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Abstract

A source of random message bits is to be embedded into a covertext modeled as a discrete mem-
oryless source (DMS), resulting in a stegotext from which the embedded bits should be recoverable.
A causal code for such a scenario consists of an encoder that generates the stegotext as a causal
function of the message bits and the covertext, and a decoder that reproduces the message bits as
a causal function of the stegotext. A semicausal code, on the other hand, has an encoder that is
causal only with respect to the covertext, and not necessarily with respect to the message, and has
a possibly noncausal decoder. We analyze the possible tradeoffs among: (a) the distortion between
the stegotext and the covertext, (b) the compressibility of the stegotext, and (c) the rate at which
random bits are embedded, that are achievable with causal and semicausal codes, with and without
attacks on the stegotext. We also study causal and semicausal codes for the private version of the
above scenario in which the decoder has access to the covertext. Connections are made with the
causal rate–distortion function of Neuhoff and Gilbert [10], as well as the problem of channel coding
with causal side information at the transmitter analyzed by Shannon [11]. For example, the optimal
tradeoffs among the three quantities above for causal codes are shown to be achievable by time
sharing a small number of scalar or symbol–by–symbol encoders and decoders, paralleling the main
result of [10].

1 Introduction

We study the problem of joint lossy compression and information embedding under various causality

restrictions on the encoder and decoder. Specifically, let X1, X2, . . . ∼ PX be a discrete memoryless

covertext, whose elements take on values in a finite alphabet X , and let U1, U2, . . . be an independent

stream of purely random message bits. A scheme for joint compression and embedding with embedding

rate Re, in full generality, consists of an encoder that maps U dnRee 4
= U1, . . . , UdnRee and Xn 4

=

X1, . . . , Xn into a stegotext X̂n 4
= X̂1, . . . , X̂n, taking values in another finite alphabet X̂ , and a

∗Work done while visiting Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA.
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corresponding decoder that maps X̂n into an estimate Û dnRee 4
= Û1, . . . , ÛdnRee of the message bits.

Given a distortion measure d1 : X × X̂ → IR+, the distortion, compressibility, and reliability, of the

embedding are respectively given by
∑n

t=1 d1(Xt, X̂t), H(X̂n) (the joint entropy of X̂n), and the error

in the decoder’s estimate of the message bits, the latter being measured by word–error probability or

bit–error rate. The joint compression and embedding problem is to understand the tradeoffs that exist

among the embedding rate, distortion, compressibility, and reliability. Rate–distortion theory is at

one extreme of this problem, corresponding to an embedding rate of zero, and for which, hence, the

reliability is irrelevant.

Our focus in this work is on causal and semicausal joint lossy compression and embedding codes.

A causal code, described in greater detail in Section 3, generates the stegotext by applying a sequence

of causal functions to both Xn and U dnRee and generates Û dnRee by applying a sequence of causal

functions to X̂n. A semicausal code, on the other hand, is required to causally generate the stegotext

only with respect to the covertext, but not with respect to the message bits. The corresponding decoder

is not required to be causal at all. The purely noncausal version of the problem of joint compression

and embedding (noncausal with respect to covertext as well) has already been treated in [6] (see also

[5, 7, 13]).

In addition to causal codes being a natural direction in which to reduce complexity relative to the

noncausal case, we are also motivated to consider causal codes for joint compression and embedding

by the work of Neuhoff and Gilbert [10], who analyzed the problem of causal lossy compression. In

considering memoryless sources, Neuhoff and Gilbert obtained the elegant result that while a causal

lossy compression scheme can generate the reconstructed sequence as an arbitrary function of the

past source symbols, the past is actually of no value at all, and that an optimal scheme consists

of time–sharing no more than two scalar quantizers. One goal of this work is to check if a similar

result holds when the embedding rate is nonzero. Indeed, as detailed in Section 3, we find, under a

fairly general model of causality with respect to the message bits, and perfect reliability, that scalar

embedding operations are optimal. We find, however, that a time sharing of up to three such scalar

embedding operations may be required. While the setting of semicausal codes has no counterpart

in [10], it nevertheless constitutes another meaningful trade–off between implementation complexity

and performance. We find that optimal, asymptotically reliable, semicausal codes essentially convey

the message bits through a code consisting of sequences of scalar quantizers, interpreted more generally,
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as mappings between X and X̂ . This bears a strong similarity to Shannon’s capacity achieving scheme

for channels with causal side information at the transmitter, a connection which is explored in greater

detail below.

In the tradition of other information theoretic works on data embedding ([1, 9, 12] and references

therein), we also expand the causal and semicausal joint compression and embedding settings above to

include attacks. In systems with attacks, the decoder no longer observes the stegotext, but, instead,

observes a “forgery” Y1, Y2, . . . generated by a distorting agent acting on the stegotext. Our results in

this direction are as follows. For the case of known time invariant memoryless attacks we characterize

optimal causal and semicausal codes for joint compression and embedding. The semicausal codes

analysis again focuses on asymptotically reliable codes, while in the treatment of causal codes we

find optimal codes subject to a constraint on the bit–error rate of the decoded message, since perfect

reliability is, in general, not possible. The results remain essentially identical to the attack–free case

with relevant information quantities taking the attack channel parameters into account. In the setting

of causal codes, due to the addition of the bit–error rate constraint, a fourth scalar embedder may be

required for the optimal time sharing scheme.

We also consider the case of unknown attacks subject to a constraint on a specified additive dis-

tortion measure between the forgery and the stegotext. In the causal setting we define a game setup

in which a joint compressor and embedder and an attacker select constraint satisfying strategies, re-

spectively, to minimize and maximize the end–to–end bit–error rate in the decoded message. It is

shown that if the attacker satisfies a certain technical distortion constraint (which includes constraints

previously formulated in the literature), and the embedder is allowed to randomize, that a saddle point

solution exists for all n, consisting of a random scalar embedding code and a time invariant memoryless

attack. The end–to–end bit–error rate at the saddle point is characterized. In the semicausal setting

we consider block–memoryless attacks similar to [9], and analyze a game in which the joint compressor

and embedder tries to maximize the reliable embedding rate, while the attacker tries to minimize it.

Using tools from the theory of compound channels (such as maximum mutual information decoding)

again a saddle point solution is shown to exist, in which a sequence of codes selected according to a

memoryless distribution and a time invariant memoryless attack are, respectively, optimal. The saddle

point embedding rate is characterized.

In a final set of results, we also characterize optimal causal and semicausal codes for the private

versions of the above scenarios, in which the decoder also has access to the covertext Xn when decoding
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the embedded message.

The paper is organized as follows. Some overriding notation is explained in Section 2. All results for

causal codes, with and without attacks, including the minimax results and private versions are presented

in Section 3. The analogous set of results for semicausal codes are then presented in Section 4.

2 Notation

As is customary in the literature, given a symbol x and integers m < n, we use xn
m to denote the

subsequence xm, xm+1, . . . , xn. For m = 1 or m = −∞ the subscript m will usually be omitted.

Random variables will be denoted in upper case, while their realizations, generally in lower case. A

calligraphic font will usually denote an alphabet or a set. The cardinality of a finite set X will be

denoted by |X |. Ef(X, Y, . . .) will denote the expectation of f(·) with respect to the random variables

X, Y, . . .. The expression PX,Y,... will denote the joint probability mass function (pmf) of the random

variables X, Y, . . . That is, PX,Y,...(x, y, . . .) is the probability that X = x, Y = y, . . . Occasionally, the

joint pmf of a set of random variables will be denoted using a symbol other than P , but will have

the same subscript convention. The expression PY |X will denote the conditional pmf of Y given X.

Conditional pmfs associated with channels or attacks will generally be denoted in the same way, but

with Q in place of P . We adopt the usual notation for the standard information theoretic quantities [2]

with all implicit logarithms in such quantities taken to the base 2.

3 Causal codes

3.1 Attack–free systems: perfect watermark reconstruction

Assuming the setting of the introduction, a (n, Re) causal code for joint lossy source coding and in-

formation embedding operates as follows: Along every block of n covertext symbols, say, (X1, . . . , Xn),

the corresponding block of information bits to be embedded, (U1, . . . , UdnRee), is parsed into n (possi-

bly, variable–length) phrases (W1,W2, . . . ,Wn)
4
= (Um1

1 , Um2
m1+1, . . . , U

dnRee
mn−1+1), where rt = mt −mt−1,

t = 1, . . . , n (with m0
4
= 0, mn

4
= dnRee), are non-negative1 integers, that are all limited by a certain

number rmax ∈ [Re,∞), and that sum to dnRee. Then the reproduction block is generated according

to:

X̂t = ft(Xt,W t), t = 1, . . . , n, (1)
1The value rt = 0 is also allowed.
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and (X̂1, . . . , X̂n) is entropy–coded. It is required that at time t, t = 1, . . . , n, Wt would be recoverable

from X̂t. Stated in another way, there is an inverse function gt satisfying Wt = gt(X̂t), where X̂t are

obtained as above. Given a distortion measure d1 : X × X̂ → IR+, we say that a compression ratio

Rc is (D1, Re)–achievable with causal codes if, for all n sufficiently large, there exist (n, Re) causal

codes (consisting of {rt, ft(·), gt(·)}) satisfying (1/n)H(X̂n) ≤ Rc, (1/n)
∑n

i=1 Ed1(Xt, X̂t) ≤ D1, and

gt(X̂t) = Wt for all t with probability one.

Define the following OPTA function of D1 and r ∈ {0, 1, . . . , rmax}:

R(D1, r) = min H(f(X, W (r))), (2)

where W (r) is an RV, uniformly distributed over {0, 1}r, independently of X ∼ PX , and the minimum

is over all f : X × {0, 1}r → X̂ such that Ed1(X, f(X, W (r))) ≤ D1 and such that there exists2 a

mapping g : X̂ → {0, 1}r for which g(f(X, W (r))) = W (r) with probability one.

Let R̄(D1, Re) be the lower convex envelope (LCE) of R(D1, r) in both arguments. Specifically,

enumerating all nr
4
= |X̂ |2r·|X | functions f : X × {0, 1}r → X̂ , for all allowed values of r, as {f (r,j), r =

0, 1, . . . , rmax, j = 1, 2, . . . , nr}, the function R̄(D1, Re) is defined as follows:

R̄(D1, Re) = inf
rmax∑
r=0

nr∑
j=1

α(r, j)H(f (r,j)(X, W (r))) (3)

where the infimum is with respect to (w.r.t.) {α(r, j)} subject to the following constraints:

α(r, j) ≥ 0, ∀ r = 0, 1, . . . , rmax, j = 1, 2, . . . , nr,
rmax∑
r=0

nr∑
j=1

α(r, j) = 1,

rmax∑
r=0

nr∑
j=1

α(r, j)Ed1(X, f (r,j)(X, W (r))) ≤ D1,

rmax∑
r=0

nr∑
j=1

α(r, j)r ≥ Re. (4)

The main result of this subsection is the following theorem.

Theorem 3.1 The infimum of compression ratios that are (D1, Re)-achievable with causal codes

is given by R̄(D1, Re).
2This is the case iff the ranges of f(·, w) are disjoint for various values of w ∈ {0, 1}r.
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Proof.

Converse. Let an arbitrary (n, Re) causal code, with normalized distortion and block entropy not

exceeding D1 and Rc respectively, and encoding and decoding functions ft and gt, be given. Let F̃t

be a random variable taking values in the space of functions mapping X × {0, 1}rt → X̂ determined

by ft(·, Xt−1, ·,W t−1), with the indeterminates corresponding to the values of xt and wt, so that

X̂t = F̃t(Xt,Wt). Note also that F̃t is a function of (Xt−1,W t−1). Similarly, let G̃t be a random

variable taking values in the space of functions mapping X̂ to {0, 1}rt defined by gt(·, X̂t−1), so that

Wt = G̃t(X̂t) = G̃t(F̃t(Xt,Wt)). Note that G̃t is a function of X̂t−1, and hence, in turn, a function of

(Xt−1,W t−1). The compression ratio of the block (X̂1, . . . , X̂n) is lower bounded as follows:

Rc ≥
1
n

H(X̂n
1 ) =

1
n

n∑
t=1

H(X̂t|X̂t−1)

≥ 1
n

n∑
t=1

H(X̂t|Xt−1,W t−1)

=
1
n

n∑
t=1

H(X̂t|F̃t, G̃t, X
t−1,W t−1)

=
1
n

n∑
t=1

H(X̂t|F̃t, G̃t), (5)

where we have used the fact that X̂t−1 is a function of Xt−1,W t−1, due to the causality of the encoder,

and the above definitions and properties of F̃t and G̃t.

Note that Wt and Xt are independent of each other and of F̃t and G̃t, with Xt ∼ PX and Wt

uniformly distributed on {0, 1}rt . Additionally, since Wt = G̃t(X̂t) = G̃t(F̃t(Xt,Wt)) with probability

one, it follows that for every (f, g) in the support of (F̃t, G̃t), f falls within the class of functions over

which H(f(X, W r)) is minimized in the definition of R(D1, r), with D1 replaced by Ed1(X, f(Xt,Wt))

and r replaced by rt. Therefore, letting Df = Ed1(X, f(X, W (rt))), for (f, g) in the support of F̃t, G̃t,

H(X̂t|(F̃t, G̃t) = (f, g)) ≥ R(Df , rt) ≥ R̄(Df , rt), (6)

so that

H(X̂t|F̃t, G̃t) ≥ ER̄(DF̃t
, rt)

≥ R̄(EDF̃t
, rt)

= R̄(Ed1(Xt, X̂t), rt), (7)
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where we have used the convexity of R̄ and Jensen’s inequality, along with the fact that EDF̃t
=

Ed1(Xt, X̂t). Finally,

1
n

n∑
t=1

H(X̂t|F̃t, G̃t) ≥ 1
n

n∑
t=1

R̄(Ed1(Xt, X̂t), rt)

≥ R̄

(
1
n

n∑
t=1

Ed1(Xt, X̂t),
1
n

n∑
t=1

rt

)
≥ R̄(D1, dnRee/n). (8)

where the second inequality follows from the convexity of R̄(·, ·) jointly in both arguments, and the third

inequality follows from the hypothesis that 1
n

∑n
t=1 Ed1(Xt, X̂t) ≤ D1 and the non-increasing mono-

tonicity of R̄(·, dnRee/n). The converse follows by continuity of R̄(D1, ·) and since limn→∞dnRee/n =

Re.

Direct. Referring to the definition of R̄(D1, Re), we readily see that it is attainable by time–sharing the

mappings f (r,j) and the corresponding bit-stream phrase lengths according to the minimizing vector of

weights {α(r, j)}. Moreover, since the minimization associated with R̄(D1, Re) is a linear programming

problem on the simplex, with two additional constraints, it is easy to show that the minimum can be

attained by a vector {α(r, j)} for which no more than three components are non-zero. In other words,

optimal time-sharing can be implemented with three encoders. This completes the proof of the theorem.

Discussion. Note that since W (r) must be recoverable from f(X, W (r)) (cf. the definition of R(D1, r)),

then

H(f(X, W (r))) = H(W, f(X, W (r)))

= H(W (r)) + H(f(X, W (r))|W (r))

= r +
1
2r

∑
w(r)

H(f(X, w(r))|W (r) = w(r))

= r +
1
2r

∑
w(r)

H(f(X, w(r))). (9)

Taking the LCE of both sides, the first term is lower bounded by Re while the second term gives time

sharing among different causal source codes fw(r)(x) = f(x,w(r)). The second term is lower bounded

by the Neuhoff-Gilbert causal rate–distortion function rc(D1) [10]. That is, R̄(D1, Re) ≥ Re + rc(D1).
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3.2 Memoryless attack channels

Next, we extend our setting to include a memoryless attack channel Q : X̂ → Y, operating on the

reproduction sequence and producing an output (‘forgery’) sequence {Yt}. As before, the sequence

of messages is decoded sequentially, but this time from {Yt}. Obviously, here we cannot, in general,

expect error–free reconstruction of {Ui}. Optimum tradeoffs are, therefore, sought now among the

following criteria: the compression rate Rc corresponding to entropy coding of {X̂t}, the distortion

level D1 between {Xt} and {X̂t} w.r.t. the distortion measure d1, and the distortion D2, w.r.t. another

distortion measure d2, between {Ui} and {Ûi}, the bitstream estimated from {Yt}. The (n, Re) causal

encoder for joint embedding and data compression is of the same structure as before. The only difference

is that here the estimator of Wt is given by a causal function of the channel output, i.e., Ŵt = gt(Y t).

Of course, if Q is the identity channel and D2 = 0, we are back to the previous case. In analogy

to the attack–free case, we say that a compression ratio Rc is (D1, D2, Re)–achievable with causal

codes if for all n sufficiently large, there exist (n, Re) causal codes satisfying (1/n)H(X̂n) ≤ Rc,

(1/n)
∑n

i=1 Ed1(Xt, X̂t) ≤ D1, and (1/dnRee)
∑dnRee

i=1 Ed2(Ui, Ûi) ≤ D2.

We now define a new OPTA function, similarly as before, as follows:

R(D1, D2, r) = min H(f(X, W (r))), (10)

where X and W (r) are distributed as above and the minimum is over all f : X ×{0, 1}r → X̂ such that

Ed1(X, f(X, W (r))) ≤ D1 and min
g:Y→{0,1}r

Ed2(W (r), g(Y )) ≤ D2,

where PY |X,W (r)(y|x,w) = QY |X̂(y|f(x,w)), and (with a slight abuse of notation) for w = (u1, . . . , ur)

and w′ = (u′1, . . . , u
′
r),

d2(w,w′)
4
=

r∑
i=1

d2(ui, u
′
i), (11)

with the convention that the summation over an empty set (when r = 0) is defined as zero.

Let R̄(D1, D2, Re) be the LCE of R(D1, D2, r) in all three arguments, which is defined similarly as

R̄(D1, Re) but with the additional constraint

rmax∑
r=0

nr∑
j=1

α(r, j) ·min
g

2−r
∑

w∈{0,1}r

∑
x,y

PX(x)QY |X̂(y|f (r,j)(x,w))d2(w, g(y)) ≤ D2.

The following theorem is the main result of this subsection.
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Theorem 3.2 The infimum of all compression ratios that are (D1, D2, Re)–achievable with causal

codes subject to memoryless attacks distributed according to QY |X̂ is given by R̄(D1, ReD2, Re).

Proof.

Converse. Let an arbitrary causal code, with embedding rate Re and normalized distortion levels and

block entropy not exceeding D1, D2, and Rc, respectively, be given. Define F̃t and G̃t based on the

given encoder and decoder functions as in the proof of the attack free case, noting that the decoder

is now based on Y t instead of X̂t. The compression ratio of the block (X̂1, . . . , X̂n) is, in a manner

similar to the attack free case, lower bounded as

Rc ≥
1
n

H(X̂n
1 ) ≥ 1

n

n∑
t=1

H(X̂t|Xt−1,W t−1, Y t−1)

=
1
n

n∑
t=1

H(X̂t|F̃t, G̃t). (12)

Let D1,f = Ed1(X, f(X, W (rt))) and D2,f,g = Ed2(W (rt), g(Y )), where in the latter expression

PY |W (rt),X(y|w, x) = QY |X̂(y|f(x,w)), and in both expressions W and X are independent of each other

with W uniform on {0, 1}rt and X ∼ PX . Reasoning as in the attack free case,

H(X̂t|(F̃t, G̃t) = (f, g)) ≥ R(D1,f , D2,f,g, rt)

≥ R̄(D1,f , D2,f,g, rt). (13)

The joint convexity of R̄(·, ·, ·) in all arguments, the non-increasing monotonicity of R̄(·, ·, Re) in both

arguments, and the assumed distortion of the given causal coder, imply, by reasoning closely paralleling

the attack free case, that

1
n

n∑
t=1

H(X̂t|F̃t, G̃t) ≥ R̄(D1, dnReeD2/n, dnRee/n). (14)

The argument uses the fact that 1
n

∑n
i=1 ED2,F̃t,G̃t

≤ dnReeD2/n, which comes from the end-to-end

distortion constraint. The converse follows by continuity, as in the attack free case.

Direct. The direct part is, again, by time–sharing – this time four encoders suffice.

Discussion. One might consider the private version of the problem, where the decoder has also causal

access to the covertext {Xt} in addition to the channel output. The results remain essentially the same,

the only difference being that in the single letter expression, the minimization over g is now over all

functions from X ×Y to {0, 1}r, and so the D2 distortion constraint, in the definition of R(D1, D2, r),

becomes ming Ed2(W (r), g(X, Y )) ≤ D2.
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3.3 Minimax and maximin watermarking games

In the previous subsection, we assumed a fixed memoryless attack channel Q. Suppose now that the

channel is induced by a hostile party that tries to maximize the distortion in the reconstruction of

{Ui}. We would like to find a possibly randomized causal embedding code that thwarts the efforts of

the hostile party, which, we assume, benefits from full knowledge of the randomized code.

The actions of the hostile party are constrained to not distort the stegotext excessively. Our

attack constraint takes the following form. Let MYn|X̂n denote the space of all conditional probability

distributions on Yn given elements in X̂ n. Given a block length n and a distortion measure d3 :

X̂ × Y → IR define

Qn(D3)
4
=
{

QY n|X̂n ∈MYn|X̂n : ∀ i.i.d. X̂n, ∀ x̂ ∈ X̂ ,
1
n

n∑
t=1

Ed3(x̂, Yt) ≤ D3,

where PYt(y) = E(QYt|X̂n(y|X̂t−1, x̂, X̂n
t+1))

}
. (15)

In this subsection, we restrict attacks QY n|X̂n to those that belong to Qn(D3). The set Qn(D3) includes

all channels that satisfy

E(d3(X̂t, Yt)|X̂n = x̂n) ≤ D3 for all t ∈ {1, . . . , n} and all x̂n ∈ X̂ n. (16)

A similar peak distortion constraint on the attacker is assumed in [8]. If d3 is a difference distor-

tion measure then the set Qn(D3) also includes additive attacks where Y n = Zn + X̂n where Zn is

independent of X̂n and satisfies

E

(
1
n

n∑
t=1

d3(Zt)

)
≤ D3.

Finally, note that Qn(D3) contains all DMC’s with component channels belonging to Q1(D3). We will

see below that the worst case attack in Qn(D3) is, in fact, such a DMC.

Given that the attack channel is not known ahead of time, it makes sense to consider randomized

embedding strategies. Specifically, we allow the transmitter and receiver to select a causal code at

random, independently of the covertext and subject to constraints on the average embedding rate,

average compressibility rate and average distortion. Let Rn, Fn, and Gn be random variables denoting

the phrase lengths, encoding functions, and decoding functions arising from the random code selection

and let Cn = [Rn, Fn, Gn]. Given distortion and rate constraints D1, Rc, and Re, let Θn(D1, Rc, Re)

denote the set of all probability distributions θCn on causal codes satisfying (1/n)
∑n

t=1 ERt ≥ Re,

10



(1/n)H(X̂n|Cn) ≤ Rc, and (1/n)
∑n

t=1 Ed1(Xt, X̂t) ≤ D1. The conditional entropy in the average

compressibility constraint (Rc) reflects the fact that the compressor and decompressor have full knowl-

edge of the embedding code selected.

Formalizing the introductory remarks above, the goal of this subsection is to analyze the two

quantities

Dn
minimax(D1, Rc, Re, D3)

4
= min

θCn∈Θn(D1,Rc,Re)
max

QY n|X̂n∈Qn(D3)

1
n

n∑
i=t

Ed2(Wt, Ŵt) (17)

and

Dn
maximin(D1, Rc, Re, D3)

4
= max

QY n|X̂n∈Qn(D3)
min

θCn∈Θn(D1,Rc,Re)

1
n

n∑
t=1

Ed2(Wt, Ŵt), (18)

where the expectation, in both definitions, is with respect to the distribution induced by the n-block

attack channel QY n|X̂n and the operation of a causal code randomly selected according to θn
Cn , inde-

pendently of the data {Ui}, {Xt}. The random variables Wt and Ŵt and the extension of the distortion

measure d2 to operate on these random variables are as defined in the previous subsections (see (11)).

Note that the end–to–end distortion is now normalized by n rather than dnRee. Also note that, in

contrast to the previous subjections, the compressibility rate is now part of the constraints on the

encoder and decoder, while the objective function is the end–to–end distortion.

The minimax distortion Dn
minimax(D1, Rc, Re, D3) corresponds to a game in which the transmitter

and receiver jointly select, at random and independently of the data, a causal code, while the attacker,

with knowledge of only the distribution used to select the causal code and not the particular code

selected, chooses an attack from Qn(D3) to maximize the expected end-to-end distortion in the decoded

embedded bits. Operationally, the joint selection of the causal encoder and decoder can be accomplished

via a randomly chosen secret key revealed to both the transmitter and the receiver, but not to the

attacker. The maximin distortion Dn
maximin(D1, Rc, Re, D3) corresponds to the dual situation in which

the attacker goes first and the causal code selection is carried out with full knowledge of the selected

attack. In both cases compression and decompression of X̂n is also allowed to depend on the secret

key.

We next define the main quantities characterizing the behavior of Dn
minimax(D1, Rc, Re, D3) and

Dn
maximin(D1, Rc, Re, D3). Let Fr denote the set of mappings f : X × {0, 1}r :→ X̂ and let Gr denote

the set of mappings g : Y → {0, 1}r. Let Θ(D1, Rc, Re) denote the set of probability distributions θ on

11



{(r, f, g) : r ∈ 0, 1, . . . , rmax, f ∈ Fr, g ∈ Gr} that satisfy

Ed1(X, F (X, W )) ≤ D1

H(F (X, W )|F,R) ≤ Rc

E(R) ≥ Re, (19)

where the joint distribution of (X, W, R, F, G) is given by

P θ
X,W,F,R,G(x,w, r, f, g) = θ(r, f, g)PX(x)2−r1(w ∈ {0, 1}r) (20)

For θ ∈ Θ(D1, Rc, Re) and Q ∈ Q1(D3) define

Γ(θ, Q)
4
= Ed2(W, Ŵ ) (21)

where d2(w,w′) is as defined in (11) and the expectation is with respect to the joint distribution of

(W, Ŵ ) induced by the following joint distribution of (X, W,R, F, G, Y, Ŵ ):

P θ,Q

X,W,F,R,G,Y,Ŵ
(x,w, r, f, g, y, ŵ) = P θ

X,W,F,R,G(x,w, r, f, g)Q(y|f(x,w))1({ŵ = g(y)}), (22)

with P θ
X,W,F,R,G defined in (20). Finally, define

D2(D1, Rc, Re;Q)
4
= min

θ∈Θ(D1,Rc,Re)
Γ(θ, Q) (23)

D2(D1, Rc, Re, D3)
4
= min

θ∈Θ(D1,Rc,Re)
max

Q∈Q1(D3)
Γ(θ, Q). (24)

The following theorem characterizes the behavior of Dn
minimax and Dn

maximin.

Theorem 3.3 For all n,

Dn
minimax(D1, Rc, Re, D3) = Dn

maximin(D1, Rc, Re, D3) = D2(D1, Rc, Re, D3). (25)

Theorem 3.3 and its proof indicate that the minimax and maximin games have the same value

D2(D1, Rc, Re, D3), which is attained, for each n, at a saddle point where both the embedding strategy

and the attack are memoryless. Specifically, it is shown that the embedding code distribution achieving

Dn
minimax(D1, Rc, Re, D3) selects a sequence of independent and identically distributed phrase lengths

and scalar encoding and decoding functions with each component phrase length, encoder, and decoder
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triple distributed according to the pmf achieving D2(D1, Rc, Re, D3) in (24). Similarly, the attack

channel achieving Dn
maximin(D1, Rc, Re, D3) is shown to be a stationary DMC with component channels

achieving the maximum over Q of D2(D1, Rc, Re;Q) defined by (23).

Proof. Since it is immediate that Dn
maximin(D1, Rc, Re, D3) ≤ Dn

minimax(D1, Rc, Re, D3), it suffices to

show that

Dn
maximin(D1, Rc, Re, D3) ≥ D2(D1, Rc, Re, D3)

and

Dn
minimax(D1, Rc, Re, D3) ≤ D2(D1, Rc, Re, D3).

These are proved, respectively, in the converse and direct parts below.

Converse. Let Q∗ maximize D2(D1, Rc, Re;Q), and let [Q∗]n denote that element of Qn(D3) corre-

sponding to a DMC with component channels all equal to Q∗. Let θ∗Cn achieve the minimum in (18)

when the outer maximization is omitted and Q is simply set to [Q∗]n. Let Rt denote the random

variable specifying the phrase-length parameter r used at index t, as selected according to θ∗Cn . In

analogy to the proofs of Theorems 3.1 and 3.2, let F̃t denote the random variable specifying the map-

ping Ft(·, Xt−1, ·,W t−1) sending X ×{0, 1}Rt to X̂ , where, in this case, Ft(·) is itself a random variable

distributed according to θ∗Cn . Let G̃t denote the analogous random variable corresponding to the map-

ping Gt(·, Y t−1) sending Y to {0, 1}Rt . For a causal code selected according to θ∗Cn operating under

attacks from [Q∗]n, it then follows that

Dn
maximin(D1, Rc, Re, D3) ≥ 1

n

n∑
t=1

Ed2(Wt, Ŵt)

≥ 1
n

n∑
t=1

D2(Ed1(Xt, X̂t),H(X̂t|F̃t, Rt), ERt;Q∗), (26)

where expectations are with respect to distributions induced by θ∗Cn , the operation of Cn, [Q∗]n, Xn,

and Wn. Inequality (26) is justified as follows. Notice that the joint distribution of (Rt, F̃t, G̃t), as

induced by θ∗Cn , belongs to Θ(Ed1(Xt, X̂t),H(X̂t|F̃t, Rt), ERt) defined by (19), with X̂t = F̃t(Xt,Wt),

and that the joint distribution of Wt and Ŵt is of the form underlying the definition of Γ(θ, Q∗) given

by (21). Inequality (26) thus follows by applying the definition (23) of D2(D1, Rc, Re;Q) for each t.

13



Since θ∗Cn belongs to Θn(D1, Rc, Re), it follows that

1
n

n∑
t=1

Ed1(Xt, X̂t) ≤ D1

1
n

n∑
t=1

ERt ≥ Re,

and, by an argument similar to the one leading to (5), that

1
n

n∑
t=1

H(X̂t|F̃t, Rt) ≤
1
n

H(X̂n|Cn) ≤ Rc.

These facts, along with the convexity of D2(·, ·, ·;Q∗) and the appropriate monotonicity of D2(·, ·, ·;Q∗)

in each argument (while fixing the remaining arguments), allow us to conclude, by applying Jensen’s

inequality to (26), that

Dn
maximin(D1, Rc, Re, D3) ≥ D2(D1, Rc, Re;Q∗) = D2(D1, Rc, Re, D3), (27)

where equality follows from the minimax theorem of convex analysis, the assumptions of which are

clearly satisfied by Γ(θ, Q) and the respective convex constraints on θ and Q given by (23) and (24).

Direct. Let θ∗R,F,G ∈ Θ(D1, Rc, Re) achieve D2(D1, Rc, Re, D3). Consider a random causal code

Cn comprised of i.i.d. scalar or single–letter encoding and decoding functions based on i.i.d. message

phrase lengths, with each component function/phrase length selected according to θ∗R,F,G. Letting Rt

again denote the random phrase length at index t and F̃t and G̃t denote the corresponding encoder

and decoder mappings determined respectively by Ft(·, Xt−1,W t−1) and Gt(·, Y t−1), we have that

{(Rt, F̃t, G̃t)} are i.i.d. with (Rt, F̃t, G̃t) ∼ θ∗R,F,G. Let θ̃∗Cn denote this distribution on causal codes.

Note that θ̃∗Cn ∈ Θn(D1, Rc, Re) for all n.

Let Q∗
Y n|X̂n

achieve the maximum in (17) when the outer minimization is omitted and θCn is set

to θ̃∗Cn . Consider the expected distortion induced by a causal code selected according θ̃∗Cn operating

under the attack Q∗
Y n|Xn . For each t,

Ed2(Wt, Ŵt) =
∑

rn,f̃n,xn,
wn,g̃n,y

d2(wt, g̃t(y))Q∗
Yt|X̂n(y|f̃1(x1, w1), . . . , f̃n(xn, wn)) ·

n∏
j=1

PX(xj)θ∗R,F,G(rj , f̃j , g̃j)
2−rj

(28)

=
∑
r,f,g,
x,w,y

d2(w, g(y))Q̄∗
Y |X̂;t

(y|f(x,w))P
(θ∗R,F,G)

X,W,F,R,G(x,w, f, r, g), (29)
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where P
(θ∗R,F,G)

X,W,F,R,G is given by (20), with θ = θ∗R,F,G, and

Q̄∗
Y |X̂;t

(y|x̂)
4
=∑

rt−1,rn
t+1,f̃ t−1,f̃n

t+1

xt−1,xn
t+1,wt−1,wn

t+1

[
Q∗

Yt|X̂n(y|f̃1(x1, w1), . . . , f̃t−1(xt−1, wt−1), x̂, f̃t+1(xt+1, wt+1), . . . , f̃n(xn, wn))·

∏
j∈{1,...,n}\t

PX(xj)θ∗R,F (rj , f̃j)2−rj

]
. (30)

The summations in (28) and (30) are assumed to be only over those values satisfying the conditions

wj ∈ {0, 1}rj and f̃j ∈ Frj .

Let

Q̄∗
Y |X̂(y|x̂)

4
=

1
n

n∑
t=1

Q̄∗
Y |X̂;t

(y|f(x,w)).

We then have that

1
n

n∑
t=1

Ed2(Wt, Ŵt) =
∑
r,f,g,
x,w,y

d2(w, g(y))Q̄∗
Y |X̂(y|f(x,w))P

(θ∗R,F,G)

X,W,F,R,G(x,w, f, r, g)

= Γ(θ∗R,F,G, Q̄∗
Y |X̂), (31)

which follows from the definition of Γ(·, ·) given by (21).

We note, for use below, that, for all n,

Q̄∗
Y |X̂ ∈ Q1(D3).

This can be seen as follows. Since, by assumption, Q∗
Y n|X̂n

∈ Qn(D3), it satisfies, for all x̂,

D3 ≥ 1
n

n∑
t=1

∑
y

d3(x̂, y)E(Q∗
Yt|X̂n(y|X̂t−1, x̂, X̂n

t+1))

=
∑

y

d3(x̂, y)
1
n

n∑
t=1

E(Q∗
Yt|X̂n(y|X̂t−1, x̂, X̂n

t+1))

=
∑

y

d3(x̂, y)
1
n

n∑
t=1

Q̄∗
Y |X̂;t

(y|x̂)

=
∑

y

d3(x̂, y)Q̄∗
Y |X(y|x̂),

where X̂n = F̃1(X1,W1), . . . , F̃n(Xn,Wn) with {(Xt,Wt, F̃t, Rt)} i.i.d. as above.
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Consolidating the above, we arrive at the following chain of inequalities:

Dn
minimax(D1, Rc, Re, D3)

(a)

≤ 1
n

n∑
t=1

Ed2(Wt, Ŵt) (32)

(b)
= Γ(θ∗R,F,G;n, Q̄∗

Y |X̂) (33)

(c)

≤ D2(D1, Rc, Re, D3), (34)

where (a) follows since θ∗Cn ∈ Θn(D1, Rc, Re) and from the manner in which Q∗
Y n|X̂n

, with respect

to which the expected distortion is computed, was chosen above, (b) – from (31), and (c) – from the

fact, noted above, that Q̄∗
Y |X̂ ∈ Q1(D3), the definition of D2(D1, Rc, Re, D3), and the fact that θ∗R,F,G

achieves it.

Discussion. Referring again to the private game, a result similar to Theorem 3.3 also holds, where, in

this case, the transmitter and receiver can jointly select, at random, a private causal code, in which the

decoding is allowed to also depend causally on {Xt}. One need only modify the definition of Gr above

to now denote the set of mappings g : Y ×X → {0, 1}r, replace 1(ŵ = g(y)) with 1(ŵ = g(y, x)) in the

definition of P θ,Q

X,W,F,R,G,Y,Ŵ
, and propagate these changes into the definition of D2(D1, Rc, Re, D3) to

obtain the private causal code analogue of Theorem 3.3.

4 Semicausal codes

In this section we partially relax the causality constraints of the previous section and require that the

embedding be causal only with respect to the covertext and not necessarily the message. The decoder

may be noncausal. While the optimal schemes of the previous section consist of scalar operations both

at the encoder and decoder, it turns out that the optimal schemes in the semicausal setting consist

of “codebooks” of sequences of scalar embedding functions which are used, in a channel coding like

fashion, to signal a message to the decoder.

Let us describe more formally the semicausal compressed embedding setting. A message W uni-

formly distributed over the alphabet {1, . . . ,M} is to be communicated by appropriately perturbing

a sequence of samples Xn = X1, . . . , Xn ∈ X n from a covertext modeled as a DMS into a stegotext

X̂n = X̂1, . . . , X̂n ∈ X̂ . The encoder of a (M,n) semicausal code achieves this perturbation via a

sequence of functions ft(xt, w) : X t × {1, . . . ,M} → X̂ such that X̂t = ft(Xt,W ) for t = 1, . . . , n.

The adjective “semicausal” refers to the fact that the causality of the perturbation is required only

with respect to the covertext sequence but not the message. A corresponding decoder, which is not
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required to be causal, generates an estimate of the message Ŵ by observing X̂n, or, in the case of

attacks, which we consider in Subsections 4.3 and 4.4 below, by observing a “forgery” Y n which is X̂n

subjected to a distorting effect or attack. In all cases, it is desired that the probability of a decoding

error Pe = Pr(Ŵ 6= W ) tend to 0 as the operating block length n increases. The following additional

distortion and rate constraints are imposed on the system. As in the causal case, given a single letter

distortion measure d1(x, x̂) we require that the encoder mappings have an expected average distortion

E((1/n)
∑n

t=1 d1(Xt, X̂t)) no larger than D1. We also require that (1/n)H(X̂n) be no larger than Rc

which would allow the stegotext to be compressed at an asymptotic rate of Rc.

In the following subsections we consider attack free systems, systems subject to known time invariant

memoryless attacks, and finally systems subject to unknown blockwise time invariant and memoryless

attacks.

4.1 Attack free systems

Here we consider the attack free case in which the decoder observes X̂n directly or, more specifically,

is a mapping g : X̂ n → {1, . . . ,M} with Ŵ = g(X̂n). An embedding rate Re is (D1, Rc)–achievable

with semicausal codes if and only if there exists a sequence of (2dnRee, n) semicausal codes such that:

the error probability Pe tends to zero, the expected average distortion satisfies

E

(
1
n

n∑
t=1

d1(Xt, X̂t)

)
≤ D1,

and the entropy of X̂n satisfies
1
n

H(X̂n) ≤ Rc.

Let F denote the set of all functions with domain X and range X̂ . The set of embedding rates that

are (D1, Rc)–achievable with semicausal codes will be expressed in terms of random variables F taking

values in F .

For a discrete memoryless covertext {Xt} with marginal probability distribution function PX(x) =

Pr(Xt = x), let

C(D1, Rc)
4
= max

F :Ed1(X,F (X))≤D1

min[I(F ;F (X)), Rc −H(F (X)|F )], (35)

where the maximization is over random variables F that are independent of X and take values in F .

The following theorem provides a single letter characterization of the semicausal (D1, Rc) embedding
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capacity defined as the supremum of embedding rates that are (D1, Rc)–achievable with semicausal

codes.

Theorem 4.1 The semicausal (D1, Rc) embedding capacity is given by C(D1, Rc).

The direct part of Theorem 4.1 is proved by considering an embedding scheme in which the message

W is mapped to a codeword over an alphabet of scalar embedding functions and interpreting the

embedding process, in which the codeword symbols are evaluated on the corresponding covertext

symbols, as passing the codeword through an appropriate DMC. The corresponding decoder is simply

a channel decoder for the resulting DMC. As noted in greater detail in the discussion following the

proof below, this embedding scheme bears a strong similarity to Shannon’s coding scheme for channels

with causal side information at the transmitter.

Proof.

Converse. Let Re be an achievable rate. There is a sequence of (d2nRee, n) semicausal embedding

codes of block length n having error probability no larger than δn with limn→∞ δn = 0, expected

average distortion no larger than D1, and (1/n)H(X̂n) ≤ Rc. As in the proof of Theorem 3.1, the

random variables F̃t appearing below take values in F with F̃t = ft(·, Xt−1,W ). It follows therefore

that X̂t = F̃t(Xt) and that F̃t is a function of (Xt−1,W ). For each n, the following chain of inequalities
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holds for δ′n = h(δn)/n + Reδn, where h(·) is the binary entropy function.

nRe ≤ H(W ) (36)

= H(W )−H(W |Ŵ ) + H(W |Ŵ ) (37)
(a)

≤ I(W ; Ŵ ) + nδ′n (38)
(b)

≤ I(W ; X̂n) + nδ′n (39)

=
n∑

t=1

I(W ; X̂t|X̂t−1) + nδ′n (40)

(c)

≤
n∑

t=1

H(X̂t)−
n∑

t=1

H(X̂t|X̂t−1,W ) + nδ′n (41)

(d)

≤
n∑

t=1

H(X̂t)−
n∑

t=1

H(X̂t|Xt−1, X̂t−1,W ) + nδ′n (42)

(e)
=

n∑
t=1

H(X̂t)−
n∑

t=1

H(X̂t|Xt−1,W ) + nδ′n (43)

(f)
=

n∑
t=1

H(X̂t)−
n∑

t=1

H(X̂t|F̃t, X
t−1,W ) + nδ′n (44)

(g)
=

n∑
t=1

H(X̂t)−
n∑

t=1

H(X̂t|F̃t) + nδ′n (45)

=
n∑

t=1

I(F̃t; F̃t(Xt)) + nδ′n (46)

(h)
= nI(F ;F (X)|J) + nδ′n (47)

= n(H(F (X)|J)−H(F (X)|F, J)) + nδ′n (48)
(i)

≤ n(H(F (X))−H(F (X)|F )) + nδ′n (49)

= nI(F ;F (X)) + nδ′n, (50)

where J , introduced in (h), is uniformly distributed in {1, . . . , n} and is independent of all other

random variables, and where X
4
= XJ and F

4
= F̃J . Note, for use below, that X so defined is also

distributed according to PX , and further that X and F are independent. Inequality (a) follows from

Fano’s inequality, (b) – from the data processing inequality, (c) and (d) – since conditioning reduces

entropy, (e) – since X̂t−1 is a function of (Xt−1,W ), (f) – since F̃t is a function of (Xt−1,W ), (g) –

since X̂t = F̃t(Xt) and Xt is independent of (Xt−1,W ), and (i) – since conditioning reduces entropy,

and since F (X) → F → J are readily seen to form a Markov chain.
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The following chain of inequalities also holds.

nRc ≥ H(X̂n) (51)

= H(X̂n) + H(W |Ŵ )−H(W |Ŵ ) (52)
(a)

≥ H(X̂n) + H(W |Ŵ )− nδ′n (53)
(b)

≥ H(X̂n) + H(W |Ŵ , X̂n)− nδ′n (54)
(c)
= H(X̂n) + H(W |X̂n)− nδ′n (55)

= H(W ) + H(X̂n|W )− nδ′n (56)
(d)

≥ nRe +
n∑

t=1

H(X̂t|X̂t−1,W )− nδ′n (57)

(e)

≥ nRe +
n∑

t=1

H(X̂t|Xt−1,W )− nδ′n (58)

(f)
= nRe +

n∑
t=1

H(X̂t|F̃t)− nδ′n (59)

= nRe +
n∑

t=1

H(F̃t(Xt)|F̃t)− nδ′n (60)

= nRe + nH(F (X)|F, J)− nδ′n (61)
(g)
= nRe + nH(F (X)|F )− nδ′n, (62)

where (J,X, F ) are as defined above. Inequality (a) again follows from Fano’s inequality, (b) – since

conditioning reduces entropy, (c) – since W → X̂n → Ŵ is a Markov chain, (d) – by the chain rule and

since, by assumption, H(W ) ≥ nRe, (e) – by the same reasoning as in (c) through (e) above, and (f) –

by the same reasoning as (f) and (g) above. The last equality (g) again follows since F (X) → F → J

form a Markov chain.

Note that Ed1(X, F (X)) is the expected average distortion incurred by the embedding so that, by

assumption, Ed1(X, F (X)) ≤ D1. Thus, we have found a random variable F which is independent of

X ∼ PX and satisfies

Re ≤ min[I(F ;F (X)), Rc −H(F (X)|F )] + δ′n,

≤ C(D1, Rc) + δ′n (63)

where (63) follows from the definition of C(D1, Rc).

Since n can be chosen to make δ′n arbitrarily small

Re ≤ C(D1, Rc),
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thereby proving the converse.

Direct. Let F ∗ achieve the maximum in (35) and let

Re < min[I(F ∗;F ∗(X)), Rc −H(F ∗(X)|F ∗)].

Consider the DMC with inputs f ∈ F , and output X̂ = f(X). The channel transition matrix is

PX̂|F (x̂|f) = Pr(f(X) = x̂). Consider also the generalized power constraints determined by the instan-

taneous powers PH(f) = H(f(X)) and Pd1(f) = Ed1(X, f(X)). Note that EPH(F ) = H(F (X)|F )

and EPd1(F ) = Ed1(X, F (X)), for F and X independent.

We can now follow the standard achievability arguments (c.f. e.g. [2] pp. 244–245, [3] pp. 108–110)

for power constrained channels to establish the existence of a sequence of (d2nRee, n) channel codes

with probability of error Pe,n ≤ δn and with all codewords [f̃1(W ), . . . , f̃n(W )] satisfying

1
n

n∑
i=1

PH(f̃i(W )) ≤ EPH(F ∗) + δn = H(F ∗(X)|F ∗) + δn (64)

and
1
n

n∑
t=1

Pd1(f̃t(W )) ≤ EPd1(F
∗) ≤ D1, (65)

for some δn → 0 and n sufficiently large,.

These channel codes will now be shown to determine a suitable sequence of rate Re semicausal

(D1, Rc) embedding codes. Specifically, for a message W ∈ {1, . . . , d2nRee} select the corresponding

channel codeword fn(W )
4
= [f̃1(W ), . . . , f̃n(W )] ∈ Fn and let the semicausally obtained stegotext

be X̂t = f̃t(W )(Xt)
4
= ft(Xt,W ). Thus the block of stegotext is precisely the output of the above

DMC when the codeword [f̃1(W ), . . . , f̃n(W )] is transmitted. Since this sequence of channel codes

is arbitrarily reliable, a decoder applying a corresponding optimal channel decoder to the block of

stegotext will recover the embedded message W with error probability Pe,n → 0.

It remains to show that the resulting semicausal embedding codes satisfy the distortion and com-

pressibility constraints. That the former is satisfied follows by (65), since Pd1(f) = Ed1(X, f(X)).
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Similarly

1
n

H(X̂n) ≤ 1
n

H(W, X̂n)

=
1
n

H(W ) +
1
n

H(X̂n|W )

(a)

≤ Re +
1
n

n∑
t=1

H(ft(Xt,W )|W ) (66)

(b)
= Re +

1
n

E

[
n∑

t=1

PH(f̃t(W ))

]
(67)

(c)

≤ Re + EPH(F ∗) + δn (68)
(d)
= Re + H(F ∗(X)|F ∗) + δn (69)
(e)
< Rc, (70)

for sufficiently large n, where (a) follows from the fact that X̂t = ft(Xt,W ) and the independence of

the Xt, (b) through (d) follow from (64), and (e) follows, for sufficiently large n, since by assumption

Re < Rc −H(F ∗(X)|F ∗).

Discussion. Semicausal embedding is closely related to communication over channels with causal

side information at the transmitter, as analyzed by Shannon in [11]. Specifically, we can interpret

the covertext X1, . . . , Xn as side information that is causally available to a transmitter trying to com-

municate over a clean channel, with input/output alphabet X̂ , that is subject to a side information

dependent “power” constraint induced by the distortion constraint, (1/n)
∑n

t=1 Ed1(Xt, X̂t) ≤ D1. The

capacity of such a system can be inferred from the results of [11] to be the right hand side of (35), but

without the term Rc −H(F (X)|F ). This latter term arises from the compressibility constraint on X̂n

which appears to have no counterpart in Shannon’s problem [11].

If I(F ∗;F ∗(X)) ≤ Rc−H(F ∗(X)|F ∗) then H(F ∗) ≤ Rc. In this case, the compressibility constraint

is especially easy to satisfy. In particular, for a code in which the empirical distribution of code symbols

in all codewords is close to the distribution of F ∗ it is not hard to see that modeling X̂n as an i.i.d. source

with X̂i distributed as F ∗(X) achieves an average code–length of approximately H(F ∗(X)) ≤ Rc. Thus

we see that in this case “memoryless” compression is optimal.

As in [6], an alternative characterization of the performance limits of semicausal (D1, Rc) embedding

can be obtained by minimizing the entropy of the stegotext subject to a lower bound on the embedding

rate. From this point of view, an entropy rate Rc is (D1, Re)–achievable with semicausal codes if and
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only if Re is (D1, Rc)–achievable with semicausal codes. Let R∗
c(D1, Re) be the infimum of all such

(D1, Re)–achievable embedding entropy rates. Then it follows from (35) and Theorem 4.1 that

R∗
c(D1, Re) = Re + min

F :Ed1(X,F (X))≤D1,
I(F ;F (X))≥Re

H(F (X)|F ). (71)

For sufficiently small Re the constraint I(F ;F (X)) ≥ Re becomes inactive in which case

R∗
c(D1, Re) = Re + min

F :Ed1(X,F (X))≤D1

H(F (X)|F )

= Re + rc(D1), (72)

where rc(D1) is the Neuhoff–Gilbert causal rate–distortion function [10]. This is similar to the ex-

pression obtained in [6] for the noncausal version of R∗
c(D1, Re), with rc(D1) replacing R(D1), the

rate–distortion function. Let

R∗
e = max

F :Ed1(X,F (X))≤D1,
H(F (X)|F )=rc(D1)

I(F ;F (X)). (73)

Note that (72) holds for Re ≤ R∗
e. Thus we see, paralleling [6], that for Re ≤ R∗

e embedding is “free

of charge” in the sense that (72) would be the rate incurred by compressing the covertext using a

Neuhoff-Gilbert code and appending the resulting compressed bitstream to a binary representation of

the message W .

Additionally, it can be shown that

min
F :Ed1(X,F (X))≤D1,

I(F ;F (X))≥Re

H(F (X)|F ),

is a convex function of Re for fixed D1, which, in turn, implies that the constraint I(F ;F (X)) ≥ Re in

the definition of Rc(D1, Re) is met with equality for Re > R∗
e. Therefore,

R∗
c(D1, Re) = min

F :Ed1(X,F (X))≤D1

H(F (X)), (74)

for Re > R∗
e, again in analogy with the properties of the noncausal R∗

c(D1, Re) derived in [6].

4.2 Private embedding

We now modify the scenario of the previous subsection by giving the decompressor and the embedding

decoder free access to the covertext sequence Xn. Specifically, the decoder is now of the form g :

(X̂ n,X n) → {1, . . . ,M} with Ŵ = g(X̂n, Xn), and we now require only that (1/n)H(X̂n|Xn) be no
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larger than Rc. Adapting the definitions of a (D1, Rc)–achievable semicausal embedding rate and the

corresponding embedding capacity to the private setting, we have the following analogues of (35) and

Theorem 4.1.

For a discrete memoryless covertext {Xt} with marginal probability distribution function PX(x) =

Pr(Xt = x), let

Cpr(D1, Rc)
4
= max

F :Ed1(X,F (X))≤D1

min[H(F (X)|X), Rc] (75)

where F is independent of X and takes values in F .

Theorem 4.2 The semicausal (D1, Rc) embedding capacity in the private setting is Cpr(D1, Rc).

Proof.

Converse. A chain of inequalities paralleling (36) through (50) in the proof of Theorem 4.1, but with

X̂t replaced throughout with (Xt, X̂t) leads to the corresponding upper bound I(F ;F (X), X) on Re,

with F and X independent and Ed1(X, F (X)) ≤ D1. However,

I(F ;F (X), X) = H(F (X), X)−H(F (X), X|F )
(a)
= H(F (X), X)−H(X) (76)

= H(F (X)|X), (77)

where (a) follows from the independence of X and F . In analogy to the second chain of inequalities in

the proof of Theorem 4.1, we have

nRc ≥ H(X̂n|Xn)
(a)

≥ H(X̂n|Xn) + H(W |Xn, X̂n)− nδ′n (78)

= H(W |Xn) + H(X̂n|Xn,W )− nδ′n
(b)

≥ nRe − nδ′n (79)

where (a) follows from Fano’s inequality, and (b) since H(W |Xn) = H(W ) ≥ nRe and since X̂n is a

function of Xn and W . We conclude that Re also satisfies Re ≤ Rc, again since limn→∞ δ′n = 0.

Direct. The channel coding proof of the direct part of Theorem 4.1 also applies here, except that the

relevant channel output is now (X, F (X)). The distortion constraint is satisfied in a similar manner,

and H(X̂n|Xn) ≤ H(X̂n,W |Xn) = H(W ) ≤ nRe, since X̂n is a function of W and Xn.

Discussion. The scenario in which the decoder g(·) is a function of X̂n and Xn but the compressibility

constraint reverts to H(X̂n) ≤ Rc may also be of interest. This would correspond to a three party
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interaction in which there are two types of receivers. One is a public receiver that should be able

to decompress X̂n without knowledge of Xn, but is not required to be able to decode the embedded

message. The other is a private receiver like that considered above. Such a public/private system

appears to be considerably more difficult to analyze, and is left for future work. The difficulty stems

from the fact that the line of reasoning used to arrive at (79), and the analogous bounds in the converse

proofs of the earlier theorems that account for the effect of the compressibility constraint, relies heavily

on the receiver being required to decode the embedded message. This, however, is not the case for the

public receiver.

4.3 Time invariant memoryless attacks

We now consider a scenario in which the decoder, instead of observing X̂n directly, sees only a “forgery”

Y n ∈ Yn corresponding to X̂n corrupted by a time invariant DMC. Let QY |X̂ be the conditional output

distribution for this channel, which is assumed to be fixed in advance and known to the transmitter

and receiver. The definitions of a (D1, Rc)–achievable embedding rate with semicausal codes and of the

resulting embedding capacity carry over from the attack free case. Theorem 4.3 below characterizes

the semicausal (D1, Rc) embedding capacity under a known time invariant memoryless attack.

For a discrete memoryless covertext {Xt} with marginal probability distribution function PX(x) =

Pr(Xt = x), and a DMC with conditional output distribution QY |X̂ let

C(D1, Rc;QY |X̂)
4
= max

F :Ed1(X,F (X))≤D1

min[I(F ;Y ), Rc −H(F (X)|F )] (80)

where the joint distribution of X, F, and Y is given by

PX,F,Y (x, f, y) = PX(x)PF (f)QY |X̂(y|f(x)) (81)

and F takes values in F defined as the set of functions f : X → X̂ .

Theorem 4.3 The semicausal (D1, Rc) embedding capacity under under time invariant discrete

memoryless attacks distributed according to QY |X̂ is given by C(D1, Rc;QY |X̂).

The proof of this theorem is a straightforward extension of the proof of Theorem 4.1 above (which

is a special case). We omit the details.
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4.4 Informed blockwise memoryless attacks

Next we allow the attacker to select a constrained block based attack strategy to maximize the decoding

error probability based on full knowledge of the semicausal embedding code and decoding algorithm.

The particular attack chosen is assumed to be unknown to the encoder and decoder. The attacker

is constrained to be memoryless from one block to the next, to use the same strategy in each block,

and to avoid excessively distorting the reconstruction signal. Specifically, for n = mk, the conditional

distribution of the “forgery” Y n induced by a k–block attack on a reconstruction signal X̂n = x̂n is

QY n|X̂n(yn|x̂n) =
m−1∏
j=0

QY k|X̂k(y(j+1)k
jk+1 |x̂(j+1)k

jk+1 ), (82)

where QY k|X̂k characterizes the blockwise operation of the k–block attacker. Given a per–letter dis-

tortion measure d3(x̂, y) between the reconstruction and forgery, we require that the per–block attack

QY k|X̂k belong to the set Qk(D3), where Qk(D3) is defined by (15) in Section 3.3.

The above model is intended to cover attackers with limited resources that are constrained to operate

on small chunks of the stegotext at any one time, and do so without retaining state information from

one chunk to the next. Many signal processing algorithms are essentially of this form, as are popular

lossy compression algorithms such as JPEG and MPEG. We note that a similar blockwise memoryless

attack model is also assumed in [9].

An important aspect of the above blockwise memoryless model is that even though the encoder and

decoder are assumed to be ignorant of the particular blockwise attack selected, the traditional notions of

channel capacity remain relevant thanks to the existence of universal channel decoding algorithms such

as the maximum mutual information (MMI) decoding algorithm for (blockwise) memoryless channels.

The restriction of blockwise attacks to belong to Qk(D3) is somewhat technical. It results in a large

class of attacks that still allows a single letter saddle–point expression characterizing embedding rates

that are possible under the present scenario, as well its dual, treated in Subsection 4.5 below, in which

the attacker tries to minimize the maximum embedding rate, where the embedding code is selected

with full knowledge of the attack.

We say that an embedding rate Re is (D1, Rc)–achievable with semicausal codes under attacks from

Qk(D3) if there exists a sequence of (d2nRee, n) semicausal encoder and decoder pairs such that the

maximum error probability Pe induced by all k–block attacks in Qk(D3), applied according to (82),

tends to zero. The semicausal restriction on the encoder along with the compressibility and distortion
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constraints are retained from the attack free case. Let

C(D1, Rc, D3)
4
= max

F :Ed1(X,F (X))≤D1

min
QY |X̂∈Q1(D3)

min[I(F ;Y ), Rc −H(F (X)|F )], (83)

where the joint distribution of X, F, and Y is given by (81). Define the semicausal (D1, Rc) embed-

ding capacity with respect to Qk(D3) as the supremum of all embedding rates Re that are (D1, Rc)–

achievable with semicausal codes under attacks from Qk(D3).

Theorem 4.4 The semicausal (D1, Rc) embedding capacity with respect to Qk(D3) is given by

C(D1, Rc, D3), independently of k.

Proof.

Converse. Suppose the embedding rate Re is (D1, Rc)–achievable with semicausal codes under attacks

from Qk(D3). Then, by definition, there is a sequence of (d2nRee, n) semicausal embedding codes of

block length n having error probability no larger than δn satisfying limn→∞ δn = 0 for every attack

channel in Qk(D3) applied according to (82), expected average distortion no larger than D1, and

(1/n)H(X̂n) ≤ Rc. The error probability bound δn holds, in particular, for every time invariant DMC

with transition matrix QY |X̂ ∈ Q1(D3). Therefore, we can apply reasoning similar to that used in the

converse proof of Theorem 4.1 to obtain, for each n, a random variable F taking values in F , having a

distribution that does not depend on QY |X̂ (just on the code and source distribution), and satisfying

Ed1(X, F (X)) ≤ D1 and

Re ≤ min[I(F ;Y ), Rc −H(F (X)|F )] + δ′n (84)

with PX,F,Y (x, f, y) = PX(x)PF (f)QY |X̂(y|f(x)), for all channels QY |X̂ ∈ Q1(D3), and δ′n defined as

in the converse proof of Theorem 4.1. Therefore,

Re ≤ min
QY |X̂∈Q1(D3)

min[I(F ;Y ), Rc −H(F (X)|F )] + δ′n

≤ C(D1, Rc, D3) + δ′n, (85)

and since n can be chosen to make δ′n arbitrarily small, the converse is proved.

Direct. We will use the channel coding approach of the proof of the direct part of Theorem 4.3,

except that here, since a single encoder/decoder pair must be reliable under any attack in Qk(D3)

a more suitable model is that of the compound DMC ([3] Ch. 2, Sec. 5). The compound DMC of

interest is defined on k–blocks of symbols and consists of the channels QY k|F k determined by cascading
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the (random) mapping F k → [F k(Xk) = X̂k] (assuming components of Xk are i.i.d. ∼ PX) with

QY k|X̂k ∈ Qk(D3) where the t–th component of F k takes values in the set of functions f : X t → X̂ and

the t–th component of F k(Xk) is Ft(Xt).

Let F ∗ achieve the maximum in (83) and define [F ∗]k = F ∗
1 , . . . , F ∗

k to be i.i.d. with components

F ∗
t having the same distribution as F ∗. Additionally, let the t–th component of [F ∗]k(Xk) be F ∗

t (Xt).

Let Re satisfy

kRe < min
Q

Y k|X̂k∈Qk(D3)
min[I([F ∗]k;Y k), kRc −H([F ∗]k(Xk)|[F ∗]k)]. (86)

Then the arguments behind Corollary 5.10 of [3] (principally Theorem 5.2) imply the existence of a

sequence of (d2mkRee,mk) codes having the following properties for the above compound DMC. Under

MMI decoding (of the empirical distribution of k–blocks), the probability of error vanishes uniformly

for all attacks/channels in the compound DMC family. The codewords, on a symbol–wise basis, satisfy

the generalized power constraints (64) and (65) with the expectations evaluated with respect to the

present distribution of F ∗.

Following the second half of the proof of the direct part of Theorem 4.1, we see that the above se-

quence of channel codes for the above compound DMC determines a sequence of semicausal (d2nRee, n)

embedding codes, which, when decoding under the corresponding MMI channel decoder, yield a van-

ishing error probability for every attack in Qk(D3). That the resulting sequence of embedding codes

satisfies the distortion and compressibility constraints follows from the same reasoning as in the proof

of Theorem 4.1.

To complete the direct part, it suffices to show that

kC(D1, Rc, D3) = min
Q

Y k|X̂k∈Qk(D3)
min[I([F ∗]k;Y k), kRc −H([F ∗]k(Xk)|[F ∗]k)], (87)

since then any Re < C(D1, Rc, D3) also satisfies (86).

To see (87) first note that kRc −H([F ∗]k(Xk)|[F ∗]k) is independent of QY k|X̂k and satisfies

kRc −H([F ∗]k(Xk)|[F ∗]k) = k(Rc −H(F ∗(X)|F ∗)), (88)

since the components of [F ∗]k, Xk, and [F ∗]k(Xk) are i.i.d. Additionally, for a fixed QY k|X̂k ∈ Qk(D3),

we have the following chain of inequalities (similar to the converse proof in the rate–distortion coding
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theorem).

I([F ∗]k;Y k) = H([F ∗]k)−H([F ∗]k|Y k)

(a)
=

k∑
t=1

H(F ∗
t )−H([F ∗]k|Y k) (89)

(b)

≥
k∑

t=1

I(F ∗
t ;Yt) (90)

(c)

≥ kI(F ∗;Y ) (91)
(d)

≥ k min
QY |X̂∈Q1(D3)

I(F ∗;Y ), (92)

where the joint distribution of F ∗, X, and Y satisfies

PF ∗,X,Y (f, x, y) =
1
k

k∑
t=1

PF ∗
t ,X,Yt(f, x, y)

=
1
k

k∑
t=1

PF ∗(f)PX(x)PYt|F ∗
t ,Xt

(y|f, x)

= PF ∗(f)PX(x)
1
k

k∑
t=1

PYt|F ∗
t ,Xt

(y|f, x), (93)

and (a) follows from the fact that the components of [F ∗]k are independent, (b) – chain rule and

removing the conditioning on ([F ∗]t−1, Y t−1
1 , Y k

t+1), (c) – since the F ∗
t all have the same distribution as

F ∗ and since I(F ;Y ) is convex in {PY |F (·|·)} for fixed PF (·). To justify (d) it suffices to show that

PY |F ,∗X(y|f, x) =
1
k

k∑
t=1

PYt|F ∗
t X(y|f, x) (94)

= QY |X̂(y|f(x)) (95)

for some QY |X̂ ∈ Q1(D3), which in turn would follow from showing that

PYt|F ∗
t ,X(y|f, x) = QYt|X̂t

(y|f(x))

for some QYt|X̂t
∈ Q1(D3). The latter is established by

PYt|F ∗
t ,Xt

(y|f, x)

=

∑
yk,xk,f̃k:(yt,f̃t,xt)=(y,f,x) QY k|X̂k(yk|f̃k(xk))

∏
j∈{1,...,k} PF ∗(f̃j)PX(xj)

PF ∗(f)PX(x)

=
∑

yk,xk,f̃k:(yt,f̃t,xt)=(y,f,x)

QY k|X̂k(yk|f̃k(xk))
∏

j∈{1,...,k}\t

PF ∗(f̃j)PX(xj) (96)

4
= QYt|X̂t

(y|f(x)), (97)
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where

f̃k(xk)
4
= f̃1(x1), . . . , f̃k(xk),

and (97) follows since (96) depends on f and x only through f(x). Additionally, since QY k|X̂k ∈ Qk(D3),

explicitly computing the expectation of d3(f(x), Yt) according to (96), combined with the definition (15)

of Qk(D3) (with PX̂n in the definition of Qk(D3) induced by X̂j = F̃j(Xj) with F̃j , Xj i.i.d. according

to PF ∗PX), shows that QYt|X̂t
∈ Q1(D3).

That the right side of equation (87) exceeds the left now follows by combining (88) and (92), and

from the fact that (92) holds for all QY k|X̂k ∈ Qk(D3). Equality follows by noting that the left side

of (87) corresponds to the right side with the outer minimization restricted to stationary DMCs with

component channels in Q̃1(D3).

Discussion. A different attack model considered in [12] is to require that

Pr

(
n∑

t=1

d3(X̂t, Yt) > nD3

∣∣∣∣∣ X̂n = x̂n

)
= 0 for all x̂n ∈ X̂ n, (98)

where n is the full block-length of the code. Adapting the above definitions of (D1, Rc)–achievable

embedding rates to this attack model, we conjecture (paralleling [12]) that the related embedding

capacity is given by

CSM (D1, Rc, D3)
4
= max

F :Ed1(X,F (X))≤D1

min
QY |X̂ :Ed3(F (X),Y )≤D3

min[I(F ;Y ), Rc −H(F (X)|F )], (99)

where the joint distribution of X, F, and Y is given by (81). Note that the set over which QY |X̂ is

minimized in (99) is larger than the set Q1(D3) appearing in (83), and, in general, depends on the

distribution of F .

4.5 The minimax game

For completeness, we consider the minimax counterpart to the attack model of the previous subsection.

In this setting the roles of attacker and embedder are reversed, in the sense that it is the embedder that

is free to select the encoding and decoding strategies based on full knowledge of the k–block attack that

will be used. In this case, the attacker should select the attack which minimizes the induced (D1, Rc)

embedding capacity. We refer to the resulting minimum as the minimax k–block (D1, Rc) embedding

capacity. For the class Qk(D3) defined by (15) the minimax k–block (D1, Rc) embedding capacity is

readily seen to be bounded from below by C(D1, Rc, D3). Define

Λ(F,QY |X̂) = min[I(F ;Y ), Rc −H(F (X)|F )].
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Restricting attacks to be DMC type attacks selected from Q1(D3), in turn, establishes, via arguments

similar to those used in the converse proof of Theorem 4.1, that the minimax (D1, Rc) capacity is

bounded from above by

min
QY |X̂∈Q1(D3)

max
F :Ed1(X,F (X))≤D1

Λ(F,QY |X̂).

Proposition 4.5 below shows that this quantity is equal to

max
F :Ed1(X,F (X))≤D1

min
QY |X̂∈Q1(D3)

Λ(F,QY |X̂) = C(D1, Rc, D3),

thereby establishing, with the lower bound, that the minimax k–block (D1, Rc) embedding capacity

is also C(D1, Rc, D3). It may seem that Proposition 4.5 should follow immediately from the minimax

theorem of convex analysis, since the constraint sets involved are convex, and since both I(F ;Y ) and

Rc − H(F (X)|F ) have the required convexity/concavity properties in the variables over which the

minimum and maximum are taken. The difficulty stems from the fact that the minimum of two convex

functions is, in general, not convex.

Proposition 4.5 For any convex family of channels Q,

max
F :Ed1(X,F (X))≤D1

min
QY |X̂∈Q

Λ(F,QY |X̂) = min
QY |X̂∈Q

max
F :Ed1(X,F (X))≤D1

Λ(F,QY |X̂) (100)

= Λ(F ∗, Q∗
Y |X̂), (101)

where F ∗ and Q∗
Y |X̂ respectively achieve the maximum and minimum in the left and right hand sides

of (100).

Proof. Let

Λ(F,QY |X̂ , θ) = θI(F ;Y ) + (1− θ)(Rc −H(F (X)|F )).
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Note that Λ(F,QY |X̂ , θ) is concave in F , convex in QY |X̂ , and linear in θ, when the remaining two

respective arguments are fixed. Then

max
F :Ed1(X,F (X))≤D1

min
QY |X̂∈Q

Λ(F,QY |X̂)

= max
F :Ed1(X,F (X))≤D1

min
QY |X̂∈Q

min
θ∈[0,1]

Λ(F,QY |X̂ , θ) (102)

= max
F :Ed1(X,F (X))≤D1

min
θ∈[0,1]

min
QY |X̂∈Q

Λ(F,QY |X̂ , θ)

(a)
= min

θ∈[0,1]
max

F :Ed1(X,F (X))≤D1

min
QY |X̂∈Q

Λ(F,QY |X̂ , θ) (103)

(b)
= min

θ∈[0,1]
min

QY |X̂∈Q
max

F :Ed1(X,F (X))≤D1

Λ(F,QY |X̂ , θ) (104)

= min
QY |X̂∈Q

min
θ∈[0,1]

max
F :Ed1(X,F (X))≤D1

Λ(F,QY |X̂ , θ)

(c)
= min

QY |X̂∈Q
max

F :Ed1(X,F (X))≤D1

min
θ∈[0,1]

Λ(F,QY |X̂ , θ) (105)

= min
QY |X̂∈Q

max
F :Ed1(X,F (X))≤D1

Λ(F,QY |X̂), (106)

where (a), (b), and (c) follow from repeated applications of the mini-max theorem of convex analysis,

which is applicable since all of the sets and functions satisfy the assumptions of the theorem (sets

are convex, functions are concave (resp. convex) in the argument over which the maximum (resp.

minimum) is taken). Step (a), in particular, is justified since minQY |X̂∈Q Λ(F,QY |X̂ , θ) is still linear in

θ (the minimizing Q depends only on F and not on θ) and also concave in F as the minimum of a set

of concave functions is concave.

The saddlepoint claim (101) follows by noting that

Λ(F ∗, Q∗
Y |X̂) ≤ max

F
Λ(F,Q∗

Y |X̂) = min
QY |X̂

max
F

Λ(F,QY |X̂)

and

Λ(F ∗, Q∗
Y |X̂) ≥ min

QY |X̂
Λ(F ∗, QY |X̂) = max

F
min
QY |X̂

Λ(F,QY |X̂).

5 Future work

One direction for future work is to extend the semicausal (D1, Rc) embedding rate analysis to the

attack model considered in [12]. A conjecture for the resulting semicausal (D1, Rc) capacity appears in

Section 4.4. Another direction is to extend the analysis of Section 4.2 of private semicausal embedding
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to a semi–private version, in which the decompressor and decoder are distinct parties with only the

decoder having access to the covertext Xn.
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