

Customizable Description and Dynamic Discovery
for Web Services

Wooyoung Kim1, Alan H. Karp
Technical Computing Research Group
HP Laboratories Palo Alto
HPL-2004-45
March 18, 2004*

E-mail: wooyoung@cs.uiuc.edu, alan.karp@hp.com

web services,
discovery,
ontologies

We present a framework for developing ontologies suitable for a dynamic
environment, such as that for web services, and describe its use in a
commercial system for resource discovery. This framework recognizes
the importance of standards but allows for evolution in a way that doesn't
disrupt those adhering to the standards. The framework is based on the
notion of discoverable resources which offer extensibility and security.
The specific ontology we use in the system includes some salient
features, such as attribute based matching rules and the corresponding
constraint based search, attributes with dynamic values, and active
queries.

* Internal Accession Date Only
1 Dept of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
To be published in and presented at the ACM Conference on Electronic Commerce (EC’04) 17-20 May 2004, New
York, NY
 Approved for External Publication
 Copyright Hewlett-Packard Company 2004

Customizable Description and Dynamic Discovery for
Web Services

Wooyoung Kim
∗

Dept. of Computer Science
University of Illinois at Urbana-Champaign

201 N. Goodwin Ave., Urbana, IL, USA

wooyoung@cs.uiuc.edu

Alan H. Karp
Technical Computing Research Group

Hewlett-Packard Laboratories
1501 Page Mill Rd.,Palo Alto,CA,USA

alan.karp@hp.com

ABSTRACT
We present a framework for developing ontologies suitable
for a dynamic environment, such as that for web services,
and describe its use in a commercial system for resource dis-
covery. This framework recognizes the importance of stan-
dards but allows for evolution in a way that doesn’t disrupt
those adhering to the standards. The framework is based on
the notion of discoverable resources which offer extensibility
and security. The specific ontology we use in the system in-
cludes some salient features, such as attribute based match-
ing rules and the corresponding constraint based search, at-
tributes with dynamic values, and active queries.

1. INTRODUCTION
Since the advent of the telephone company’s Yellow Pages,
advertisement and discovery have evolved into common com-
ponents of our day-to-day economic lives. Customers looked
up providers by following the particular classification scheme
employed in the Yellow Pages. Often, a combination of com-
mon sense and a bit of guess work guides the navigation. In
the end, users get the contact information for a business
or a service. Though any particular lookup may fail and
trial-and-error is the number one tactic users adopt, adver-
tisement and discovery using the Yellow Pages have worked
remarkably well.

This approach has been successfully carried over to the Web
portals, such as Yahoo! Inc., to tackle the advertisement
and discovery of Web sites. E-auction sites, such as eBay
and QXL, are another example that successfully adopted the
Yellow Pages approach. A key characteristic of these sites is
that each of them defines its own proprietary classification;
providers follow the classification to list their Web site and
Web pages, and people find them with an interactive, top-

∗Supported in part by the Defense Advanced Research
Projects Agency (Contract numbers: F30602-00-2-0586 and
F33615-01-C-1097).

down search strategy using the same classification. It is
implicitly assumed that listings are open to public access by
anonymous users, and protection of the information of the
entries is not a concern to them.

The success of these sites and the pervasive and resilient
nature of the Internet have persuaded many infrastructure
providers to take a look at the idea of automated business
integration on the Internet [10, 7, 5, 23]. As a result, a
number of Web standards, such as SOAP, WSDL, WSCL,
WSFL, and WS-Inspection, have been developed to make it
easy to develop interoperable Web services, and a number
of market makers have sprouted to form vertical as well as
horizontal marketplaces. It is evident that advertisement
and discovery will play a pivotal role in such marketplaces.

Disappointingly, the reaction of market participants to the
automated business integration has been lukewarm at the
best. The lack of security and interoperability difficulties
are blamed for their wariness to the technology. Another
factor is the lack of pre-arranged, unambiguous agreement
among stakeholders on the meaning of resource and service
descriptions. That is because ambiguity or misunderstand-
ing may lead to costly legal entanglement. For example, a
price advertised in dollars should not be interpreted in euros
by business applications and Web services; common sense or
guess work can no longer be tolerated. This agreement on
the meaning of terms constitutes an ontology.

A number of proposals to create industry-wide or even uni-
versal ontologies have emerged during the past five years
(e.g., ebXML [10], UDDI [27]). Along with them came pub-
lic registries where providers advertise their Web services
and customers execute queries against it. These efforts are
still in development and still lack some critical infrastruc-
tural support. One such deficiency is security. These sys-
tems control only the insertion and modification of descrip-
tions, but they assume that all data in the repository are
visible to anyone. There are many situations, though, where
we need to protect not only the services themselves, but also
at least some parts of the service descriptions. For example,
preferred customers may see prices different from those avail-
able to the general public. In general, information should
not be leaked between the owner of a resource who defines
its attributes and someone who finds the resource. Some
of that information may be proprietary. Worse, a malicious
user may be able to use the information as the basis of an

attack. Conversely, the searcher may not want a malicious
provider to see the resource request. For example, a search
might include the maximum price the requester will pay for
the service.

An ontology system for the Web should have certain char-
acteristics. Resources accessible on the Web are diverse and
dynamic; new resources are added, obsolete ones disappear,
and existing ones are modified. As a result, resource discov-
ery on the Web must be dynamic. In addition, users should
be able to express in a query the exact resources they want
to find in a flexible way. It is important that a search re-
quest should be able to decide what constitutes a match to
protect against an unethical supplier that gets its resource
heavy usage by saying it matches every request and from
malicious requesters attempting to uncover resources hid-
den from them. Also, a search request should be able to
accommodate the user’s preference.

The emergence of numerous vertical markets translates to
diverse requirements on the description of resources, which
makes it less likely that a single, unified ontology will be
able to serve all the different needs in the Internet and on
intranets. Indeed, such a global ontology is inherently un-
scalable, since all parties, even those who never interact,
must agree on any change. Instead, we believe there will be
marketplaces that develop standard ontologies.

Even in this environment, it is important that those with
special requirements should be able to extend these stan-
dard ontologies, or even create entirely new ones. This will
inevitably lead to fragmentation of Web services descriptions
and the issue of interoperability. However, we envision those
pieces that get widely used will be incorporated into, or be-
come, standards, while those that aren’t can either continue
to serve their limited constituency or fade away from lack of
use.

We observe that, to be embraced by a wide range of Web
participants, an enabling ontology for Web services should
facilitate the:

• description of different aspects of a resource/service in
sufficient detail and in quantifiable precision. In par-
ticular, ontologies should allow resource descriptions
to evolve independently of backward compatibility.

• specification of search criteria in such a way as to max-
imize its discriminating power and minimize false hits.

• specification and enforcement of visibility control mea-
sures. Users should not get even a hint of the existence
of services that they are not authorized to see.

• expression of domain-specific knowledge. The ontology
specification needs to be independent of syntax/repres-
entation so that it can be implemented using the best
technology available.

• seamless integration of different registries.

Creation of such ontologies will encourage market partici-
pants to advertise their Web services, fostering automated

service integration on the Internet and creating new business
opportunities.

In this paper we describe a service description and discovery
framework (SDDF) which addresses the requirements de-
scribed above. We developed the framework in the context
of Hewlett-Packard’s e-speak platform, one of the first envi-
ronments for Web services. Being one of the core services,
the service description and discovery has been discussed in
several papers and articles related to e-speak (e.g., see [13,
14, 17]). However, the discussion has been limited in scope
as most of them framed it as a component service of a larger
e-services infrastructure. We believe this paper is the first
attempt to present a holistic discussion of e-speak service
description and discovery. For a more general discussion
of e-speak in the e-commerce and e-services perspective, in-
cluding the origin, the vision, the requirements, and its other
core services, we refer readers to [16].

The key aspect of the e-speak approach is the notion of a
vocabulary as a discoverable resource, where a vocabulary
represents an ontology as a set of attribute-value pairs. The
framework consists of both resource description and discov-
ery models 1. The approach described in this paper proved
highly effective in resource advertisement and discovery.

2. ONTOLOGY AS A DISCOVERABLE RE-
SOURCE

As used here, an ontology is an abstract agreement among
users to create and advertise resource descriptions and to
discover resources. It is a succinct, unequivocal specification
of how to interpret resource descriptions and search queries
specified in it.

A way to simplify managing ontologies is to make them dis-
coverable resources. Surprisingly, conferring on ontologies
these two properties, i.e., being discoverable and being a re-
source, turns out to give ontologies a number of desirable
properties. First, anyone who can create a resource can
create an ontology, democratizing the process of ontology
creation. Now, users need not wait until an external entity
(most likely, a standardization organization) makes appro-
priate changes to an ontology to accommodate their special
requirements. Consider, for example, a provider of a spe-
cialized service with features not included in any standard
ontology. All that’s needed is to create a new ontology ca-
pable of describing these features and to advertise that on-
tology as a discoverable resource in the standard ontology.
Someone doing a search will find resources and, perhaps,
this ontology. Anyone knowing how to use the ontology can
then extend the search to find the advertiser’s specialized
service. Of course, this approach can lead to fragmenta-
tion of the marketplace; there is a good chance that an
individual won’t know how to use a specialized ontology
discovered in a search. Standardization is crucial for inter-
operability. Hence, we still envision that standards bodies

1A resource denotes a uniform internal representation of an
entity created in or registered with the e-speak system. In
the rest of the paper we use resources not just to represent
Web services but rather to represent inclusively all things ac-
cessible on the Web, ranging from Web services to e-services
to data to storage to CPU cycles.

such as the WWW Consortium [31], RosettaNet [23], Com-
merceNet [5], UDDI [27], and ebXML [10], will create a few
globally adopted market-specific ontologies. However, it is
also our belief that standardization should not necessarily
stifle diversity among individuals’ requirements.

Being discoverable introduces an interesting recursion for
ontologies. That is, in order to be discovered an ontology
must be described in some other ontology. To ground the
recursion, a special ontology is required which is uniquely
identified across platforms without explicit discovery. For
example, the e-speak system defined the Base vocabulary
which was unique across all e-speak engines. Note that the
knowledge of the “base” vocabulary must be communicated
among participants before any meaningful interaction can
occur. Fortunately, this vocabulary can be extremely simple
since it should be easy to create more advanced vocabular-
ies. For example, the UDDI geographic taxonomy could be
described in a base vocabulary as having the attribute-value
pairs Name=UDDI and Type=Geo.

An interesting observation is the analogy of ontologies as
resources to types in programming languages. As a type
defines a set of values in the type, an ontology defines a
set of descriptions in it; an ontology naturally demarcates
resources of a particular kind. Hence, resource descriptions
in a set of ontologies provide a natural type system, in the
same way that classes partition objects by type.

Treating ontologies as discoverable resource allows security
policies, such as visibility and access control, to be enforced
on them. Since processes acting on behalf of users are
granted specific rights, those that are denied access to cer-
tain ontologies have no way to find resources advertised in
those ontologies. Furthermore, hierarchically organizing on-
tologies gives rise to hierarchical control of resource visibil-
ity, greatly simplifying the management of security policies.

2.1 Ontology Creation
Ontologies themselves should not depend on what resources
should or should not be. This independence allows ontolo-
gies to take any representation as long as it is suitable for
the domain of interest.

The e-speak system used vocabularies, sets of attributes, to
represent ontologies. Name-value pair attributes are one of
most general forms of metadata representation. Resource
descriptions are defined as a set of name-value pairs and are
selected with predicates made of attribute names and values.
The e-speak system implemented two vocabulary specifica-
tions, one in Java and the other in XML. All examples in
this paper show the XML version.

A vocabulary in e-speak defines attributes that are used
for resource description. Each attribute has the following
properties:

Name: A string different from the name of any other at-
tribute in this vocabulary.

Type: The value type of this attribute, e.g., integer, string.

Multiplicity: Either single or multiple.

Value: Zero or more values of the specified type.

Matching rule: A function defining what constitutes a match.

Mandatory: True if at least one value must be supplied
for this attribute.

Must-match: True if a look-up will succeed only if this
attribute matches.

The vocabulary developer decides on these properties. Any-
one using the vocabulary, either to advertise a service or to
discover one, must follow the rules of the vocabulary being
used.

The matching rules are specified per attribute rather than
per value-type. The latter approach is too limiting. For
example, the waist and inseam of a pair of pants may both
be represented by integers, but the vocabulary developer
may know that the waist attribute requires an exact match
while inseams that differ by one unit may still fit. Hence,
attribute-based matching rules allow more flexibility.

The matching rules are specified in terms of components
defined in the vocabulary definition language, e.g., equal-
ity testing on standard data types, lexical order rules for
strings, sorting rules for integers, etc. In order to prevent de-
nial of service attacks against the party doing the matching,
the language for specifying these rules must be loop-free 2.
Figure 1 shows the XML Schema definition for vocabulary
creation in e-speak.

2.2 Dynamic Attributes
Attributes in a resource description are typically indepen-
dent of each other. They are bound to values and remain
unchanged until they are explicitly modified. As opposed
to these early binding attributes, some attributes are indeed
dependent on other attributes and can be specified in a well-
defined closed-form expressions (i.e., late binding). Some of
them may even depend on dynamically changing attributes,
such as network load or stock price. Such attributes need
to be computed at access time. We call them dynamic at-
tributes.

Resource providers may use dynamic attributes to give cus-
tomers a different presentation depending on their profile
information. For example, the price of a product speci-
fied in dollars can be delivered to Eurozone customers in
euros. A company may want customers to get a different
discount price based on the current discount rate. The dis-
count price is dependent on the discount rate at the time of
the lookup/access. For example,

<attribute name="discount_price" type="dynamic"
default="price">

<variable name="x" src="..."/>
<expression> price * $x/rate </expression>

</attribute>

Note that the rate may change at any time. Also, it usually
changes more frequently than the retail price of the prod-
uct. By specifying an expression that computes the discount

2“If your program has no loops, then it’s done.” – Donald
Knuth.

<?xml version="1.0"?>
<schema targetNameSpace=

"http://www.e-speak.net/e-speak.vocab.xsd"
xmlns="http://www.w3.org/1999/XMLSchema"
xmlns:es-vocab=

"http:/www.e-speak.net/e-speak.vocab.xsd">
<element name=attrGroup minOccurs=1>
<complexType>
<element name=attribute minOccurs=1

maxOccurs=unbounded content=elementOnly>
<complexType>
<element ref=es-vocab:datatypeRef>
<attribute name=required type=boolean

use=default value=false />
<attribute name=multivalued type=boolean

use=default value=false />
<attribute name=name type=string use=required />

</complexType>
</element>
<attribute name=name type=string />

</complexType>
</element>
<element name=datatypeRef>
<complexType>
<element name=default type=string minOccurs=0

maxOccurs=1/>
<element name=minInclusive type=string minOccurs=0

maxOccurs=1/>
<element name=maxInclusive type=string minOccurs=0

maxOccurs=1/>
<attribute name=name type=string use=required/>
<attribute name=mustmatch type=boolean use=default

value=false />
</complexType>

</element>
<complexType name=vocabularyDecl content=empty>
<attribute name=src type=uri-reference use=required/>

</complexType>
</schema>

Figure 1: XML schema for vocabulary creation

price from its retail price, the company saves updating dis-
count prices of their products as the discount rate changes.
The update to the discount rate suffices. Another benefit of
using dynamic attributes is that it is more economical to en-
force access control on discount rates than discount prices,
as the number of resources are much larger than that of
discount rates.

2.3 Vocabulary Translators
An effective way to alleviate the interoperability problem in
vocabularies is vocabulary translation services. A vocabu-
lary translator maps a description in the source vocabulary
to one in the target vocabulary. For example, it may trans-
late the words in an attribute from French to German or
from Unix to MVS. Vocabulary translation is not necessar-
ily one-to-one. A translator may ignore certain attributes
from the source vocabulary, or may fill in some attributes in
the target vocabulary with default values. The vocabulary
translation service can even be out-sourced and provided by
a third-party.

2.4 Example: Tennis Shoe Vocabulary
We illustrate how new vocabularies might be seamlessly in-
tegrated into existing ones and how vocabulary translators
can facilitate the process.

Say that a shoe company has a new kind of tennis shoes to
advertise that doesn’t fit any existing vocabulary. There is a
“tennis shoe” vocabulary that is already being widely used.
All it needs to do is create its ”clay court shoe” vocabulary
and advertise it in the ”tennis shoe” vocabulary. People
searching that vocabulary will find tennis shoes and the new
vocabulary. Because the schema is open for examination,
anyone interested in playing on clay courts can then search
using the “clay court shoe” vocabulary.

Of course, different countries have different units for mea-
suring shoe size. The company could create a separate vo-
cabulary for each case, but it might not even know all the
possibilities. Instead, it may create the “clay court shoe”
vocabulary using a specific unit and advertise it with a ref-
erence to a translation service which is offered by a third
party, perhaps someone who extended the base shoe vocabu-
lary. People searching with the “clay court shoe” vocabulary
who use different units can feed the translation service with
their look-up requests before using it for a search. Note
that query translation need not necessarily be exposed to
end users.

3. RESOURCE DESCRIPTION WITH VO-
CABULARIES

The metadata associated with a resource is split into two
parts, the resource specification and the resource descrip-
tion. The resource specification contains information on ac-
cess, management, and protection of the resource; it consti-
tutes the private part of resource’s metadata. The resource
description lists different aspects of the resource; it is the
publicly searchable part. Users specify queries against the
resource description to discover the resource, while actual
access is regulated according to its resource specification.
This dichotomy of resource metadata allows the access rules
and the vocabularies to evolve independently.

The following XML document is a registration of a resource
known as Box-A and as Container-C. Note that two vocab-
ularies box and container are used to specify its resource
description.

<?xml version="1.0"?>
<resource xmlns=

"http://www.e-speak.net/Schema/Espeak.register.xsd">
<resourceSpec>
<interface>...</interface>
<security>...</security>
<filter>...</filter>

</resourceSpec>
<element xmlns:box="http://www.parcel.com/box.xsd">
<box:Name> Box-A </box:Name>
<box:Length> 20.0 </box:Length>
<box:Width> 25.5 </box:Width>
<box:Height> 60.0 </box:Height>

</element>
<element xmlns="http://www.parcel.com/container.xsd">
<Name> Container-C </Name>
<Volume> 30600.0 </Volume>
<Content> bubble gum </Content>

</element>
</resource>

Four components, namely interfaces (interface), security
policy (security), filter constraints (filter), and resource
specific data (rsd), comprise the resource specification of a

<!ELEMENT resource (resourceSpec, element*)>
<!ELEMENT resourceSpec (interface?, security?,

filter?, rsd?)>
<!ELEMENT filter (condition)>
<!ELEMENT rsd (private?, public?)>
<!ELEMENT private (#PCDATA)>
<!ELEMENT public (#PCDATA)>

Figure 2: XML Specification for Resource Descrip-
tion. A filter is given as a condition in the e-speak
constraint language (condition).

resource (Figure 2). The interface element specifies how
clients access the resource. It may be an instance of ESIDL
(the e-speak interface definition language), a Java interface,
or a WSDL document. How to enforce access and visibility
control for the resource is laid out in the security element.
For example, it prescribes under what conditions access to
the resource is granted.

Resource providers use the filter element to specify match-
ing rules to screen users whom they don’t want to discover
the resource. The rsd element may have other data perti-
nent to the resource. The data may be public and visible
to general users or it may be private data which only the
owner can access. Although interface and security are criti-
cally important for Web services provisioning and manage-
ment, further discussion on them is beyond the scope of the
paper. Interested readers are advised to consult other pub-
lished e-speak documents, such as SFS [1] and the e-speak
architecture specification [15] for the details.

Many resources assume different roles depending on their
functionality or environment. Consequently, they may have
multiple descriptions. For example, a fax machine can serve
as a facsimile transmitter as well as a telephone. Hewlett-
Packard Company manufactures PCs and servers for com-
puter resellers as well as individual customers. To build such
systems, they purchase microprocessors from Intel Inc., for
example. To accommodate the requirement of expressing
multiple aspects of a resource, the e-speak SDDF allows the
resource description of a resource’s metadata to have multi-
ple descriptions.

The resource description consists of a set of description el-
ements in different vocabularies, each of which is a set of
name-value pairs and describes a specific aspect of a re-
source. To facilitate description validation, a description
element is required to refer to the vocabulary in which the
attributes are defined.

<resource xmlns=
"http://www.e-speak.net/Schema/Espeak.register.xsd">

<resourceSpec> ... </resourceSpec>
<element vocabulary="personal computers">
<manufacturer>Hewlett-Packard</manufactuere>
<type>notebook PC</type>
<model-name>Compaq Presario</model-name>
<model-no>2555us</model-no>
<price>999.99</price>

</element>
<element vocabulary="Rebate">
<amount>100.0</amount>
<kind>mail-in</kind>
<good-until>
<date>3</date><month>May</month><year>2003</year>

</good-until>
</element>

</resource>

For example, the above registration describes a Hewlett-
Packard Compaq Presario notebook PC whose price is $999.99.
It also describes that the resource comes with a $100.00
mail-in rebate offer that ends May 3, 2003. A vocabulary
is referenced by a name, which may be a URN. The regis-
tration process will associate the specified designation with
a resource representing a vocabulary. The metadata asso-
ciated with that vocabulary resource allows verification of
the requester’s access rights and validation of the descrip-
tion elements against the corresponding vocabulary before
registering the resource.

3.1 Matching Rules
A matching rule determines when the component of a query
matches some aspect of a resource description. It uses such
things as integer relational operations and collating sequences.
Common matching rules are integer equality and substring
equivalence, but they can be more complex to allow for user
defined types. For example, a matching rule on a Bigint,
which consists of two integers, might report a match if both
integers in the query equal the corresponding integers in the
description.

The availability of vocabulary translators makes defining
matching rules easier. Consider the tennis shoe vocabu-
lary example in Section 2.4. In US units, a shoe ± 1

2
the

requested size might fit, but in British units the leeway is
±1. Since each attribute has an associated matching rule,
knowing the units of the request makes it easier to write the
matching conditions, while having translators allows that
rule to correctly match requests originally expressed in a
variety of units.

3.2 Filters
Filters are to resource providers what queries are to re-
questers. They are matching rules that resource providers
use to specify those queries they want to allow to match
their resource descriptions based on the rights of the re-
quester. Therefore, a filter is specified at the individual re-
source level, as opposed to a matching rule specified at the
vocabulary level.

A filter is a predicate over attributes from the description of
a resource and profile information of the user. It is assumed
that each requester is represented as a resource associated
with a resource description in one or more vocabularies.
Only those resources with filter constraints that evaluate
to true are included in the result set.

Some of requirements that can be expressed with filters are:

• A mortgage broker may specify that only clients with
good credit history find mortgage programs with the
preferred interest rate.

• A chip design company may specify that only specialty
chip designers find very high-resolution plotters and
printers.

<resourceSpec>
<filter><condition test=

"\$user.loc/loc_in_building=’west’"/></filter>
</resourceSpec>
<element xmlns:printer=

"http://www.hp.com/e-speak/Printer.xsd">
<printer:manufacturer> HP </printer:manufacturer>
<printer:model> LaserJet III </printer:model>
<printer:name> nile </printer:name>

</element>

Figure 3: A filter constraint specifying that printer
’nile’ be visible only to the employees in the west
wing of the building. A meta variable $user refers
to the profile document of a requester.

• An organization may specify workers in the west wing
may find only printer ”nile” while those in the east
wing find only printer ”ganges” (Figure 3).

• A service provider may specify that only customers
within the US will find a particular service.

3.3 Extending a Vocabulary
The e-speak vocabulary framework provides no direct sup-
port for extending a vocabulary. Instead, users can simulate
vocabulary extension using existing abstractions of vocab-
ulary creation and resource description; creating a new vo-
cabulary with additional attributes and letting it have a ref-
erence to the vocabulary that it extends effectively amounts
to extending a vocabulary. New resources described in the
extending vocabulary will be given descriptions in the ex-
tended vocabulary as well as in the newly created vocabu-
lary. For ease of use, an additional service can be arranged,
which presents a virtual vocabulary composed of an extend-
ing and an extended vocabulary.

Note the similarity of the extension by creation to dele-
gation in object-oriented programming languages. As in
object-oriented programming languages, inheritance is an
obvious alternative. Indeed, RDF supports a fine-grained
schema extension using multiple inheritance [38]. Answers
to a question of which one is better in the context of on-
tology extension are yet to be seen. Nonetheless, we note
several advantages of the extension by creation over inher-
itance. First, the extension by creation is less obtrusive –
little change needs to be made to the vocabulary infrastruc-
ture as well as resource registration/discovery (in particular,
existing resource descriptions). As a result implementation
is very easy. Many standard ontologies including UDDI can
be easily extended and customized without any specialized
support. Also, backward compatibility comes for free: re-
sources that were found before are still found with the same
vocabulary after the extension.

4. RESOURCE DISCOVERY WITH VOCAB-
ULARIES

Web services may enter and leave e-marketplaces dynami-
cally. New resources become available, obsolete ones are no
longer accessible, old ones are gradually retired, and exist-
ing ones modified. Consequently, the same lookup request
may return different results at different times. The practice
of discovering resources before accessing them helps ensure

registry /
repository

N2 N3N2’

N4

User description

filters

Search Recipe

constraint

preferences

arbitration

Figure 4: E-speak Lookup Process. The constraint
is evaluated against the registry/repository to gen-
erate N2. At this moment if a resource in N2 has
an associated filter, it is applied against the re-
quester’s user descriptions, further sifting the re-
sults. If none has a filter, N2 = N2′. If preferences
are given they are applied to N2′ to order the re-
sults. If the requester specified an arbitration state-
ment, it is applied to N3 to further screen the re-
sults. With no arbitration policy, N3 = N4. Note
|N2| ≥ |N2′| = |N3| ≥ |N4|.

that resources found are up-to-date and available. One im-
plicit assumption in the lookup process is requesters are no
longer assumed to be either anonymous or benevolent. Their
identities and credentials are thoroughly verified, their ac-
cess rights rigorously enforced, and their profile information
securely maintained and managed by the underlying system.

Users discover resources by looking up in a repository (or
possibly, repositories) with a query. How repositories are
organized is not important to queries as long as the under-
lying system understands the query and returns matching
resources to the requester. A query is constructed with at-
tribute names from different vocabularies and desired match-
ing values. (Recall that a resource may have multiple de-
scription elements.) Having vocabulary references in a query
has a number of benefits. For example, it facilitates query
validation. Also, by qualifying attribute names with a vo-
cabulary identifier we can avoid potential name conflicts
among attributes from different vocabularies. Requiring re-
source lookup be subject to vocabularies confers more dis-
criminating power to queries. A user trying to find a 21-inch
TV will never get a 21-inch monitor. More importantly, it
allows economical visibility control on resources. Having no
access rights on a vocabulary means one cannot find any
resources described in the vocabulary.

In the e-speak SDDF, lookup queries are implemented with
a search recipe. A search recipe is composed of vocabulary
declarations, a constraint, preferences, and an arbitration
statement (Figure 4). The constraint specifies a condition
that resources of interest must satisfy. Thus, a constraint
must be present in a search recipe. The preferences are
collectively applied to put the results in the preferred order
while the arbitration statement determines which results are
returned to requester. The last two are optional.

4.1 Vocabulary Declaration
A vocabulary declaration associates a local vocabulary iden-
tifier with a vocabulary reference. A local vocabulary iden-
tifier is prefixed to an attribute name to refer to the at-
tribute unequivocally. A vocabulary declaration is specified
with the vocabulary element which defines name and src

attributes. The name attribute specifies a local vocabulary
identifier while src specifies how to get the vocabulary. The
value of src may be the name with which the vocabulary is
registered, another query, or a URI which uniquely points
to the schema definition of the vocabulary (e.g., XML DTD
or XML Schema). Omitting the name attribute declares a
default vocabulary; attributes with no qualifying prefix are
assumed to be from the default vocabulary. Only one default
vocabulary is allowed in a query. For example,

<vocabulary name="seller" src="PC seller" />
<vocabulary name="buyer"

src="http://www.CPU.org/CPUbuyer.xsd"/>
<vocabulary src="http://www.parcel.com/box.xsd"/>

4.2 Constraint
A constraint is a predicate over attributes that may be de-
fined in different vocabularies. For example, the following
query returns a list of PC manufacturers who sell their prod-
ucts to ResellerA and buy CPUs from CPUMakerB.

<?xml version="1.0"?>
<esquery xmlns=

"http://www.e-speak.net/Schema/Espeak.query.xsd">
<vocabulary name="seller" src="PC seller" />
<vocabulary name="buyer" src="CPU buyer"/>
<constraint>
seller:customer/name=’ResellerA’ and

buyer:supplier/name=’CPUMakerB’
</constraint>

</esquery>

Identifiers in the constraint, such as customer and supplier,
refer to attributes in the vocabularies. An attribute may
have an arbitrary XML document as its value. XPath [32]
expressions are used to refer to individual parts in the doc-
ument. The name resolution with XPath-based constraints
is sufficient for our purpose. (For more formal and compre-
hensive reasoning on name resolution, refer to [4]).

4.3 Preference
Conditions that matching resources should satisfy are ex-
pressed in the constraint. By contrast, preferences represent
additional properties that users want the matching resources
to have. More than one preference is allowed. The prefer-
ences in a search recipe are collectively evaluated and the
matching resources are ordered according to the total pref-
erence score.

Min and max are the two basic preference operators. The for-
mer specifies ordering of resources in ascending order of the
evaluation result of the expression while the latter does the
same in descending order (Figure 5 (a)). If multiple max/min
preferences are specified in a search recipe, the order that
the preferences appear becomes significant. The first one
provides the primary order, the second one is used as a tie
breaker for the result of the first, and so on.

More involved preferences are expressed using the with op-

<vocabulary src="http://www.parcel.com/box.xsd"/>
<preference operator="max" >
<expression>Length*Width*Height</expression>

</preference>

(a) A max preference.

<?xml version="1.0"?>
<esquery xmlns=

"http://www.e-speak.net/Schema/Espeak.query.xsd">
<vocabulary src="box" />
<constraint> color = ’blue’ </constraint>
<preference operator="with" >
<condition> Length < 5 </condition>
<weight> 2 </weight>

</preference>
<preference operator="with">
<condition> Height > 7 </condition>
<weight> 4*Height </weight>

</preference>
</esquery>

(b) with preferences.

Figure 5: Preference examples. (a) The preference
says the user prefers bigger boxes. (b) A user prefers
boxes whose length is less than 5 and whose height
is greater than 7, but she prefers taller ones.

erator. This operator takes a condition and a weight. The
condition is a predicate over attributes which may come from
different vocabularies. A user may specify multiple with

preferences (Figure 5 (b)).

For a matching resource, if the condition of a with prefer-
ence evaluates to true, the accompanying weight is added to
the total score of the resource. If evaluated to false noth-
ing is added. After all the with preferences are evaluated
the resources are ordered in decreasing order of their total
weight.

In cases where the with and min/max preferences appear to-
gether in a search recipe, the with preferences are given a
higher priority. Thus, the lookup results are ordered accord-
ing to the with preferences, first. Then, the first min or max
preference is used to break ties, the second is used to break
ties from applying the first, and so on.

4.4 Arbitration
Arbitration specifies which resources among the matching
resources are to be returned to the requester. It is similar to
the return cardinality policy in Object Management Group
Trading Object Services Specification [20]. The operators
supported are:

• first takes an integer argument n, and returns up to
n resources.

• all takes no argument and returns all matching re-
sources.

• any takes no argument and returns any matching re-
source.

<arbitration operator="first" cardinality="3" />
<arbitration operator="all" />
<arbitration operator="any" />

The resource returned with any is implementation-dependent.
A repository can reduce its workload by returning the first
resource matching the request. On the other hand, return-
ing a random matching request is one way to statistically
load balance requests among a set of identical resources.

4.5 Active Queries
A typical lookup process (database access, Web services
lookup, etc) follows a request-response model; when a user
sends a lookup request, the system returns matching re-
sources, if any. If none is found, the system may return
an empty set and discard the request. By contrast, active
queries remain in the system until a match is found. Active
queries are associated with an expiration time (or time-to-
live) and the system keeps them until they expire. If match-
ing resources are found before the expiration, they are sent
back to the requester. Depending on user’s requirement, the
system may remove the lookup request once any match is
found, or may keep it until its expiration time.

Active queries are quite useful when requesters need to poll
repositories periodically to find a resource or Web service.
For example, suppose Larry wants to purchase a left handed
Swiss Army Knife from an e-auction site. Without active
queries he has to periodically visit the site and look through
the listing to find out if the knife is listed. By contrast, an
active query waits until the item is posted and then notifies
Larry of of the availability of the item. E-speak provided a
similar function to active queries as part of its event service.

5. RELATED WORK
Web services have been touted for quite a while as the next
”Big Bang” in the market. As such, we witnessed no short-
age of research activities revolving around ontology develop-
ment for Web services. We review a few preeminent ontolo-
gies and ontology frameworks for Web services that are cur-
rently being actively developed in industry and academia.

ebXML [10] is an international initiative established by UN/
CEFACT [29] and OASIS [21] to standardize XML business
specifications. The ebXML architecture [11] defines regis-
tration and discovery mechanisms [19] based on an ontol-
ogy [18] along with information registry/repository which
stores ebXML Core Components, Collaboration-Profile Pro-
tocols (CPP’s) and Collaboration-Profile Agreements (CPA’s).
A handful of open source ebXML projects (e.g., [26] and
[25]) have been launched to build reference implementations
of ebXML component services.

UDDI [27] is an industry initiative to build a public Web
services clearing house. It was initiated by Ariba, IBM, and
Microsoft, and later joined by Hewlett-Packard; it is now op-
erating under the auspice of OASIS. A few public registries
called operator sites are maintained for companies to publish
and discover Web services. A core component of the UDDI
technology [28] is registration which contains “white pages”
for name, address, contact information, and other identifiers;
“yellow pages” for classification of a business under standard
taxonomies; and “green pages” that contain technical infor-
mation about the Web services being described. UDDI also
lists a set of APIs for publication and inquiry. Unlike e-
speak vocabularies, the UDDI publication APIs define a set
of fixed attributes for describing Web services. Similarly,

the UDDI inquiry APIs accept only rigid queries (e.g., some
attributes are associated with implicitly specific operators)
which have references to the attributes defined in the UDDI
publication APIs and do not support “rich” queries, limit-
ing flexibility and extensibility. The syntax of the APIs is
specified in UDDI API Schema [22].

The Java API for XML Registries (JAXR) is designed to
provide a uniform API for accessing information in differ-
ent registries from within the Java platform. Currently it
supports ebXML and UDDI registries. JAXR consists of a
set of Java interfaces through which interested parties share
information. Though it provides interoperability between
disparate registries to some extent by hiding the differences
from users, it takes an inherently ad hoc and language-
dependent approach and thus may have only limited suc-
cess. Emergence of a new registry will induce substantial
modification or extension to the JAXR implementation [24,
25].

The Semantic Web [3] is attempting to extend the current
Web by creating machine-understandable Web content con-
sisting of properties and relationships of Web resources in-
cluding Web services. In the Semantic Web, information
is given well-defined meaning, enabling more effective dis-
covery, automation, integration, and reuse across Web re-
sources. No separate registries are assumed; the Web itself
serves as the registry. The Semantic Web is being built
upon three key Web standards, namely, the Universal Re-
source Identifier [2], the eXtensible Markup Language [36],
and the Resource Description Framework (RDF) [38, 37].
In particular, the RDF Schema [37] and the Web Ontology
Language (OWL) [30] are being developed that help cre-
ating Web ontologies which define classes of resources and
relations among them as well as a set of inference rules.
In addition, query languages, such as DAML Query Lan-
guage [8], are being developed to facilitate automated knowl-
edge discovery in the Semantic Web. Ontologies themselves
are managed as resources. Interoperability between different
but similar ontologies is supported by encoding equivalence
information within the description of an ontology.

A closely related line of research is to develop an OWL-
based Web Service Ontology, OWL-S [9], (formerly DAML-
S: DAML-based Web Service Ontology) which defines a spe-
cific ontology “for describing the properties and capabili-
ties of Web services in unambiguous, computer interpretable
form.” In OWL-S, a service is described by an instance of
the class Service – each instance “presents a descendant
class of ServiceProfile, is describedBy a descendant class
of ServiceModel, and supports a descendant class of Ser-
viceGrounding.” This Service class corresponds to the
resource in e-speak. The service profile contains informa-
tion that an agent uses to discover the service; it provides
largely what the resource description in e-speak provides for
a service. The service model describes advertised functions
of a service by specifying its inputs, outputs, preconditions
and effects; thus, it plays a similar role to what the resource
specification in e-speak serves. A service grounding specifies
detailed information that an agent uses to access a service,
such as communication protocols, message formats, and port
numbers. Web Services Description Language (WSLD) [34]
is chosen as the initial implementation language for service

groundings. In contrast, e-speak allows such information to
be specified independently of SDDF, for example, using a
separate specification language, such as Web Services Con-
versation Language (WSCL) [33] and WSDL.

The Open Grid Services Architecture (OGSA) [12] is an
attempt to align Grid and Web services technologies. In
OGSA, a Grid is defined as an extensible set of Grid ser-
vices which are in turn defined as a Web service that pro-
vides a set of well defined interfaces and that follows specific
conventions. All Grid services are required to implement
the GridService interface which defines the FindServiceData
operation, among others. Grid services are described using
WSDL [34] and registered in a registry service with their ser-
vice data, a set of named and typed XML elements (service
data elements) representing service metadata. Any Grid ser-
vice can be a registry service as long as it implements the
Registry interface. Service discovery is done through the
FindServiceData operation with a simple ”by name” query
language. The operation can be extended to allow for more
involved query language such as XQuery [35].

6. DISCUSSION
Vocabularies as described here have some interesting prop-
erties.

• Supporting mandatory attributes adds an operational
aspect to the ontology that goes beyond the semantic
aspect we commonly think of.

• Must-match attributes provide password access to the
discovery of resources.

• The ability to specify matching rules, particularly attr-
ibute-based rules, adds a different kind of semantic
content to the vocabulary.

• Support for constraint-based matching allows more con-
trol to searchers.

• Arbitration policies greatly simplify implementing the
client side.

The most interesting property was unintentional. Vocab-
ularies are discoverable resources because everything in e-
speak was a discoverable resource. It was only after we
built the system did we realize that this property gave us
dynamically extensible ontologies. E-speak vocabularies did
not support inheritance; rather, the extensibility came from
delegation which occurred quite naturally by advertising
some attributes in the “parent” vocabulary and others in
the “child” vocabulary. Another shortcoming was the prob-
lem of vocabulary unification. Two parties could produce
identical vocabularies and advertise them both in a standard
vocabulary. Someone searching for a service advertised in
these vocabularies had to supply two, identical search ex-
pressions, one for each vocabulary. The system should have
been able to unify these vocabularies, but we never were
able to solve the evolution problem. If the system merged
the two vocabularies, they could only change if both parties
coordinated their activities. We felt that redundant search
expressions and null translation services were less problem-
atic.

Nonetheless, e-speak vocabularies proved to be sufficiently
flexible to allow the evolution of standard ontologies in a
dynamic environment. Small communities could extend the
standards without needing approval from the larger set of
users or the respective governing bodies. We believe that,
had e-speak continued its existence long enough, we would
have seen an ecosystem of vocabularies. Those that proved
useful would become standards, or would have their exten-
sions merged into the standard vocabularies. Those that
didn’t have sufficient value would disappear or continue to
serve their small communities.

We are confident that what we’ve presented works and is
useful. Everything described here, except a few features that
we didn’t get a chance to implement, such as active query
and attribute-based matching rules, has been implemented
in e-speak and used by our customers. We also made avail-
able a UDDI-compatible private registry called e-Services
Village [6], which used vocabularies to add dynamically ex-
tensible, rich query to the fixed taxonomies of UDDI.

7. REFERENCES
[1] A. Banerji, C. Bartolini, D. Beringer, A. J.

Boulmakoul, S. Frølund, K. Govindarajan, A. Karp,
M. Morciniiec, G. Pogossiants, C. Preist, S. Sharma,
D. Stephenson, and S. Williams. Service Framework
Specification, Part 1. Version 2.0. Technical Report
HPL-2001-138, Hewlett-Packard Laboratories, 2001.

[2] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
Resource Identifiers (URI): General Syntax, 1998.
Network Working Group RFC 2396. http://www.ietf.
org/rfc/rfc2396.txt?number=2396.

[3] T. Berners-Lee, J. Hendler, and O. Lassilal. The
Semantic Web. Scientific American, 284(5), May 2001.
http://www.scientificamerican.com/article.cfm?article
ID=00048144-10D2-1C70-84A9809EC588EF21&catID
=2.

[4] M. Bowman, S.K. Debray, and L.L. Peterson.
Reasoning About Naming Systems. Transactions of
Programming Languages and Systems, 15(5):795–825,
1993.

[5] CommerceNet. http://www.commerce.net/.

[6] Hewlett-Packard Company. E-Services Village, 2002.
ftp://ftp.hp.com/pub/linux/espeak.

[7] Microsoft Corp. BizTalkTM Framework 2.0:
Document and Message Specification, December 2000.
http://www.microsoft.com/biztalk/.

[8] DAML Query Language, 2003.
http://www.daml.org/dql/.

[9] DAML Services. http://www.daml.org/services/.

[10] ebXML. http://www.ebxml.org/.

[11] ebXML. ebXML Technical Architecture Specification
v1.0.4, 2001. http://www.ebxml.org/specs/ebTA.pdf.

[12] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke.
The Physiology of the Grid – An Open Grid Services
Architecture for Distributed System Integration, June
2002. http://www.globus.org/research/papers.html.

[13] S. Graupner, W. Kim, D. Lenkov, and A. Sahai.
E-speak: an Enabling Infrastructure for Web-based
E-services. In Proceedings of International Conference
on Advances in Infrastructure for Electronic Business,
Science, and Education on the Internet (SSGRR ’00),
l’Aquilla, Italy, August 2000. http://www.ssgrr.it/en/
ssgrr2000/papers/134.pdf.

[14] S. Graupner, W. Kim, A. Sahai, and D. Lenkov.
E-speak - an XML based Document Exchange Engine.
In Proceedings of the 2nd International Conference on
Electronic Commerce and Web Technologies (EC-Web
’01), pages 270–279, 2001.

[15] Hewlett-Packard. e-Speak Architectural Specification,
June 2001. Release A.03.13.00.

[16] A. Karp. E-speak E-xplained. Communications of
ACM, 46(7):112–118, July 2003.

[17] W. Kim, S. Graupner, A. Sahai, D. Lenkov,
C. Chudasama, S. Whedbee, Y. Luo, B. Desai,
H. Mullings, and P. Wong. Web E-Speak: Facilitating
Web-Based E-Services. IEEE Multimedia, 9(1):43–55,
January-March 2002. http://csdl.computer.org/comp/
mags/mu/2002/01/u1043abs.htm.

[18] OASIS/ebXML Registry Technical Committee.
OASIS/ebXML Registry Information Model v2.5,
June 2003. http://www.oasis-open.org/committees/
regrep/documents/2.5/specs/ebrim-2.5.pdf.

[19] OASIS/ebXML Registry Technical Committee.
OASIS/ebXML Registry Services Specification v2.5,
June 2003. http://www.oasis-open.org/committees/
regrep/documents/2.5/specs/ebrs-2.5.pdf.

[20] Object Management Group. Trading Object Services
Specification. Version 1.0. http://www.omg.org/docs/
formal/00-06-27.pdf.

[21] Organization for the Advancement of Structured
Information Standards. http://www.oasis-open.org/.

[22] Organization for the Advancement of Structured
Information Standards. UDDI API Schema, 2003.
http://uddi.org/schema/uddi v3.xsd.

[23] RosettaNet. http://www.rosettanet.org.

[24] Sun Microsystems, Inc. Java Web Services Developer
Pack v1.3, 2004. http://java.sun.com/webservices/web
servicespack.html.

[25] The OASIS ebXML Registry Reference Implementati-
on Project (ebxmlrr). http://ebxmlrr.sourceforge.net/.

[26] The Open ebXML Project. http://openebxml.sourcefo
rge.net/.

[27] UDDI. http://www.uddi.org/.

[28] UDDI Spec Technical Committee. UDDI Version
3.0.1: UDDI Spec Technical Committee Specification,
2003. http://uddi.org/pubs/uddi-v3.0.1-20031014.pdf.

[29] United Nations Centre for Trade Facilitation and
Electronic Business (UN/CEFACT). http://www.une
ce.org/cefact/.

[30] Web Ontology Working Group. OWL Web Ontology
Language. http://www.w3.org/2001/sw/WebOnt/.

[31] World Wide Web Consortium. http://www.w3c.org/.

[32] World Wide Web Consortium. XML Path Language
(XPath) Version 1.0, 1999. W3C Recommendation 16
November 1999. http://www.w3.org/TR/xpath.

[33] World Wide Web Consortium. Web Services
Conversation Language (WSCL) 1.0, 2002. W3C
Note. http://www.w3.org/TR/2002/NOTE-wscl10-
20020314/.

[34] World Wide Web Consortium. Web Services
Description Language (WSDL) Version 2.0 Part 1:
Core Language, 2003. W3C Working Draft. http://
www.w3c.org/TR/wsdl20/.

[35] World Wide Web Consortium. XQuery 1.0: An XML
Query Language, 2003. W3C Working Draft. http://
www.w3.org/TR/xquery/.

[36] World Wide Web Consortium. Extensible Markup
Language (XML) 1.0 (Third Edition), 2004. W3C
Recommendation. http://www.w3.org/TR/2004/
REC-xml-20040204/.

[37] World Wide Web Consortium. RDF Vocabulary
Description Language 1.0: RDF Schema, 2004. W3C
Recommendation. http://www.w3.org/TR/2004/
REC-rdf-schema-20040210/.

[38] World Wide Web Consortium. Resource Description
Framework (RDF): Concepts and Abstract Syntax,
2004. W3C Recommendation. http://www.w3.org/
TR/2004/REC-rdf-concepts-20040210/.

