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Is Image Steganography Natural?∗

∗Alvaro Mart́ın†, Guillermo Sapiro‡, and Gadiel Seroussi§

Abstract

Steganography is the art of secret communication. Its purpose is to hide the presence of
information, using for example images as covers. We experimentally investigate if stego-images,
bearing a secret message, are statistically “natural.” For this purpose, we use recent results
on the statistics of natural images and investigate the effect of some popular steganography
techniques. We found that these fundamental statistics of natural images are, in fact, generally
altered by the hidden “non-natural” information. Frequently, the change is consistently biased in
a given direction. However, for the class of natural images considered, the change generally falls
within the intrinsic variability of the statistics, and thus does not allow for reliable detection,
unless knowledge of the data hiding process is taken into account. In the latter case, significant
levels of detection are demonstrated.

Index Terms— Steganography, Information Hiding, Image Models, Natural Images.
EDICS— 2-MODL Modeling, 5-AUTH Authentication and Watermarking.

1 Introduction

In steganography, we study techniques to achieve secret communication between two parties that

are interested in hiding not only the content of a secret message but also the act of communicating

it. To this aim, steganography algorithms (“stego algorithms”) embed the secret information into

different types of “natural” cover data like sound, images, or video. The resulting altered data is

referred to as stego-data and it must be perceptually indistinguishable from its natural cover. On

the other hand, stego-analysis seeks to analyze (possibly altered) cover data to decide whether a

message has been embedded in it or not. Thus, the problem can be seen as one of classification

into two classes, namely, natural and stego-data.
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In this paper we focus on the use of natural images, i.e., images that appear naturally in

“real world” photographic scenes, as covers, and study how several recently proposed statistical

models can be used for stego-analysis. These models establish particular distributions for statistics

or relations among statistics which naturally induce a set of experiments. We investigate model

statistics for natural and stego images and whether the models fit as accurately for stego as for

natural images. The goal then is to investigate if the act of embedding (hiding) a “non-natural”

message into a “natural” image, changes some of the basic statistics of the image, thereby allowing

for the detection (but not necessarily interpretation) of the presence of a hidden message. For

instance, we will show that a model for the distribution of the differences between adjacent pixels,

which fits natural images very accurately, is not a good model for images altered by one of the stego

algorithms in S-Tools [1], a popular package we included in our experiments. Other algorithms,

like Jsteg [2], however, do not significantly violate this property.

We also experiment with statistics based on wavelet coefficients and block discrete cosine trans-

form (DCT) coefficients, exploiting (partial) knowledge of the data hiding technique. Although

these are basic statistics that are not specificly tailored to to natural images, the results are still

interesting as we found that the embedding of a hidden message bias the statistics of the image in

a consistent direction.

While previous works [3, 4] had focused on rather simple image statistics, in [5], the authors

proposed a stego-analysis technique based on image quality metrics while, in [6, 7], the author

proposed a technique based on high order statistics of wavelet coefficients. Recently, in [8], a stego

algorithm resistant to the techniques of [6, 7] was introduced. This algorithm is a modified version

of the Histogram-Preserving Data Mapping (HPDM) [9], and we will refer to it as MHPDM.

One of the main conclusions of this work is that embedding a stego message generally alters the

studied statistics of its cover image. Moreover, as mentioned, in some cases the hidden data biases

some of the statistical parameters in a consistent direction. On the other hand, the effect is often

not sufficient to “move” a significantly large set of images beyond what may be considered natural

according to the studied statistical models, when the analysis is independent of the stego algorithm

used. On the other hand, we demonstrate that better results, including statistically significant

discrimination between natural and stego-images, can be obtained when (partial) knowledge of the
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stego algorithm is used in the analysis.

The remainder of this paper is organized as follows. Section 2 briefly describes the stego

algorithms that are considered in our experiments, and Section 3 introduces the models of natural

images that are tested for sensitivity to steganography. Section 4 describes the general setting for

the experiments, the specifics of each experiment, and the results obtained. Finally, the conclusions

on the results, and directions for future research, are summarized in Section 5.

2 Steganography Algorithms

We consider three different stego algorithms in our experiments: Jsteg [2], MHPDM [8], and one

of the algorithms in S-Tools [1]. Jsteg embeds a message in the least significant bit of JPEG DCT

coefficients. The algorithm selected in S-Tools admits 8-bit palletized images (256 colors) as inputs,

and maintains this range throughout processing. The algorithm operates in two stages. First it

reduces the number of entries in the color palette of the cover image, and then it embeds a message

in the least significant bits of the three RGB components, without expanding the number of colors

beyond 256. Note of course that, as each RGB component of each pixel is altered independently, this

technique is not directly suitable for gray-scale images since it can be detected by simply observing

that some colors in the color palette are not exactly gray. We experimented with this algorithm

as an example of a scheme operating in the pixel domain. To study the effects of S-Tools purely

on image statistics (our main focus in the paper), the mentioned color-shift issue was bypassed by

transforming RGB stego-images back to gray scale, taking the rounded luminance of each pixel.

The MHPDM algorithm [9], as well as its predecessor HPDM [8], works by altering the least

significant bit of a subset of the JPEG DCT coefficients of an image. If the 64 coefficients of each

DCT block are indexed from zero following the usual zig-zag order [10], only coefficients 1 through

20 are candidates for modification. The rest are left untouched, since values of coefficient with

index 0 (DC) are far from being independent, and coefficients 21 through 63 are highly quantized

during the JPEG process.

Both MHPDM and HPDM preserve the zero-order histograms of each DCT frequency indepen-

dently. Denoting by xi,j the value of DCT coefficient j at block i for a given image I, and x′
i,j

the corresponding value for a stego image I ′ with cover I, the histograms of {xi,j} and {x′
i,j} are
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preserved for all fixed j in the range 0 ≤ j ≤ 63. In order to do that, it is necessary that the message

bit stream to be embedded in the j-coefficients have the same memoryless empirical distribution

as {lsb(xi,j)}, where lsb(x) denotes the least significant bit of x. This is done by assuming that

the input message b has approximately as many zeros as ones, and processing it with an entropy

decoder designed for P (bi = 1) = P̂ (lsb(xi,j = 1), the latter denoting the mentioned empirical

distribution of the least significant bit of the j-th DCT coefficient (see, e.g., [11] for the use of

arithmetic decoders for similar purposes). The value of this probability is included with the coded

data, to allow for lossless decoding of the hidden data. In [8], the authors showed certain weakness

of the HPDM algorithm with respect to the stego-analysis in [6, 7] (which is based on statistics

of wavelets coefficients), and observed that it could be avoided by not modifying coefficients with

values 0,1 and -1. This modification constitutes basically the MHPDM algorithm that we use in

our experiments.

3 Models of Natural Images

Our experiments are based on statistics of wavelet coefficients and block DCT coefficients, and

on three recently proposed statistical models of natural images. These models, which are briefly

described below, reflect in general properties that are more global than those used in earlier stego-

analysis works. For wavelet and DCT coefficient, although we do not test an explicit full-fledged

model, we investigate relations between various particular statistics, and how they are altered by

the introduction of stego information.

3.1 Areas of Connected Components Model

In [12, 13], it is observed that the distribution of the areas of connected components of bilevel

(thresholded) images follow a power law which depends on just two parameters, an exponent α and

a scaling factor C. More precisely, consider an image I whose gray levels are between 0 and N .

For an integer k, define the bilevel (thresholded) images

Il(i, j) =











1 if (l − 1)N
k ≤ I(i, j) ≤ lN

k ,

0 otherwise.
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In [12, 13], the authors found that the total number f(a) of connected components of the bilevel

images Il with area a is

f(a) ≈ Caα

Furthermore, it was experimentally found and theoretically justified [13] that the exponent α

is close to −2 for natural images. We refer to this model as the Areas Model. We should note

that this is a strongly non-local statistical model, since it looks at areas and at all bilevel images

simultaneously. This is in sharp contrast with models based on individual pixels statistics, which

were common in earlier works.

3.2 Adjacent Pixel Values Model

In [14, 15, 16], a statistical model for the horizontal derivative Ix = ∂I
∂x of an image I is introduced.

Based on the transported generator model [17], the authors model an image as a random number

of profiles of the same object, and each pixel is obtained as a linear combination of these profiles,

weighted randomly. Mathematically,

I(z) =
∑

i

aig(z − zi) (1)

where z and zi are coordinates in R
2 denoting a pixel location and an object profile location

respectively, g is the profile of an object, and the coefficients ai are random weights. Locations

zi are modeled as samples from a 2D Poisson process with uniform intensity, and weights ai are

modeled as independent and identically distributed (IID), also independent of the zi-s.

Under this model and certain assumptions on u(z) =
∑

i g
2
x(z − zi), the authors show that the

probability density function of Ix is

f(t) =
1√

πΓ(p)
(
c

2
)−

p

2
− 1

4 (2)−p+ 1

2 tp−
1

2 Kp− 1

2

(

√

2

c
t), (2)
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where K is the modified Bessel function, Γ is the Gamma function, and p and c are two parameters

referred to as shape parameter and scale parameter respectively. Furthermore, they show that p

and c satisfy

p =
3k2

1

k2
, c =

k2

3k1
(3)

where

k1 = E[I2
x], k2 = E[I4

x] (4)

and expectation is taking according to the distribution of Ix which depends on (1).

Equation 2 applies as long as I(z) is randomly generated according to Equation 1 with g, ai,

and zi as described. Each image is modelled as a realization of a different random process I(z),

thus, parameters p and c may be different for each image. We will refer to this model as the PC

Model.

3.3 Laplacian Distribution Model

In [18], the author reports on an empirically observed property of natural images referred to as

Differentially Laplacian. It is observed that for a reasonably small constant k, and any fixed set of

k2 coefficients adding up to 0, the linear combination of k2 pixel intensities in a k×k square, using

these k2 coefficients as weights, tends to exhibit a Laplacian-like distribution for natural images

(this is related to, and generalizes, the well known Laplacian distribution of prediction errors in

image coding [19]).

3.4 Wavelet Coefficients Model

We investigated relations among wavelet coefficients of natural images that may be altered by

embedding a stego message. We explored estimations of mean, standard deviation, skewness, and

kurtosis of several statistics calculated from Haar wavelet coefficients. We experimented with differ-

ences and sums of pairs of coefficients taken from horizontal, vertical and diagonal wavelet bands. In

particular, denoting by hi,j a coefficient in the horizontal band of the first level decomposition of a

N ×M image, we found that the estimated kurtosis of hi,j+1−hi,j with 0 ≤ i < N/2, 0 < j < M/2,

is consistently altered for MHPDM stego images as described in section 4.2.4.
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3.5 DCT Coefficients Model

An additional area that we explored was the information from higher order joint statistics of DCT

coefficients. We consider the collection of 64-dimensional vectors obtained by applying the DCT

on 8 × 8 blocks of an image, and taking the absolute value of the resulting transform coefficients.

We look at the absolute values of the coefficients in each 8 × 8 DCT block as a vector in R
64.

Each image of size N × M brings N
8

M
8 sample vectors. We study whether the joint distribution

of DCT coefficients is affected by a stego algorithm by means of statistics of the form w · v′ where

v ∈ R
64 is a vector of absolute values of DCT coefficients, v′ is its transpose, and w ∈ R

64 is a

projection vector that results from a training process. Specifically, given a JPEG image and the

same image with a stego message embedded, let J = {ji}, S = {si}, 0 ≤ i < N
8

M
8 , be the sets of

sample vectors in R
64 obtained from each image respectively. We compute a vector w ∈ R

64 that

maximizes the empirical correlation w = argmax{ρ̂(w · v′, Iv)}, where v is a sample taken from J

or S, and Iv is valued 1 or −1 when v is a taken from J or S respectively. Averaging uniformly

vectors w computed for several pairs of training images, we seek assigning a high weight to DCT

coefficients that aid classification for many images whereas others would receive low weights. We

denote W the average projection vector W = mean(w).

4 Experimental Results

4.1 Experimental Setting

For all experiments we used gray-scale 1536 × 1024 images from the popular Van Hateren’s data

base.1 This is particulary appropriate for our experiments as it is comprised of numerous natural

images from outdoor scenes, and the models we experiment with are specified for natural gray-scale

images. This set of images is widely accepted as representative of the class of natural images (see

e.g. [20]). The 12-bits pixel values of all images are proportional to the light intensities in the scenes;

however, the multiplying constant need not be the same for different images. In experiments where

this disparity might affect the statistics of interest, we follow [20], and use log-contrast images. In

the log-contrast image of I, the pixel at location (i, j) is calculated as log+(I(i, j)) − E(log+(I)),

1http://hlab.phys.rug.nl/imlib/index.html
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where log+(x) = log(x + 1), and E(f(I)) denotes the arithmetic mean of f(I(i, j)) when (i, j)

ranges over all pixel coordinates in the image.2 Cases where log-contrast was used will be explicitly

identified in the sequel.

We experimented with a subset, which will be denoted I, of 1400 images from the Van Hateren’s

data base. From this set of images we generated Jsteg and MHPDM stego images by first reducing

the number of gray levels to a maximum of 256 (scaling by 255/max(I) and rounding) and then

compressing with JPEG and embedding a random message in JPEG DCT coefficients during the

process.3 For MHPDM in particular, the message satisfied P (bi = 1) = P̂ (lsb(xi,j = 1)) for every

coefficient index j, 1 ≤ j ≤ 20. The amount of information embedded was always the maximum

allowed by the image, i.e., a message as long, in bits, as the number of coefficient values suitable

for modification according to the stego algorithm. When we used S-Tools to generate stego data,

we also started from a 256 gray level version of the original image and adjusted the length of the

embedded message to avoid visually perceptible artifacts. The amount of information embedded

in an image in this case was significantly smaller than for the Jsteg or MHPDM counterparts. The

S-tools images were always converted back to gray level images before computing statistics, by

working on the image formed by the rounded luminance values.

Since JPEG lossy compression may affect image statistics, when analyzing results for Jsteg and

MHPDM we always compare stego images to clean JPEG images, i.e., images with no message

embedded but that have been lossily compressed with JPEG (again reducing the number of gray

levels to a maximum of 256 and using the same software and settings as for Jsteg and MHPDM).

Similarly, we use the term bitmap image to refer to an image with no information embedded but

whose number of gray levels has been reduced to a maximum of 256.

Some experiments rely on estimations of mean (µ), standard deviation (σ), skewness (γ1) and

kurtosis (β2) of a random variable X based on observed samples x1 . . . xn. The skewness and

kurtosis of X are defined (see e.g. [21]) as

γ1 =
E(x − µ)3

σ3
; β2 =

E(x − µ)4

σ4

2log+ is used to avoid problems with the logarithm of zero. The slight effect of this bias on eliminating the constant
multiplier of the light intensity is secondary for the cases of interest.

3Jsteg and our implementation of MHPDM are both based on source code from the Independent JPEG Group’s
JPEG software, http://www.ijg.org/, with the quality setting parameter fixed at 75%.
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We use estimators respectively calculated as

µ̄ =
∑n

i=1
xi

n ; σ̄ = ( 1
n

∑n
i=1(xi − µ̄)2)1/2; γ̄1 =

1

n

∑n
i=1

(xi−µ̄)3

σ̄3 ; β̄2 =
1

n

∑n
i=1

(xi−µ̄)4

σ̄4 ,

where xi ranges over all sample values of interest.

4.2 Experiments

We now describe several experiments involving the different stego algorithms and the natural image

statistical models described above. We also present some additional experiments targeting MHPDM

stego-analysis in particular. In this case, we include also an analysis of wavelet and DCT coefficients.

4.2.1 Areas Model Parameters

We explore the effect of stego algorithms on the values (α, C) of the Areas Model parameters. We

observe that the power law holds in bitmap, JPEG, and stego images and, although the parameter

values are often modified for individual images, they generally remain in the (relatively large)

range of values observed for natural images as we can appreciate in Figure 1. Similarly, in Figure 2

we observe that also the joint distribution of parameter values is similar for natural and stego

images. Thus, the variation does not allow us to clearly distinguish between natural and stego

images. Moreover, there is not a consistent bias effect, in contrast with the other models we

discuss below; this characterization of natural images is mostly “randomly” modified by the stego

process. Figure 3 shows the distribution of connected components areas of a particular image

from I as bitmap, JPEG, and covering a message embedded with Jsteg and S-Tools. We observe

that the plots are very close and the values of the exponent α for the best linear fitting in each

case are −2.09,−2.06, −2.05, and −2.06, respectively. Figure 4 shows, enclosed in a rectangular

frame, parameters values for a particular image from I as bitmap, JPEG, and covering a message

embedded with MHPDM, Jsteg and S-Tools, together with a cloud of points obtained plotting

parameters values for a subset I1000 of 1000 JPEG images from I. The variation resulting from

embedding a message is rather small as compared to the universe of observed values. Figure 5

shows the movement from a point representing parameter values for a clean JPEG image to a point

for the same image bearing a message embedded using MHPDM. The plot shows the movement

for a subset I200 of 200 JPEG images from I and their corresponding MHPDM stego images. We
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Figure 1: Histogram of Areas Model parameters (exponent and multiplying factor in the power law)
for JPEG images and MHPDM stego images. We observe that the distributions of parameter values
is similar in both classes

observe that there is no clear bias effect. Over a set of 1400 images from I the percentage of images

for which parameter α was incremented as a result of embedding a message was approximately 60%

and similarly, approximately 64% of the images were affected by an increment of parameter C.

4.2.2 PC Model Parameters

This model has been found to fit accurately the distribution of differences between adjacent pixels.

Given an image I, one can approximate Ix as a difference Îx between adjacent pixel values.4 Then,

empirical estimates of k1 and k2, as defined in (4), are obtained by taking the arithmetic mean of Îx

over all suitable pixels x. Finally, estimates for p and c are computed according to (3), which can be

substituted into (2) to obtain an estimate of f(t). One can then check the fit of the distribution of

Ix predicted by this estimate of (2) with the actual empirical distribution of values Îx, and measure

possible deterioration of this fit due to the introduction of stego data. Figure 6 shows the model

4Although there exist better approximations for Ix (see, e.g., [22]), taking pixel differences is accurate enough for
this model to fit well.
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Figure 2: Joint histogram of Areas Model parameters (exponent and multiplying factor in the power
law) for JPEG images and MHPDM stego images. Darker areas have a higher concentration of
pairs of parameter values. We observe that stego images present a high concentration in regions
where also natural images do.
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Figure 3: Distribution of connected components areas for four versions of the same image, with
and without hidden message. We observe that the exponential distribution is observed both by the
original and the stego images, thereby limiting the use of this model for stego-analysis.
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fit for a given JPEG image, and independently for the same image including a message embedded

with MHPDM, Jsteg and S-Tools, respectively. As observed in the figure, Jsteg and MHPDM do

not produce a noticeable departure from the model. However, the algorithm from S-tools does, and

an image bearing a message embedded using this algorithm can easily be detected by observing the

histogram of differences between adjacent pixels and its discrepancy with the model, as estimated

for the stego image.

Figure 7 shows parameters values for the same four variations of the same image as Figure 6,

and also the bitmap representation, immersed in a cloud of points obtained for parameters values

of the subset I1000 of 1000 JPEG images from I. Except for the values obtained for S-Tools, the

rest, enclosed in a rectangular frame, show small differences as compared to the range of different

values observed on JPEG images.

A closer examination of the effect on the whole data set I1000 reveals that the parameter p is

altered in a consistent direction by the MHPDM algorithm, i.e., in more than 95% cases of 1000

pairs of MHPDM / JPEG images from I1000, the stego algorithm causes an increase in the value

of p. A histogram of relative differences of parameter p (the difference divided by the value of p

for the JPEG image) is shown in Figure 8 where we observe that practically all values are positive.

This consistent bias indicates a potential weakness of MHPDM with respect to stego-analysis based

on this model. However, Figure 10 which plots false alarm probability vs. hit probability obtained

for 1000 JPEG images and 1000 MHPDM stego images from I1000 varying a threshold, shows a

poor classification performance. The shift is not large enough to achieve significant discrimination

for this class of images, as can be appreciated in Figure 8, showing relative differences smaller than

5% in most cases. This can also be observed in Figure 9 which shows the movement from a point

representing parameter values for a clean JPEG image to a point for the same image bearing a

message embedded using MHPDM. The plot shows the movement for a subset I200 of 200 JPEG

images from I and their corresponding MHPDM stego images. It is noticeable that variation in

parameter p tends to be larger for smaller values of c. This effect can be observed in Figure 9 and

was corroborated for the larger set I1000. The indistinguishability of parameter values for both

classes can also be appreciated in Figure 11 and Figure 12, showing very similar histograms of both

parameters for 1000 JPEG images and 1000 MHPDM stego images from I1000 independently and
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Figure 6: PC Model fit independently to four versions of the same image. When the message is
embedded using the S-Tools algorithm, this can be easily detected due to its discrepancy with the
model. For MHPDM and Jsteg stego algorithms, there is a good fit to the natural images model.

jointly respectively.

4.2.3 Differentially Laplacian Model

For the Differentially Laplacian Model experiments we select k2−1 coefficients pseudo-randomly

with a uniform distribution in the interval (-1,1) and choose one more coefficient so that the overall

coefficient sum is zero. As previously observed for the PC Model, the fit of the Differentially

Laplacian Model does not deteriorate significantly when hidden data is embedded. This was the

case observed for several values of parameter k and different images.

Also, for a fixed linear combination T , if we denote by T (I) = {T (blocki,j(I))} where blocki,j(I)

varies along all k×k blocks of a partition of I, estimations of mean, standard deviation and kurtosis

of T (I) do not aid in the classification process.
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Figure 7: Cloud of PC Model parameters values for JPEG images and the effect of hiding infor-
mation on one particular image. Enclosed in a frame are values for bitmap, JPEG, Jsteg and
MHPDM versions of the same image. The value for the same image processed with S-Tools, out-
side the frame, clearly shows that S-Tools produces a large deviation on parameter values, while
MHPDM and Jsteg maintain relatively small distances.
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Figure 8: Histogram of relative differences between parameter p of PC Model for a MHPDM image
and its corresponding JPEG image. We observe that values of relative differences (difference divided
by the value of p for JPEG image) are mostly smaller than 5% and practically all values are positive.
This consistent bias of parameter p, although relatively small, indicates a potential weakness of
MHPDM with respect to stego-analysis based on this model

Figure 13 shows a log normalized histogram of the values calculated for a fixed 5 × 5 linear

combination of pixels values, on a JPEG image and the same image including a message embedded

with MHPDM, Jsteg, and S-Tools. The four plots are very similar.

4.2.4 Statistics of Wavelet Coefficients

In this subsection, we analyze statistics from Wavelet Coefficients Model. The investigation focused

on the MHPDM algorithm and used log-contrast images. We found that the estimated kurtosis

of hi,j+1 − hi,j , the difference between adjacent coefficient in the horizontal band of the first level

decomposition, is consistently altered for stego images. Stego images showed a higher kurtosis than

their corresponding JPEG images in more than 95% cases of the set I1000 of 1000 pairs of images

from I. However, the kurtosis variability in this class of natural images is once again quite large,

and it seems difficult to fix a threshold that could reliably discriminate between the two groups.

Figure 14 shows the estimated kurtosis of hi,j+1 − hi,j for 20 JPEG and MHPDM stego images

from I. Crosses representing kurtosis of stego images appear always above dots corresponding to

JPEG images, but it seems difficult to choose a threshold that would separate the two series of
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Figure 9: Movement of PC Model parameters values which results from embedding a stego message
using MHPDM stego algorithm. Each dot in the plot represents a pair of parameter values for a
MHPDM stego image and each segment connects the points given by parameter values for a JPEG
image and the same image bearing a MHPDM stego message.
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Figure 10: Classification performance using a threshold for parameter p of PC Model. The plot
is obtained varying a threshold that is compared to parameter p for 1000 JPEG images and 1000
MHPDM stego images. The reason for the poor classification performance is that, although consis-
tently positive, the shift produced on parameter p by the stego algorithm is relatively small.
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Figure 11: Histograms of PC Model parameters for JPEG and MHPDM images. We observe that
the parameters distributions are similar for natural and stego images.
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Figure 12: Joint histogram of PC Model parameters for JPEG images and MHPDM images. Darker
areas have a higher concentration of pairs of parameter values. We observe that stego images present
a high concentration in regions where also natural images do.
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Figure 13: Distribution of linear combination values for the Differentially Laplacian Model for the
four classes of images. All log normalized histograms were calculated using a fixed linear combina-
tion of pixels values in a 5× 5 neighborhood. We observe very similar distributions, indicating that
the model is not powerful enough to detect stego images.
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Figure 14: Estimated kurtosis of differences of adjacent horizontal Haar wavelet coefficients shown
for 20 JPEG images and the same images with a message embedded with MHPDM stego algorithm.
We observe a clear bias in the stego image.

values precisely.

We point out that, although similar wavelet statistics did not produce better results, this

consistent bias can be regarded as a weakness of MHPDM and further research may exploit more

sophisticated wavelet statistics seeking better results.

4.2.5 Comparing DCT Coefficients

We applied the DCT Coefficients Model to MHPDM stego algorithm using log-contrast images. The

fact that the histogram of each coefficient is preserved separately by MHPDM opens the possibility

that some joint distribution might be altered, thus aiding in stego-analysis.

We recall that under this model, we compute a projection vector W ∈ R
64 from the space of

64 absolute values of DCT coefficients to a one dimensional space, seeking projected values highly

correlated with a variable indicating whether a vector of coefficients belongs to a natural or a

stego image. For this experiment, we classify an image I by calculating the arithmetic average

mean{W · v′i}, where vi ∈ R
64 ranges over vectors of absolute values of DCT coefficients of I,

and finally using a threshold for the decision that is fixed according to a trade off between false

alarms and hit probabilities (i.e. respectively the probability of incorrectly classifying a natural

image as stego and the probability of correctly classifying a stego image as such). The averaged

projections were consistently higher for stego images than their corresponding JPEG images in
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Figure 15: Projection of DCT coefficients shown for 60 JPEG images and the same images with a
message embedded with MHPDM stego algorithm. Although the values are similar for the natural
and stego images, there is a consistent bias, the value for the stego image being always larger than
the one for the corresponding natural one.

more than 99% cases of a subset Itest of 1000 pairs of test images from I with a training subset

Itrain of 400 pairs of images from I. Results for a subset of the testing set are shown in Figure 15

where crosses representing values for stego images appear always above circles representing JPEG

images. This bias once again indicates a clear modification by MHPDM of the statistics of natural

images. However, once again the variability for this large class of natural images is significant and

it seems difficult to fix an absolute threshold that would work well for most pairs at the same time.

However, as shown in Section 4.2.6, when partial knowledge of the stego scheme is incorporated

into the analysis, the statistical changes produced by the hidden message allow for significant

discrimination between natural and stego images.
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4.2.6 Coefficients Correlations Estimation: Exploiting algorithm knowledge in stego-

analysis

Empirical correlations of DCT coefficients vary considerably among natural images. However, it

is also possible to look at empirical correlations between empirical correlations for different pairs

of coefficients. That is, images that have high correlation between coefficients, say a and b, might

also have high correlation between a different pair of carefully chosen coefficients a′ and b′, with

high probability. This fact can be exploited particularly for the MHPDM algorithm if we consider

that only coefficients with indices 1 through 20 are modified, i.e. we strongly use our knowledge

about MHPDM to stego-analyze it. Based on a set of log-contrast training images, for each pair of

absolute values of DCT coefficients a and b in A = {1..20}, we get an estimation ˆ̂ρ(|a|, |b|) of ρ̂(|a|, |b|)

(the empirical correlation between |a| and |b|) based on the empirical correlations between pairs of

absolute values of DCT coefficients taken from the set B = {0, 21..63} and use ˆ̂ρ(|a|, |b|)− ρ̂(|a|, |b|)

as a feature for classification. To calculate ˆ̂ρ(|a|, |b|), we determine the projection from the vector

v of values vi = ρ̂(|a′|, |b′|) to a one-dimensional space that maximizes the empirical correlation

with ρ̂(|a|, |b|). The set of pairs of coefficients (a′, b′) is the set of all possible pairs of coefficients

from a subset B′ ⊂ B, where highly quantized coefficients are discarded. Once this projection w

is determined, we use a linear fitting from w · v′ to ρ̂(|a|, |b|) over the set of training images and

use this polynomial to calculate ˆ̂ρ(|a|, |b|). Having determined the estimator ˆ̂ρ of ρ̂ for all pairs

(|a|, |b|) we can calculate features ˆ̂ρ(|a|, |b|) - ρ̂(|a|, |b|) for the set of training images and determine

a projection from the space of features to a one dimensional space that maximizes the empirical

correlation with a variable valued 1 for natural images and -1 for stego images. Classifying an

image consists of comparing the projection of its features with a given threshold, which is chosen

to determine an operating point in the “hit/false alarm” plane, as described below. This technique

achieved the best classifications results. Figure 16 shows false alarm probability vs. hit probability

for an experiment on a subset Itrain′ of 800 training pairs of JPEG/stego images from I and a

subset Itest′ of 600 test pairs from I. We observe that the test described achieves a significant

classification performance.
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Figure 16: Classification performance using Coefficients Correlations Estimation. The graph shows
that this technique, that uses information about the stego algorithm, can detect MHPDM stego
images with significant accuracy.

5 Conclusions

We have studied the effect of applying popular steganography algorithms on different statistical

models of natural images. On one hand, we observed that some popular stego algorithms con-

sistently bias these statistics for some of the most fundamental models. On the other hand, the

intrinsic variability of these statistics is so high, for the class of images studied, that this bias in-

duced by hiding “unnatural” information is not sufficient in general to move the results outside of

the “natural” range, unless knowledge of the embedding algorithm is available and exploited. The

best classification results were obtained in the latter case.

These experimental results lead us to conclusions in two directions. First, regarding faithful

models of natural images, it seems that the reported efforts so far are not sufficient to clearly

exclude some “non-natural” images, for example those obtained by artificially embedding hidden

messages. Thus, there seems to be a need for further refinement of these models. Second, in

the stego arena, it is obvious that stego-analysis is a “cat and mouse” game: Knowing the stego

algorithm, a technique can be devised to attack it; and knowing the attack, the stego algorithm

can be further modified to mislead the detection procedure. An example is given by Farid’s stego-

analysis approach [6, 7], which was overcome by MHPDM, which in turn, seems to be broken by the
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results in Section 4.2.6. It would therefore be desirable to have a more fundamental approach to the

stego capacity in natural images, preferably based on universal properties and independent of the

particular algorithm of choice. Some analysis has been done in this direction in [23, 24, 25, 26, 27].

An approach based on universal modeling and simulation [28, 11, 29, 30, 31] is currently being

pursued. Results on this approach are reported elsewhere [32].
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