing a new value, we sometimes
store a pair [ts,⊥] in the log. We define three func-
tions on the log:

• The “max-ts(log)” function returns the highest
timestamp in log.

• The “max-block(log)” function returns the non-⊥
value in log with the highest timestamp.

• The “max-below(log, ts)” function returns the
non-⊥ value in log with the highest timestamp
smaller than ts.

Variable ord-ts shows the logical time at which the
most recent write operation was started, establishing
its place in the ordering of operations. As such, max-
ts(log) < ord-ts indicates the presence of a partial op-
eration.

4.3 Reading and writing the whole stripe

Algorithm 1 describes the methods for reading and
writing a stripe. Algorithm 2 describes the handlers
invoked upon receipt of messages from a coordinator.

The write-stripe method triggers a two-phase inter-
action. In the first phase, the coordinator sends “[Or-
der, ts]” messages to replicas with a newly generated
timestamp. A replica updates its ord-ts and responds
OK if it has not already seen a request with a higher
timestamp. This establishes a place for the opera-
tion in the ordering of operations in the system, and
prevents a concurrent write operation with an older
timestamp from storing a new value between the first
and second phases. In the second round, the coordina-
tor sends “[Write,..]” messages and stores the value.

The read-stripe method first optimistically assumes
that an m-quorum of processes stores blocks with the
same value and timestamp, and that there are no par-
tial writes. If these assumptions are true, the method
returns after one round-trip without modifying the
persistent state of any process (line 9). Otherwise, the
two-phase recovery method is invoked, which works
like the write-stripe method except that it dynamically
discovers the value to write using the read-prev-stripe
method. This method finds the most recent version
with at least m blocks. Its loop ends when it finds
the timestamp of the most recent complete write. The
recovery method ensures that the completed read op-
eration appears to happen after the partial write oper-
ation and that future read operations will return values
consistent with this history.
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Algorithm 1 Methods for accessing the entire stripe.

1: procedure read-stripe()
2: val ←fast-read-stripe()
3: if val = ⊥ then val ←recover()
4: return val

5: procedure fast-read-stripe()
6: targets ←Pick m random processes
7: replies ←quorum([Read, targets])
8: if status in all replies is true

and val-ts in all replies is the same
and all processes in targets replied then

9: return decode(blocks in replies from targets)
10: else
11: return⊥

12: procedure write-stripe(stripe)
13: ts ←newTS()
14: replies ←quorum([Order, ts])
15: if status in any reply is false then return ⊥
16: else return store-stripe(stripe, ts)

17: procedure recover()
18: ts ←newTS()
19: s ←read-prev-stripe(ts)
20: if s 6= ⊥ and store-stripe(s, ts) = OK then
21: return s
22: else
23: return⊥

24: procedure read-prev-stripe(ts)
25: max ←HighTS

26: repeat
27: replies←quorum([Order&Read, ALL, max, ts])
28: if status in any reply is false then
29: return⊥
30: max ←the highest timestamp in replies
31: blocks ←the blocks in replies with

timestamp max
32: until | blocks | ≥ m
33: return decode(blocks)

34: procedure store-stripe(stripe, ts)
35: replies ←quorum([Write, encode(stripe), ts])
36: if status in all replies is true then return OK

37: else return ⊥

4.4 Reading and writing a single block

Algorithm 3 defines the methods and message han-
dlers for reading and writing an individual block.

The read-block method, which reads a given block
number ( j), is almost identical to the read-stripe
method except that, in the common case, only p j per-

Algorithm 2 Register handlers for process pi

38: when receive [Read, targets] from coord
39: val-ts ←max-ts(log)
40: status ←val-ts ≥ ord-ts
41: b ←⊥
42: if status and i ∈ targets then
43: b ←max-block(log)
44: reply [Read-R, status, val-ts, b] to coord

45: when receive [Order, ts] from coord
46: status ←(ts > max-ts(log) and ts ≥ ord-ts)
47: if status then ord-ts ←ts; store(ord-ts)
48: reply [Order-R, status] to coord

49: when receive [Order&Read, j, max, ts] from coord
50: status ←(ts > max-ts(log) and ts ≥ ord-ts)
51: lts ← LowTS; b ←⊥
52: if status then
53: ord-ts ←ts; store(ord-ts)
54: if j = i or j = ALL then
55: [lts,b ]←max-below(log, max)
56: reply [Order&Read-R, status, lts, b] to coord

57: when receive [Write, [b1, . . . ,bn], ts] from coord
58: status ←(ts > max-ts(log) and ts ≥ ord-ts)
59: if status then log ←log ∪{[ts,bi]}; store(log)
60: reply [Write-R, status] to coord

forms a read. The write-block method updates the
parity blocks as well as the data block at process p j .
This is necessary when an I/O request has written to a
single block of the stripe, in order to maintain consis-
tency of the whole stripe. In the common case without
any partial write, this method reads from, and writes
to, process p j and the parity processes (fast-write-
block). Otherwise, it essentially performs a recovery
(Line 17), except that it replaces the jth block with
the new value upon write-back.

5 Discussion

5.1 Garbage collection of old data

Our algorithm relies on each process keeping its
entire history of updates in a persistent log, which is
not practical. For the correctness of the algorithm,
it is sufficient that each process remember the most
recent timestamp-data pair that was part of a com-
plete write. Thus, when a coordinator has success-
fully updated a full quorum with a timestamp ts, it

9



Algorithm 3 Block methods and handlers for pi

61: procedure read-block( j)
62: replies ←quorum([Read, { j}])
63: if status is all true and p j replied

and val-ts in all replies is the same then
64: return the block in p j’s reply
65: s ← recover()
66: if s 6= ⊥ then
67: return s[ j]
68: else
69: return⊥

70: procedure write-block( j, b)
71: ts ←newTS()
72: if fast-write-block( j, b, ts) = OK then return OK

73: else return slow-write-block( j, b, ts)

74: procedure fast-write-block( j, b, ts)
75: replies ←quorum([Order&Read, j, HighTS, ts])
76: if status contains false or p j did not reply then
77: return⊥
78: b j ←the block in p j’s reply
79: ts j ←the timestamp in p j’s reply
80: replies ←quorum([Modify, j, b j, b, ts j, ts])
81: if status is all true then return OK

82: else return ⊥

83: procedure slow-write-block( j, b, ts)
84: data ←read-prev-stripe(ts)
85: if data = ⊥ then return⊥
86: data[ j]←b
87: return store-stripe(data, ts)

88: when receive [Modify, j, b j, b, ts j, ts] from coord
89: status ←(ts j = max-ts(log) and ts ≥ ord-ts)
90: if status then
91: if i = j then
92: bi←b
93: else if i > m then
94: bi←modify j,i(b j, b, max-block(log))
95: else
96: bi←⊥
97: log ←log ∪{[ts,bi]}; store(log)
98: reply [Modify-R, status] to coord

can safely send a garbage-collection message to all
processes to garbage collect data with timestamps
older than ts. Notice that the coordinator can send
this garbage-collection message asynchronously after
it returns OK.

5.2 Algorithm complexity

Table 1 compares the performance of our algo-
rithm and state-of-the-art atomic-register construc-
tions [9, 10]. We improve on previous work in two
ways: efficient reading in the absence of failures or
concurrent accesses, and support of erasure coding.

In describing our algorithm, we have striven for
simplicity rather than efficiency. In particular, there
are several straight-forward ways to reduce the net-
work bandwidth consumed by the algorithm for
block-level writes: (a) if we are writing block j, it
is only necessary to communicate blocks to p j and
the parity processes, and (b) rather than sending both
the old and new block values to the parity processes,
we can send a single coded block value to each parity
process instead.

6 Related work

As we discussed in Section 1.3, our erasure-coding
algorithm is based on fundamentally different as-
sumptions than traditional erasure-coding algorithms
in disk arrays.

The algorithm in [14] also provides erasure-coded
storage in a decentralized manner using a combina-
tion of a quorum system and log-based store. The al-
gorithm in [14] handles Byzantine as well as crash
failures, but does not explicitly handle process recov-
ery (i.e., failures are permanent). In contrast, our
algorithm only copes with crash failures, but incor-
porates an explicit notion of process recovery. An-
other difference is that the algorithm in [14] imple-
ments (traditional) linearizability where partial opera-
tions may take effect at an arbitrary point in the future,
whereas our algorithm implements strict linearizabil-
ity where partial operations are not allowed to remain
pending. Finally, the algorithm in [14] only imple-
ments full-stripe reads and writes, whereas our al-
gorithm implements block-level reads and writes as
well.

The goal of [2] is to allow clients of a storage-area
network to directly execute an erasure-coding algo-
rithm when they access storage devices. The resulting
distributed erasure-coding scheme relies on the abil-
ity for clients to accurately detect the failure of stor-
age devices. Moreover, the algorithm in [2] can result
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Our algorithm LS97
Stripe access Block access

read/F write read/S read/F write/F read/S write/S read write
latency 2δ 4δ 6δ 2δ 4δ 6δ 8δ 4δ 4δ
# messages 2n 4n 6n 2n 4n 6n 8n 4n 4n
# disk reads m 0 n+m 1 k +1 n+1 k +n+1 n 0
# disk writes 0 n n 0 k +1 n k +n+1 n n
Network b/w mB nB (2n+m)B B (2n+1)B (2n+1)B (4n+1)B 2nB nB

Table 1: Performance comparison between our algorithm and the one by Lynch and Shvartsman [9]. The suffix
“/F” denotes the operations that finishes without recovery. The suffix “/S” indicates the operations that execute
recovery. We assume that recovery only requires a single iteration of the repeat loop. Parameter n is the number
of processes, and k = n−m (i.e., k is the number of parity blocks). We pessimistically assume that all replicas are
involved in the execution of an operation. δ is the maximum one-way messaging delay. B is the size of a block.
When calculating the number of disk I/Os, we assume that reading a block from log involves a single disk read,
writing a block to log involves a single disk write, and that timestamps are stored in NVRAM.

in data loss when certain combinations of client and
device failures occur. For example, consider a 2 out
of 3 erasure-coding scheme with 3 storage devices: if
a client crashes after updating only a single data de-
vice, and if the second data device fails, we cannot
reconstruct data. In contrast, our algorithm can toler-
ate the simultaneous crash of all processes, and makes
progress whenever an m-quorum of processes come
back up and are able to communicate.

Several algorithms implement atomic read-write
registers in an asynchronous distributed system based
on message passing [4, 9, 10]. They all assume a
crash-stop failure model, and none of them support
erasure-coding of the register values.
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A Existence of m-quorum systems

We consider a set U of n processes, U =
{p1, . . . , pn}; up to f of these processes may be faulty.
We we use F to denote the set of all subsets of U that
contain f processes: F = {F ∈ 2U | |F| = f}. As in
Section 2.2, we define an m-quorum system Q as a set
of subsets of U that satisfies the following properties:

CONSISTENCY: ∀Q1,Q2 ∈ Q : |Q1∩Q2| ≥ m.

AVAILABILITY: ∀F ∈ F ,∃Q ∈ Q : Q∩F = /0.

We show the following Theorem abort m-quorum
systems:

Theorem 2 There exists an m-quorum system for U
if and only if n≥ 2 f +m.

We prove the Theorem through the following two
lemmas:

Lemma 3 There exists an m-quorum system for U if
and only if the set Q = {Q ∈ 2U | |Q| ≥ n− f} is an
m-quorum system for U.

PROOF: Consider first the “if” part of the lemma. If
Q is an m-quorum system for U , then it is obvious
that an m-quorum system exists.

To prove the “only if” part of the lemma, assume
that there exists an m-quorum system Q ′, yet Q is not
an m-quorum system. Since Q clearly satisfies the
AVAILABILITY property, it cannot satisfy the CON-
SISTENCY property. Thus, let Q1 and Q2 be two el-
ements in Q such that |Q1 ∩Q2| < m. Define next
two sets F1 and F2 as follows: F1 = U \ Q1 and
F2 = U \Q2. The sets F1 and F2 have f elements, and
are thus elements of F . This means that there are quo-
rums Q′1 and Q′2 in Q ′ such that Q′1⊆Q1 and Q′2⊆Q2.
Because (Q′1∩Q′2)⊆ (Q1∩Q2), we can conclude that
|Q′1∩Q′2| ≤ |Q1∩Q2| < m, which contradicts the as-
sumption that Q ′ is an m-quorum system. 2

Lemma 4 The set Q = {Q ∈ 2U | |Q| ≥ n− f} is n
m-quorum system for U if and only if n≥ 2 f +m.
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PROOF: We first prove that n ≥ 2 f + m implies that
Q is an m-quorum system. The set Q clearly satis-
fies the AVAILABILITY property. For CONSISTENCY,
consider two sets Q1 and Q2 in Q :

|Q1∩Q2|= |Q1|+ |Q2|− |Q1∪Q2|

= 2(n− f )−|Q1∪Q2|

≥ 2(n− f )−n

= n−2 f

≥ m

To prove that n ≥ 2 f + m is a necessary condition
for Q being an m-quorum system, consider two sets
Q1 and Q2 in Q such that Q1∪Q2 =U . We know that
Q2 = (U \Q1)∪ (Q1∩Q2). Because (U \Q1)∩ (Q1∩
Q2) = /0, we have the following:

|Q2|= |U \Q1|+ |Q1∩Q2|

Since |Q2|= n− f and |U \Q1|= f , we have:

n−2 f = |Q1∩Q2| ≥ m

2

B Algorithm correctness

We show that Algorithms 1, 2, and 3 correctly
implement a strictly linearizable read-write register.
Strict linearizability is defined in [1], and we do
not repeat the definition here. Although the def-
inition in [1] only covers crash-stop processes, it
is straightforward to extend the definition to cover
crash-recovery processes: we can reason about strict
linearizability in a crash-recovery model by changing
the well-formedness constraints for histories to allow
multiple crash events in a given per-process history;
in particular, the history transformation rules that deal
with linearizing crash events do not assume that each
process crashes at most once.

We represent a run of our algorithms as a history
of invocation and return events. An invocation event
captures the start of a particular execution of a method
on a storage register, and a return event captures the
completion of such an execution.

A storage register gives read-write access to a
stripe of m blocks. To show correctness of our imple-
mentation, we show that it provides strictly lineariz-
able read-write access to any block within the regis-
ter’s stripe. That is, we prove correctness on a per-
block basis, but do so for both block-level and stripe-
level operations that affect a given block. Consider-
ing each block separately simplifies the presentation
because we do not have to reason about a mixture of
stripe and block-level operations.

Given a history H of block-level and stripe-level
operations on a storage register, we derive a history Hi

that captures the read-write behavior relative to block
i in the following manner. We translate a stripe-level
operation that reads or writes a stripe value s in H
into a corresponding block-level operation that reads
or writes the i’th block value in s. We ignore block-
level operations that read or write blocks other than i,
and we include block-level reads and writes directly if
they are targeted at block i. In the following, we only
consider such block-level histories. In particular, the
following correctness reasoning is relative to a given
run R of our algorithm, and a given block i in the stripe
maintained by the algorithm. We use H to refer to a
possible block-level history Hi that R may give rise to.

As in [1], we use a notion of operation in con-
junction with H .3 A complete operation consists of
an invocation event and a matching return event. If
the return event does not contain the value ⊥, we say
that the operation is successful. A partial operation
consists of an invocation event and a matching crash
event. Finally, an infinite operation consists of an in-
vocation event without any matching return or crash
event. We use write(v) to refer to a operation whose
invocation event captures the start of a write operation
with parameter v. We assume that that each write op-
eration tries to write a unique value (“unique-value”
assumption). Moreover, we assume that no write op-
eration tries to write nil, the initial value of any regis-
ter. We use read(v) to represent an operation with a
return event that captures the completion of executing
the read method where v is the returned value.

We introduce a partial order on the operations in
H . If the return or crash event of an operation op pre-
cedes the invocation event of another operation op′ in

3What we call operation here is called operation instance
in [1]
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a history H , we say that op happens before op′, and
we write this as op→H op′.

We define the following subsets of Value:

• WrittenH is the set of all values that are part of
invocation events for write operations in H .

• CommitedH is the set of all values that are part
of an invocation event for a write operation that
return a status of OK in H .

• ReadH is the set of all values that are part of a
return event for a read operation in H , or the value
referenced by a successful write-block operation.

• We define the observable values in H as follows:

ObservableH ≡ ReadH ∪CommitedH .

B.1 A sufficiency condition for strict
linearizability of a storage register

Intuitively, a conforming total order is a totally-
ordered set (V,<) such that (a) V contains all the ob-
servable values in H , and (b) the ordering of values in
V corresponds to the ordering of operation instances
in H . More precisely:

Definition 5 A totally ordered set (V,<) is a con-
forming total order for H if ObservableH ⊆ V ⊆
WrittenH ∪{nil} and if for all v,v′ ∈ V the following
holds:

nil ∈V ⇒ nil≤ v (1)

write(v)→H write(v′) ⇒ v < v′ (2)

read(v)→H read(v′) ⇒ v≤ v′ (3)

write(v)→H read(v′) ⇒ v≤ v′ (4)

read(v)→H write(v′) ⇒ v < v′ (5)

2

Proposition 6 If H has a conforming total order then
H is strictly linearizable.

PROOF: Assume that (V,<) is a conforming total or-
der for H . We have to show that there exists a sequen-
tial history S such that H → S (where → is the his-
tory transformation relation defined in [1]) and such
that S complies with the sequential specification of an

atomic register (i.e., read operations in S always re-
turn the most recently written value or nil if no value
has been written).

For every v ∈ V , construct a sequential history Sv

as follows:

Sv =

{

write(v) · read1(v) · . . . · readk(v) v 6= nil

read1(v) · . . . · readk(v) otherwis e

where k is the number of successful read operations
that return v in H (k≥ 0). Next, construct the sequen-
tial history S in the following way:

S = Sv1 · . . . ·Svm

where v1 < v2 < .. . < vm are the elements of V .
First observe that S complies with the sequential

specification of an atomic register.
We now show that H→ S. To do so, we start with

H and successively explain which rules from the defi-
nition of→ to apply until we obtain S. First, use Rules
(6)–(12) in [1] Figures 3, 4, and 5 to remove all par-
tial, aborted, and infinite read operations from H . Sec-
ond, apply these rules to write operations as follows.
Let v be the parameter of a write operation. If v ∈V ,
use Rule (8), (10), or (12) to convert the write opera-
tion to a successful write; otherwise (v /∈V ), use Rule
(6), (7), (9), or (11) to remove the write operation. We
now have a history H ′ without crashes, aborts, and in-
finite aborted operation instances. Moreover, H→H ′.

We next show that H ′→ S. We first claim that H ′

and S contain the same operations. To show the claim,
note that every successful operation in H is part of
both H ′ and S. Moreover, every unsuccessful read
operation (i.e., partial, aborted, and infinite read op-
eration) in H are in neither H ′ nor S. An unsuccess-
ful write operation write(v) is part of S if and only if
v ∈V . But if v ∈V , we convert the unsuccessful write
operation in H to a successful operation in H ′O by the
above transformation. This shows the claim.

Now, assume for a contradiction that H ′ 6→ S. Be-
cause the histories contain the same set of operations,
and because these operations are all successful, there
must be two operations opi and op j that are ordered
differently in H ′ and S. But this is impossible because
the value ordering in V obeys the operation ordering
in H and thereby in H ′. 2
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B.2 Constructing a conforming total order

Histories represent the external view of a storage
register: they show the view of processes that inter-
act with the register. We also consider internal events
called store events to reason about the behavior of our
algorithm.

A store event happens at a process p when p writes
its log variable to stable storage in line 59 or line 97.
A store event is parameterized by a value and a times-
tamp, and we use st(v, ts) to represent a store event
parameterized by the value v and the timestamp ts.
The parameters are given by the context in which a
store event occurs as follows:

• A store event that happens in line 59 in re-
sponse to a “Write” message of the form
[Write, [b1, . . . ,bi, . . .bn], ts] has bi and ts as pa-
rameters, and is denoted st(bi, ts).

• A store event that happens in line 97 in re-
sponse to a “Modify” message of the form
[Modify, j,b j ,b, ts j, ts] has b and ts as parameters,
and is denoted st(b, ts).

We define SER to be the set of store events that hap-
pen in R. We define SVR to be the set of values that
are part of store events in a run R, and we define SEv

R
to be the (possibly empty) set of store events for a
particular value v.

Definition 7 Let v be a value in SVR ∪ {nil}. The
timestamp tsv is defined as follows:

tsv =

{

LowTS if v = nil

min{ts |st(v, ts) ∈ SEv
R} otherwise

2

We use the ordering on timestamps to define a total
order <val on SVR∪{nil} in the following manner:

Definition 8 Let v and v′ be values in SVR∪{nil}. We
define <val as follows:

v <val v′⇔ tsv < tsv′

2

This is a well-defined total order because different
values are always stored with different timestamps. In
the following, we omit the subscript from <val, and
simply use “<”. With this convention, the symbol <
is overloaded to order both timestamps and values.

We show that (ObservableH ,<) is a conforming to-
tal order for H .

Lemma 9

ObservableH \{nil} ⊆ SVR ⊆WrittenH .

PROOF: The read operation always collect at least
m blocks with the same timestamp before returning
(Lines 8, 32, and 63). Thus decode primitive is always
able to construct the original block value. Moreover,
that value is in WrittenH by definition of WrittenH .2

For an operation op, coord(op) is the process that
coordinates op, and ts(op) is the timestamp used by
coord(op) (for a read operation, coord is defined only
when the recover method is executed). We use the
following notations to define the set of processes con-
tacted by a coordinator:

• QR(op) is a quorum of processes after the suc-
cessful completion of the “Read” messaging
phase.

• QW (op) is a quorum of processes after the
successful completion of the “Write” or
“Read&Write” messaging phase.

• QO(op) is a quorum of processes after the
successful completion of the “Order” or “Or-
der&Read messaging phase.

Lemma 10 For any process p, the value of ord-ts in-
creases monotonically.

PROOF: Variable ord-ts is modified only in Lines 47
and 53, both of which check beforehand if the new
timestamp is larger than the current one. 2

Lemma 11 Let v be a non-nil value. tsv, if it exists,
it is the timestamp generated by write-block or write-
stripe.
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PROOF: We have to show that tsv is never generated
by a recover method. Assume for a contradiction that
a recover method generates tsv for some value v. Con-
sider the execution of read-prev-stripe during this re-
cover method. Since the recover method results in
a store event st(v, tsv), the invocation of read-prev-
stripe must return a stripe that contains v. The stripe
is reconstructed from the replies to “Order&Read”
messages. Thus, the processes that store this previ-
ous stripe value must have executed store events for
v with some timestamp ts. From the algorithm and
Lemma 10, we conclude that ts < tsv, which is a con-
tradiction. 2

Lemma 12 If a process executes st(v, ts) during some
operation op, then an m-quorum has stored ts as the
value of ord-ts during op.

PROOF: A store event st(v, ts) happens only after the
coordinator has collected either successful “Order-R”
or successful “Order&Read-R” replies from an m-
quorum of processes. The handler for successful mes-
sages “Order” or “Order&Read” messages set ord-ts
to ts and store the value of ord-ts. 2

Lemma 13 Consider two distinct values v,v′ ∈ SVR.
If there exists a timestamp ts > tsv′ such that
an m-quorum of processes execute st(v, ts), then
∀ st(v′, ts′) ∈ SEv′

R : ts′ < ts. That is, every store event
for v′ has a timestamp smaller than ts

PROOF: Assume for a contradiction that a store event
for v′ with a timestamp larger than ts exists. Let ts′min
be the smallest timestamp among such store events:

ts′min ≡min({t̂s | t̂s > ts∧ st(v′, t̂s) ∈ SEv′
R}).

We first claim that the event st(v′, ts′min) must be
triggered by a recover method. To show the claim,
consider first the case where v′ = nil. In this case,
the claim follows from the fact that nil is never writ-
ten. Consider next the case where v′ 6= nil. From
Lemma 11, only the write-stripe or write-block meth-
ods use tsv′ when storing v′. Moreover, we know that
tsv′ < ts < tsmin, which implies that tsv′ 6= tsmin, and
hence proves the claim.

Consider now the recover method that triggers
st(v′, ts′min). Let ts′′ be the value of max when the
read-prev-stripe method returns. We claim that ts′′ ≥
ts. To prove the claim, let Q be the m-quorum of pro-
cesses that execute st(v, ts), and let op be the read-
block or read-stripe operation that calls recover and
triggers st(v′, ts′min). We know that |Q∩QO(op)| ≥m.
Thus, the value of max is at least ts, which proves
the claim. Because the recover method triggers a
store event for v′, v′ must be part of the (recon-
structed) stripe returned by read-prev-stripe. Since
ts′′ > LowTS, we know that the processes that store
this stripe must have executed st(v′, ts′′). This contra-
dicts the assumption that ts′min is the smallest times-
tamp bigger than ts for which v′ is stored. 2

Lemma 14 If read(v) ∈H with v 6= nil, then there ex-
ists a timestamp ts such that (a) an m-quorum exe-
cutes st(v, ts) and (b) an m-quorum of processes have
max-ts(log) = ts sometime during the execution of
read(v).

PROOF: Consider the two ways in which read(v) can
be executed:

• read(v) does not involve the recover method. In
this case, processes in QR(read(v)) must have
returned the same timestamp ts with no pend-
ing write or recover invocations. Thus, an m-
quorum executed st(v, ts), and an m-quorum have
max-ts(log) = ts during read(v).

• read(v) involves the recover method. Let
ts = ts(read(v)). For the recovery to succeed,
QW (read(v)) must have executed st(v, ts) and
replied “Write-R” to the coordinator, in which
case an m-quorum has max-ts(log) = ts. 2

Lemma 15 If write(v) is in H and v ∈ ObservableH ,
then (a) some process executes st(v, tsv) during
write(v), and (b) there is a timestamp ts such that an
m-quorum executes st(v, ts).

PROOF: If v ∈ CommitedH , then all the properties
hold vacuously. Suppose otherwise. Because v ∈
ObservableH , we know that v ∈ ReadH and read(v)
is in H . Moreover, we know that v 6= nil because nil is
never written.

16



(a) Because read(v) is in H , some process must have
executed st(v, ts) for some timestamp ts. The
timestamp tsv is merely the smallest such times-
tamp. Since tsv exists, we know from Lemma 11
that st(v, tsv) happens during write(v).

(b) From Lemma 14, an m-quorum executes st(v, ts)
for some ts.

2

Lemma 16 If op1→H op2 and both operation trigger
some store events, then the store events for op1 have
smaller timestamps than those for op2.

PROOF: Assume the contrary: op1→H op2, op1 exe-
cutes st(v, ts1), op2 executes st(v′, ts2), yet ts1 > ts2.

Since op1 executes st(v, ts1), processes in QO(op1)
store ts1 for ord-ts at some point (happens in Lines 47
and 53). Similarly, processes in QO(op2) store ts2

as their ord-ts at some point. Consider a process
p ∈QO(op1)∩QO(op2). Since op1→H op2, this pro-
cess stores ts to ord-ts before it stores ts′ to ord-ts.
Since processes only assign monotonically increasing
values to ord-ts (Lemma 10), we have a contradiction.
2

Lemma 17 For v,v′ ∈ ObservableH , the following
condition holds:

write(v)→H write(v′)⇒ v < v′

PROOF: Assume otherwise: write(v)→H write(v′),
v,v′ ∈ ObservableH , yet v > v′. From Lemma 15, we
know that st(v, tsv) happens during write(v) and that
st(v′, tsv′) happens during write(v′). From Lemma 16,
we conclude that tsv < tsv′ . 2

Lemma 18 For v,v′ ∈ ObservableH , the following
condition holds:

read(v)→H read(v′)⇒ v≤ v′

PROOF: Assume for a contradiction that read(v)→H

read(v′), yet v > v′. This means that v 6= nil. From
Lemma 14, for some timestamp ts, either QR(read(v))
or QW (read(v)) has their max-ts(log) = ts some time
during the execution of read(v). Let Qv be this m-
quorum, and consider the following two cases:

• v′ = nil. We consider two cases: (a) read(v′)
executes recover or (b) read(v′) does not exe-
cute recover. In case (a), let ts′ = ts(read(v′)
and let Qv′ = QW (read(v)). Let p be a process
in Qv ∩Qv′ . From Lemma 10, we know that
ts′ ≥ ts. The fact that the recover method exe-
cutes st(nil, ts′) contradicts Lemma 13. In case
(b), QR(read(v′)) has some timestamp ts′ as their
value of max-ts(log). We know there is a process
p in Qv∩QR(read(v′)), and from Lemma 10, we
conclude that ts′ ≥ ts. Thus, ts′ > LowTS, and
there must be some store event st(nil, ts′), which
contradicts Lemma 13.

• v′ 6= nil. From Lemma 14, for some times-
tamp ts′, an m-quorum executes st(v′, ts′) and
either QR(read(v′)) or QW (read(v′)) has their
max-ts(log) = ts′ sometime during the execution
of read(v′). Let Q′v be this m-quorum. Let p ∈
Qv∩Q′v. Because read(v) precedes read(v′), and
from Lemma 10, we conclude that ts < ts′.
Moreover, tsv′ < tsv < ts < ts′. (tsv′ < tsv because
v′ < v; tsv < ts from the definition of tsv). Since
Qv executes st(v, ts), Lemma 13 implies that all
store events for v′ have a timestamp that is smaller
than ts. But this contradicts the fact that Q′v exe-
cutes st(v′, ts′) with ts < ts′.

2

Lemma 19 For v,v′ ∈ ObservableH , the following
condition holds:

write(v)→H read(v′)⇒ v≤ v′

PROOF: Assume for a contradiction that
write(v)→H read(v′), v ∈ObservableH , yet v > v′.

We first show that there exists a timestamp ts′ > tsv

such that a m-quorum executes st(v′, ts′). We consider
two situations:

(a) read(v′) executes the recover method.
Let ts′ = ts(read(v′)). We know that an m-
quorum executes st(v′, ts′). Furthermore, from
Lemma 15, we know that at least one store
event st(v, tsv) happens during write(v). From
Lemma 16, tsv < ts′.
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(b) read(v′) executes only the read method.
Then QR(read(v′)) has some timestamp ts′ as
their value for both ord-ts and max-ts(log). Ac-
cording to Lemmas 12 and 15, QO(write(v)) has
tsv as their value for ord-ts some time during
write(v). Consider a process p ∈ QR(read(v′))∩
QO(write(v)). From Lemma 10 and the fact that
v 6= v′, tsv < ts′. In particular, we then know that
ts′ 6= LowTS, and therefore that v′ 6= nil. Since
v′ 6= nil, we conclude that QR(read(v′)) executed
st(v′, ts′).

Let ts be a timestamp such that an m-quorum ex-
ecutes st(v, ts)—Lemma 15 guarantees the existence
of ts. Per definition, we know that tsv < ts. From
the above reasoning, we also have a timestamp ts′

such that an m-quorum executes st(v′, ts′) and such
that tsv < ts′.

We now have one of two situations: (c) ts > ts′ or
(d) ts < ts′. For (c), we have tsv < ts′ < ts, which
contradicts Lemma 13. For (d), we have tsv′ < tsv <
ts′, which also contradicts Lemma 13. 2

Lemma 20 For v,v′ ∈ ObservableH , the following
condition holds:

read(v)→H write(v′)⇒ v < v′

PROOF: Assume for a contradiction that read(v)→H

write(v′), v′ ∈ ObservableH , yet v ≥ v′. Because v′ 6=
nil (nil is never written), we can conclude that v 6= nil.
We consider two cases:

(a) read(v) executes only the read method.
We know that all the processes in QR(read(v))
has some timestamp ts for their ord-ts and max-
ts(log) during read(v). From Lemmas 12 and 15,
QO(write(v′)) has tsv′ as their value for ord-
ts during write(v′). Consider a process p ∈
QR(read(v))∩QO(write(v′)). From Lemma 10,
we know that ts < tsv′ . Since an m-quorum ex-
ecutes st(v, ts), tsv < ts. Thus, we conclude that
tsv < ts < tsv′ , which contradicts the assumption
that v > v′.

(b) read(v) executes both the read and recover meth-
ods.
Let ts = ts(read(v)). From Lemma 15, a store
event st(v′, tsv′) happens during write(v′). From

Lemma 16, we know that ts < tsv′ . As for case
(a), we can now derive a contradiction based on
the fact that tsv < ts. 2

Proposition 21 The set (ObservableH ,<) is a con-
forming total order for H.

PROOF: Lemma 9 shows that < is a total order for
ObservableH . Moreover, the lemma also shows that
ObservableH ⊆WrittenH ∪{nil}. Because LowTS is
the smallest timestamp, we have that nil is the smallest
value in ObservableH . Condition (2)–(5) follow from
Lemma 17–20. 2

B.3 Proof of liveness

We show that our implementatation satisfies weak
progress [1]: for every process p, if eventually only
p issues operations then there is a time after which
operations do not abort.

Proposition 22 For any process p, if H| p contains
an invocation event, then H| p either contains a sub-
sequent return event or a subsequent crash event.

PROOF: We show the proposition for the read-stripe
method, the proof of termination for the other meth-
ods follow from similar reasoning.

Assume for a contradiction that a process history
H| p contains an invocation event, but no subsequent
return nor crash event.

Because quorum is non-blocking, it is sufficient
to prove termination for the recover method. Sim-
ilarly, because newTS is non-blocking, termination
of read-prev-stripe implies termination of the recover
method. Consider now termination of the read-prev-
stripe method. Since p does not crash, we conclude
that the repeat loop never terminates. However, in
successive loop iterations, the max timestamp takes
on decreasing values, which means that max even-
tually will take on LowTS. When max is equal to
LowTS, all returned blocks will have nil as their value.
In particular, there will be at least m blocks returned
with nil as value, which contradicts the conclusion
that the loop never terminates. 2
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Proposition 23 If only a single process p has a his-
tory H| p that contains an infinite number of invoca-
tion events, and if p is correct, then H| p contains an
infinite number of successful return events.

PROOF: Because p is the only process with an infi-
nite number of invocation events, all other processes
generate only a finite number of timestamps. Let ts
be the maximum timestamp generated by processes
other than p.

Assume that H| p contains an infinite number of
unsuccessful return events. From Algorithm 1 and Al-
gorithm 3, we can observe that each invocation with
an unsuccessful return event causes the generation of
a timestamp. Thus, we know that p generates an in-
finite number of timestamps. The PROGRESS prop-
erty of timestamp ensures that p eventually generates
a timestamp ts′ that is higher than ts. Because p is
correct, there is a time t such that (a) p does not crash
after t and (b) p invokes a method after t and gener-
ates a timestamp tsc that is greater than ts. Consider
this invocation. No replica will reply NO during this
invocation because tsc is higher than any timestamp in
the system. This means that the invocation will return
successfully, which is a contradiction. 2
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