A

invent

Design, | mplementation, and Evaluation of Duplicate
Transfer Detection in HTTP

Jeffrey C. Mogul, Yee Man Chan, Terence Kelly
Internet Systems and Storage L aboratory
HP Laboratories Palo Alto

HPL-2004-29
February 18, 2004*

E-mail: JeffMogul @acm.org, ymc@shgc.stanford.edu, terence.p.kelly @hp.com

HTTP, diasing,
duplicate transfer
detection

Organizations use Web caches to avoid transferring the same data twice
over the same path. Numerous studies have shown that forward proxy
caches, in practice, incur miss rates of at least 50%. Traditional Web
caches rely on the reuse of responses for given URLsS. Previous analyses
of real-world traces have revealed a complex relationship between URLS
and reply payloads, and have shown that this complexity frequently
causes redundant transfers to caches. For example, redundant transfers
may result if a payload is aliased (accessed via different URLS), or if a
resource rotates (alternates between different values), or if HTTP's cache
revalidation mechanisms are not fully exploited. We implement and
evaluate a technique known in the literature as Duplicate Transfer
Detection (DTD), with which a Web cache can use digests to detect and
potentially eliminate al redundant payload transfers. We show how
HTTP can support DTD with few or no protocol changes, and how a
DTD-enabled proxy cache can interoperate with unmodified existing
origin servers and browsers, thereby permitting incremental deployment.
We present both ssimulated and experimental results that quantify the
benefits of DTD.

* Internal Accession Date Only

To be published in and presented at the First Symposium on Network Systems Design and |mplementation, 29-31
March 2004, San Francisco, CA Approved for External Publication
a Copyright Hewlett-Packard Company 2004



Desgn, | mplementation, and Evaluation of
Duplicate Trander Detection in HTTP

Jeffrey C. Mogul YeeMan Chan TerenceKelly
HP Labs Starford HumanGenomeCenter HP Labs
Palo Alto, CA94304 Palo Alto, CA 94304 Palo Alto, CA94304
JdfMogul@acm org ymc@shgc.t@nford.edu terene.pkelly@hp.om

Abstract

Organizationsuse Webcaches to awid transfering the
sane data twice over the sarre path. Numerousstudies
hawe shown that forward proxy cades,in practice, incur
missratesof atleast50%. Traditional Webcadesrely on
thereuseof responsefor given URLs. Previousanalyses
of real-world traces have reveded a complex relation-
shipbetween URLs andreply payloads,and hawe shavn
that this complity frequenly causesredundanttrans-
fersto caches.Forexample, redurdant transferamay res-
ult if apayload is aliasel (accessedvia differentURLS),
or if aresouce rotates (alternatedetween differentval-
ueg, orif HTTP's cache revalidation medanisms arenct
fully explbited. We implemet andevaluatea technique
known in the literatureas Duplicate Transfer Detecton
(DTD), with which a Web cache can use digeststo de-
tea andpotentially eliminate all redundnt payloadtrans-
fers. We shav how HTTP can supprt DTD with few
or no protocol changesand how a DTD-enabled praxy
cadhe can interoperatewith unmodfied existing origin
saversandbrowses, therebypermitting incrementalde-
ployment. We presntboth simulated and experimental
resuts that quantify the benefits of DTD.

1 Intr oduction

Webcachesare widdy usedto save bandwidh andim-
prove latency. However, numeous studies have shavn
that, in practice, forward proxy caches (i.e., sharel Web
cadhes usednear clients) incur missratesof 51-70%, and
byte-weightedmiss rates of 64-8% [27,40]. Evenwarm
cadhes with infinite storagecannot eliminateall misses.

In this pape, we are specifically concernedwith re-
dundant paylcad transfers, i.e., cagswhere a payloadis
transmited to arecipient that has previously received it.
In atradiond Web cadhe, eachcacheenty is indexed
by a given URL. If a subsguent request arrives for that
URL, andthe cache cannotsaisfy the request (it “mis-
ses”), it forwards the requestto the origin sener, which
normally generatesa reply containng a payload (Sec-
tion 4.2 givesa careful definition for “ payload”). If that

exactpayloadhaspreviously been recevedby the cache,
we definethis asa redurdantpaylcad transfer.

Othershave idenified the problem of redundantpay-
load transferson the World Wide Web, quantified its pre-
valence and exdored a rangeof possble solutions[2,
16,28]. According to one measuremet, over 20% of
payload transferdetwea origin seversand proxies are
reduncnt [16].

We do not know all causes of redundanttransfers.
Mary resuk from threecomnon phenomena: aliasing
in which the same contentis referenced undertwo dif-
ferent URLSs; rotation, in which thesameconentis refer-
enedtwice underasingle URL, but anintenening refer-
enceto thatURL resoVesto differentcontent;andabsent
or faulty metadatahatcause awidablerevalidation fail-
ures.

We previously proposeda technique called Duplic-
ate TransferDetection (DTD) [16] that allows any Web
cache to padentially eliminate all redurdant payload
transfers, regardlessof cause DTD usesmessage di-
geststo detectredurdant transfes beforethey occur In
its useof digeststo detect duplication, DTD is similar
to approades developedfor otherconexts, e.g, router-
to-router padket transfers[32] andfile systemdor low-
bandwidth environmentg23]. Unlik e an alternative pro-
posal for eliminating redurdant HTTP transfers[28],
DTD doesnot requre soft state that scaleswith the num-
berof clientsand the size of respmses.

In [16] we did not propcse a concreteprotocol design
or descibeanimplemengtion of DTD, nor did we meas-
ure its impact on client latency In this paper, we shav
how ore can usestandardHTTPR, with few or no expli-
cit pratocol changes, to sugport DTD without relying on
any addtional semantics, naming medansirs, valida-
tion mechanismspr cooperatn with or between origin
savers. This allows a DTD-enabledcacheto interoper-
atewith unmodfied existing origin serversand browsers,
therebypermitting smoath, incremental depbyment.We
descibe how to implement DTD in aWeb cache and re-
port on experments shaving that it can accomplish its



goal of completey eliminating redurdant transfers.We
qguantfy the benefits of DTD using both experimental
measirementsof ourimplementtion, andsimulationres-
ults.

Themaincontibutionsof this paper areawell-defined
protocol spedfication for DTD, the desgn of a realim-
plementation of DTD, and performane evaluatons of
DTD.

2 Why eliminate redundant transfers?

Our DTD proposd doesnat reducethe number of
timesan HTTP cache mustcontad an origin sener; it
only reduceghe numbe of respmsebodies thatmust be
transferredWha makeshis worthwhile?

Eliminating redunant transferscan improve at least
four metrics:

Bandwidth: Web cades are often depbyed to reduce
bandwidh requrements (over half of large com-
paniessurveyedin 1997 cited bandwidth savingsas
their motivation for Web caching [11]). Redum-
ant transfers consume bandwdth andincreasepeak
bandwidh requrements.

Latengy: Eliminating a redundant transfer can save
latencyin two ways: diredly, by makirg the res-
ult available sooner (i.e., without having to wait for
the reduna@nt transferto finish), andindiredly, by
reducing channelutilization and therebyreduchg
gueueingdelaysfor subsequentesponses.

Per-byte charges Network tariffs are often flat-rate, but
not always. In paricular, wireless-datdariffs range
from a few dollarsto tens of dollars per Mbyte [3].
Reduna@nttransferonsuchnetworksdirectly waste
money;

Energy: Studies have shavn thatenegy consumpbn for
wireless(andhenceportable) networking is at least
somewhat deperdent on the amountof datatrans-
ferred [10]. Eliminating some redundanttransfers
might therdoreimprove batterylife.

In our previous study, usirg two large real-world
traces, we shaved that rouchly 20% of payload trans-
fers betweenorigin seversand proxy caces are redurd-
ant [16]. Therdore, a solution to the redundanttransfer
prodem could yield significantsavngs on someor all of
themetrics listedabove. In this paper, we concentrateon
guantfying theseimprovements.

3 Related work

The first published suggston to eliminate redurd-
ant HTTP payload transfersusing messgedigests, and
a trace-basd evaluatbn of its impact on Web cade
hit rates,appearedin [15]. A recent unpublished un-
dergaduate dissetation [4] dewlops a similar idea for
GPRSWeb aacess.

Sants & Wetherdl [32] and Spring & Wetherall [33]

descibe protocolindependennetwak-level analogies
of DTD that enmploy packetdigests to save bandwith.
Muthitacharoenet al. designeda netwak file sysem for
low-bandwith environmentghat performs similar oper-
ationson chunksof files [23].

Web cachescan use payloaddigeds to awid wastng
staage aswell asbandwdth. We have implemented this
natual counterpart of DTD (seeSedion 8) but we are
not the first. Bahnet al. repat tha by using digegs to
awid storing redundnt copiesof payloads a Web cache
can reduceits storagefootprint by 15% andincreaeits
hit rates[1]. Inktomi Corporation has patented such a
scheme[18].

A variety of “duplicate suppessim” schenes have
been proposedfor the Weh Thesediffer from DTD
chiefly in that 1) they aretypicaly end-b-endmechan-
ismsrequiring the participation of orgin servers,wheress
DTD canbeusea hop-by-h at any level of acachehier-
ardy, 2) theyavoid theextraroundtrip thatsomevariants
of DTD suffer upan amiss,and3) theycan reducebut not
eliminate redurdanttransfers. Mogul [19] reviews sev-
erd dudicatesuppessian schenes(e.g.,the Distribution
andRepication Protocol (DRP) of van Hoff et al. [38])
andrepated that theyimprove hit ratesby modest mar-
gins,atbed.

Previous studies have shavn that redurdant pay-
load transfers on the Web are causel by complexit-
ies in the relationship between URLs and reply pay-
loads (e.g, aliasing and rotation) [16], and by deficien-
ciesin cache management algorithms and sever-suppied
metadata [41,42].

Rheaet al. de<ribe a sophisticatedgeneralization of
DTD cdled " Value-Basd Web Caching” (VBWC) [28].
Whereas DTD operateson entire payloads,VBWC de-
tectsand eliminatesredundanttransfes atfiner granubr-
ity by employingfingerprits cdculatedon variable-sized
blocks. Block boundariesare compued as in Spring &
Wetheralls approad [33]. In VBWC, edting a file af-
fects only payloadblocksin theimmediateneighorhood
of the change, ensurhg thatminor changeslorit elimin-
atebandwdth savings. Rheaet al. implenmened VBWC
andevaluatedit by polling sevente@ popuar Web sites;
their evaluaton also includescomparisonswith deltaen-
coding. Theydid not evaluateVBWC basedon an actual
clientor proxy reference stream.

DTD sametimes entals an addtional round trip
betwea client and saver, but requres no addtional
saver state. By contrast, VBWC proxies must expli-
citly track client cache statein orderto awid the extra
RTT except in rare circumgances. This is soft state, but
it saleswith boththe numberof clients andthe size of
responsesywhich makesVBWC less easily depbyabk
than DTD. VBWC is also harder to evaluateusing an-
onymizedtraces, be@useexising tracesthatinclude only



MD5 digests of respmsebadiescannotbe usedto com-
pute partial-paylcad fingerprints.

VBWC wasdesiged to berunbetwea anISP's proxy
and the endclients. While DTD can be usedseaver-to-
client or saverto-praxy, it can also be used proxy-to-
client or proxy-to-proxy. In the latter cases, DTD im-
posesa store-and-6rwardcost(for computing the digest
at the first proxy) on the entire payload, while VBWC's
store-and-drward costs are per-block and thus poten-
tially smaller. We do not yetknow how sigrificant these
overheadsire.

4 Duplicate Transfer Detection

Motivated by the wish to eliminate redurdant HTTP
transfers,we proposed”Duplicate Transfer Detection”
(DTD). This soluion appies equdly to all redundnt
payloadtransfers, regardlesof cause. Herewe provide
an overview of DTD (derived from [16]), and discuss
seerd geneal design issues. In Sectimn 5, we will
preset a more detailed protocol design shaving how
DTD can be definal as a simple, compatilbe extensbn
toHTTP/A.1[9].

4.1 Overview of DTD

First, constler the behavor of a traditional HTTP
cade, whichwe refer to asa“URL-indexed” cache,con-
fronted with arequesfor URL U. If the cachefindsthat
it doesnat currently hold an entry for thatURL, thisis a
cade miss,andthe cateissuesor forwardsa requestfor
theURL towards theorigin server, which would nomally
send aresponsecontainng payload P. (If the cachedoes
hold an expired enty for the URL, it may send a “con-
ditiond” request, andif the sever's view of theresource
hasnotchanged, it mayretun a“Not Modified” resporse
withoutapayload.)

Now supposehat an idealized, infinite cache retains
in storageevery payloadit has ever received, whether
or not thesepayloads would be consideredvalid cahe
entries. A finite, URL-inde)ed cachediffers from this
idealizatdbn becaiseit implementsboth an updatepdicy
(it only stares the mostrecent payload received for ary
given URL), and a replaemaent policy (it only storesa
finite se of entries).

The concept behird Duplicate Transfer Detedion is
quite simple: If our idealized cache candetermire, be-
fore receiving the sener's responsewhetherit had ever
previouslyreceved P, thenwe canavoid transfermgthat
payload. Sucha cachewould suffer only compulsoy
misses andwould never experence redun@nt transfers.
A finite-cacherealizaton of DTD would, of couise, also
suffer capadty misses.

How doesthe cache know whether it hasreecived a
payloadP before the server sends the enire response
In DTD, the sener (origin saver or intermeliate proxy
cade) initially replieswith adigestD of thepaylcad, and

the cachechecksto see if any of its entries hasa match-
ing digeg value. If sq thecacdhe can signalthesever not

to send the payload (although the server mustsill send
the HTTP message healers,which might be different)

Thus,while DTD doesnotavoid the requestandrespase
messagehealers for a cache miss, it canawid thetrans-
fer of any paylcad it hasreceived previously. We say a
“DTD hit” ocaurswhenDTD prevents a payloadtransfer

that would have ocaurred in a corventional URL -indexed
cache.

An idedized DTD cachestoresall paylcadsthat it has
received, and is ableto look up a cached payloadeither
by URL or by payload digest In particular, it does not
deletea payloadP from storagesimply because it hasre-
ceved a differentpayloadP’ for the same URL U. A
redistic DTD cache with finite capadty, may eventally
deletepayloadsfrom its storage basedon somereplace
ment policy.

4.2 Whatis a“payload"?

We hawve descibed DTD asoperatng on “payloads’
In orderto preciselyspecify DTD, we mustalsoprecisely
spedfy theterm”payload” That is,overwhatse of bytes
is adigeg calculated?

HTTP seners (the term “server” includesboth origin
saversandproxies)can sendrespasemessgesconsin-
ing either the full currentvalue of a resouce, a partial
responsecontaining one or more sub-range®f the full
value, or more comple parial respmses (suchaswith
delta encodig [21] or rsync [37]). HTTP respoisescan
also be encodedusing various compressiorformds, or
with “churked” encodig.

Whatever the forma of the respase the ultimatecli-
ent almostalways wans to obtain a full current value
of the referencel resourcé Ore of us introduced the
term “instancé to mean “The entity that would be re-
turned in a status-P0 respmse to a GET reguest, at
the currenttime, for [...] the spedfied resource; in an
IETF standards-trackdocumaeit spedfying how to extend
HTTPA.1to suppott “instancedigests”[20]. An instance
consiss$ of an “instance body’ andsome“instancehead-
ers’!

Our DTD designequags “payloads” and “instance
bodes’ Tha is, seners provide instane@ digeds, and a
cacheenty is indexedby the digestof theinstancebody
it stores.

One coud imagine an alternatize in which DTD's di-
gestsare compued on HTTP messagebodies, which
might be parfal reponses Howeer, this seens less
likely to eliminate redurdant transfes; two partial re-
sporsesfor the samre instancemight not spanthe same
range.

The “payloads are instane bodies” model works
nicely with partial regponses Forexanple, if aclientre-



guestsytes0-10000 of URL X, and the sener respands
with a digestof the entire instance body, a DTD client
checksits cachefor a matching instancedigeg. If such
an entryis found, the transfercan be avoided; the client
caneassily extrad therequired byte-rangefrom its cade
entry, rather than relying on the sener's extraction.

NothingintheDTD design preventsacacde from com-
puting digestson non-instancedata(suchas partia re-
sponsesenaded resposses, etc.) and matchig incom-
ing instancedigests agairst cached nonrinstance daa.
Our intuition, however, is that such matcheswill occur
toorarelyto justify the additiond overheal.

4.3 Deploymentof DTD

DTD is bestthough of asa hop-by-hop optimization
of HTTP caching? which can be implemented between
any HTTP sener and client (either one of which could
be a proxy; DTD canbe implementedbeween any data
sender andreceiver). In particular, DTD canbedeployed
unilaterdly by anorganiationthatcontols both browser
and proxy caches, eg., AOL or MSN. It can also be
deployed incrementlly by any implemenor of clients,
savers,or proxies,beauset is always optionalfor either
end of a transfer In the experimens descrbed in Sec-
tion 9 we demonstate that DTD can be enabéd purely
throughproxy modjfications,if theorigin seversuppats
digestgeneratio.

DTD's mainregurement for severimplementasis to
compute and sendnstanedigests. Thealgorithmused to
compute the digestvalue D mustnot usetoo much sever
CPU time, and the digest represatation mustnot con-
sumetoo many bytes, or elsethe cost of speculatiely
sending digestswil| excead the benefits of the DTD hits.
Also, the digest must essentilly never yield collisiors,
or else the client could endup with the wrong paylcad.
A cryptographic hashalgorithm such asMD5 [29] might
hawethe rightproperties. We will assunethe useof MD5
for this pape; Section 10.1 covers some issuesin the
choice of digeg algorithm.

Notetha DTD doesna inherenty require theclientto
compute ary digestsjf all senerssend digegs. However,
to check againsttransmissia errorsor severs sendng
bogts digests, clients shaild prabably compute digests
anyway (seeSedion 10).

5 Protocoldesgnissues

Our previous paper [16] briefly covered protocol
desgn issuesfor DTD. In this section, we expand that
discussion including medansms for suppessirg data
transferandspedfic HTTP mecdhanismsto sugport DTD.

5.1 Optionsfor suppressing data transfer
Onekeyagect of DTD isthemechanisnby whichthe

clientavoidsreceving a payload,if the digestD maches

an existing cadhe entry. This could be acconplished by

deferrirg the transfe until the digest can be checkedor
by aboring thetransfer in progressif the digest matche
someceacheentty.

In thefirst categay of approades, the saversends the
responséeadershut deferssending the paylcad urtil the
client sendsan explicit “procea” messge. In the other
caegory the server sends the payload immediately after
the headersput stopsif the client sendsan “abot” mes-
sage. The“proceed” modd impasesan extra rourd-trip
time (RTT) on every cachemiss,but newer sends anyre-
durdantpayload bytes. The “abot” modelimposeso
addtiond ddays, but the abort messagemay fail to reach
the sener intimeto sawe ary bandwdth. Thus,thechaice
betwea alternatives reguires consderaion not only of
implementaton issues but alsoof the magnitude of the
RTT, andwhether oneis more concernedwith optimiz-
ing bandwidth utilization or latency.

Ead of thesebasicmodes allows several alterndives.
Theseincluck:

Pure-proceed Upon receiving the client's request,the
HTTP sener replies only with the HTTP healers
(induding digest D). Theclient sends a “procead”
messagef D is notfound in its cache,and the sever
sendsthe HTTP body (payload). Otherwie no fur-
ther messagsare sent.

Proce=d/don't bother: In the pure-proced alternative,
the sever might need to buffer responsesndef-
initely, waiting for a possble “procea” mesage.
The “proceed/don’'t bother” alternatve addesses
this concernby allowing the client to senda “don't
bother” message if diges D does matcha cadche
entry, the mesageallows the saver to free the buf-
fer more quickly.

Auto-proceedfor short responss: The procee model
risks exchangng an extra setof headersanddelay-
ing an extra RTT. For shat payloads, the trans-
fer time saved by a DTD hit might not be worth
this overhead. The sener coud optimize the shot-
paylcad case by sending the payload immediately
for payloadsizesbelow athreshdd.

Abort: The server sends the paylbad immediately after
the HTTP headers(asin normd HTTP operaton).
Theclientsendsaspeé¢al HTTP “abort” messagef
digest D matchesa cache entry; telling theserverto
termirete the transferas soon as possble.

Notethat in the proceed model,notevery payloadneed
be delayed. Web pagesoften include muttiple images;
for example, we previously found 8.5 image references
per HTML reference in an uncachedreferene stream,
and 1.9 images per HTML reference in a client-cated
stream[16]. A client that pipelines [26] its requestdor
imagescan alsopipelineits “proceed” mesages Thus,
the extra RTT delay can beamortized over all of theim-



ages on a Web page ratherthanbeing paid onceperim-
age.

In this paper we examine only the pure-procead
modd, for reasonsf spaceandsimplicity.

5.2 ExtendingHTTP to support DTD

The changegequired to extend HTTP/11 [9] to sup-
port DTD depend on which transfer-suppressionap-
proachis chose. The“pure proceed” approad to DTD
can be implementedwithout any changeso HTTP/A.1
beymnd existing IETF standards-track propcsds.

The client first usesmechanisms specified in the Pro-
posedStandard for instance digeds [20] to obtain current
instance heades, includng aninstancedigest. It obtains
theseviaa HEAD requestwhich preventsthesener from
sending an instancebody [9, Section 9.4]. If the client
finds no cacheentry with a matching instancedigest,or
if a non-DTD sener fails to retun a digest, the client
simply issuesa GET request to obtan the full instane
body.

This protocol design, while simple, hasse\eral draw-
bads:

e It potentially addsoneextra RTT per miss The
client sendsbath a HEAD anda GET requesibn a
DTD miss, sothis could add anextraRTT of latency
per request. In practice, mostHTTP requestsare
for images embeddedn HTML pages,which al-
lowsanHTTP/1.1client to pipdine someor all of a
pages image requestsn onetransmissior(and the
saver can likewise batchthe HEAD and GET re-
sponses).So for typical compaind Web pagesthe
pure-poceed apprach adds at mosttwo addtional
mandatoy RTTs: onefor the HTML containerand
onemore for all of theembeddedmages.

¢ It addsan extra setof request and response head-
ers per miss: This cuts into the bandwidth savings
offeredby DTD. Therefore,DTD is nat worth do-
ing if the mean savings(in respasebody bytes) is
smaller than the sum of the mean request and re-
sponséheaderlengths (seeSection 6.1).

e It depends on request idempoteng: If the
(HEAD, GET) sequencéiad different side effects
than a single GET request on the same URI,
this would give DTD incorrect senanics. The
HTTP/11 specification recomnends that“the GET
and HEAD methodsSHOULD NOT hawe thesigni-
ficanceof taking an adion other than retrieval,” [9,
Section 9.1.1], but somesites might ignore this re-
commendation. If so, DTD clients might need to
apply some heurstics, such as na issuingthe ex-
traHEAD requesbn URLSs contairing “?”, or (per
haps)usingDTD only for embeddedmages.

e The server might never send adigest: HTTP sev-
ers are not requred to send instancedigests, and

there is no (curren) mechaism to discower if a
saver would ever sendone. The client could thus
incur al of the costslisted above, with respet to

a given sener, without ever gaining a benefit. Cli-

entsmight need to cease usirg this DTD appoach
with any saverthatfailsto senda digeg after some
thresthold number of requests.

Figure 1 shavs an example of the HTTP messags
betwea a client and sener for a DTD miss. For a
DTD hit, the secondpair of messaes would simply be
omitted. TheWant-Digest andDigest healers arede-
saibedin RFC 3230[20]; all other headersarestandard
in HTTP/1.1[9].

Using Want-Digest and Digest is the “right’ im-
plementaton of DTD, becauseit works evenfor parial-
conentresponsess exiensible to digestalgorithms other
than MD5, andawids unne@ssry digest conputations
at the origin saver. But since RFC 3230 is not widely
implemented,we testedDTD using the Content-MD5
supprt available in mgor Webseners (e.g, Apade and
[IS). This is swb-opimal becauseit doesnot allow the
saver to avoid compuing MD5s whenthe client has no
usefor them

The pure-preeeal apprach is equally usablehop-by-
hop or endto-end, because ary intermaliate proxy can
generge or check digests. (A proxy-to-proxy imple-
mentation mustuseDigest becaiseHTTP/1.1[9, sec
tion 14.15] spedfically prohibits proxies from adding
Content-MD5.) Note that proxy-to-client or proxy-to-
proxy DTD coud impose an extra store-and-foward
delay while the first praxy computesthe digesthealer.
(Some existing praxies might already buffer short re-
Sporses,in ary case)

6 Trace-basedperformanceanalysis

Sectim 9 presentsmeasured performanceof anactual
DTD implemengtion. Howewer, thosemeasurerentsare
driven from a syrthetic reference strean, which can-
not prove how frequentredurdant transfersare in real-
world workloads. Herewe analyzetwo real-world traces
to show how many redundanttransfers, and how many
bytes coud beeliminatedby DTD.

Relatively few existing client andproxy HTTP traces
includetheresponsebody digeds we needed for our ana-
lysis. For example, the trace used by Douglis et al. [5]
may hawe beenlost in a disk crash;other suchtraces
are unawilable due to proprietary consideratims. We
re-analyzed the anorymizedclientandproxy traces from
our prior study [16]. Thes were coll ected,regectively,
at WebTV Networks in Sepember 2000 and at Com-
paq Corporation in early 1999 The WebTV trace was
made with client cadesdisabled; both traceswere made
without proxy cachirg. Both traces include an MD5 di-
gestfor each paylbad transferred. The WebTV tracein-



First client request:

HEAD /images/logo.gif HTTP/1.1
Host: example.com

Want-Digest: MD5

Firstsenerrespmse:

HTTP/1.1 200 OK

Date: Tue, 30 Jul 2002 18:30:05 GMT
Digest: md5=HUXZLQLMuI/KZ5KDcJPcOA==
Cache-control: max-age=3600

ETag: "xyzzy"

Secord clientrequest:
GET /images/logo.gif HTTP/1.1
Host: example.com

Second senerrespnse

HTTP/1.1 200 OK

Date: Tue, 30 Jul 2002 18:30:06 GMT
Digest: md5=HUXZLQLMuI/KZ5KDcJPcOA==
Cache-control: max-age=3600

ETag: "xyzzy"

(messgebody omitted

Figurel: Exampleof HTTP mesagegpure-proced approach).

cludes326 million referencesfrom 37 thousand clients
to 33 million URLs on 253thousandseners over sixteen
days; the Compagtrace includes 79 million reference
from 22thousandclientsto 20 million URLs on 454thou-
sand serversover 90 days. Many further details of thes
tracesarede<ribed in [16] andareomittedherefor spae
reasons.

Given arequesfor URL X thatresulsin reply instane
body B, thefollowing properties may or may not hold:

i) thereexistssomeURL Y suchthatY # X and B was
themost-recentinstancebody forY.
ii) thereexistssomeURL Z suchthatZ # X and B was
apastinstancebody for Z, but notthe mostrecent.
iii) B was a pastinstancebody for X, but not the most
recent.
iv) B wasthemostrecentinstancebody for X.

Propertes (iii) and(iv) are mutwally exclusive, but ary
other combiration is pasdble, soatotal of twelve possb-
ilitiesexist: a giventransaction might have noneof these
properties (if it hasnewver been sea befor), or seeral
at once (e.g, bath most recent for X andmost recent for
Y # X).

We analyzed both the WebTV and Compadtraces ac-
cording to this caegaization. Theresuts arein Tables 1
and 2 regectively. The cold-startresuks cowver the en-
tire traces. Consisent with our earlier methodology [16],
for thewarm-strt resuls we (only somewhagrbitrarily)
warm the simulated cachewith the first 186 milli on ref-
erences (for WebTV) or 50 million references(for Com-
paq).

In the WebTV warm-startresuls, 10% of the trans-
fersinvolve payloadsnever beforeseenin thetrace(* new
payloads”);these will miss in ary kind of cade. An-
other 87% have property (iv), for which atraditiond, in-
finite cache with perfed revalidation would avoid a pay-
load transfer. (This “hit rate” seens high, but remember
that the WebTV tracewas madewith client cachesdis-
abled) Theremander, abou 3%, are transfers thatDTD
would awid. In otherwords, a traditional URL-indexed
cadhe would see a missrate of at least13% compared

to a DTD-cadhe missrate of 10%; DTD would eliminate
23%of aconvenional cachesmisses.

In the Compaqwarm-start resuts, 37% arenew pay-
loads, and55% have property (iv). The remander about
8%, aretransfes that DTD would awid. A traditional
cachewoud seea missrate of 45% versusaDTD-cache
missrate of 37%; DTD would eliminateroughy 18% of
acorventionalcadche's missedor thistrace

If we restrct the DTD implementation to save at most
oneentry per URL (i.e., to store no more entries than
a traditional cache), then the DTD cadhe will requie
transfersfor properties (ii) and (iii), but will still avoid
transfersfor property (i). In this situation, DTD woud
awid 2.6% of the transfesin theWebTV trace,and5.8%
of the transfersin the Compagtrace, assumng a warm
cache. (Thesevalues are the suns of the Warm-sart
Transferscolumn for rows whereproperty (i) holds and
property (iv) doesnat.)

Weighting the reallts by bytes transferredbetter de-
saibes bandwith savings, of course. Looking just at
the warm-achedata,new (i.e., mandatoy-transfer) pay-
loads acount for 30% of the WebTV bytes, and 57% of
the Compag bytes. Variations of property (iv), hits for a
perfed traditional cache acount for 64% of the WebTV
bytes and34% of the Compagbytes Thetransferghat
DTD would awoid accourt for 5% of the WebTV bytes,
and9% of the Compadoytes.

In other words,atraditionad URL-indexed cachewould
see a byte-weighed miss rate of at least 36% for the
WebTV trace, comparedto a DTD-cade miss rate of
30% (66% vs. 57% for the Compagtrace). In terms of
the reducton in the number of bytes sentfrom the ori-
gin saver, DTD would sae (relative to a URL-indexed
cache)15%for the WebTV trace, and14% for the Com-
pagtrace.

6.1 Overhealsfrom the proceedmaodel
Becausethe proceed model for DTD causes an ex-
tra pair of request andresponsédneaderswhen the digest
doesnot match,to evaluate the overall byte-transfersav-
ingsfor this modelwe mustcomparethe bytessawed by
DTD (for properties (ii) and (iii)) with the number of



property Cold-start Cold-start Warmstart Warm-stat
iv i i Tranders % MBytes % Transfas % MBytes % Curentreply payload was...
0 0 00 36573310 11.22 609935 32.40 13915207 9.94 245010 30.40 neverreturnel befae
0 0 01 6,047586 1.85 39,205 2.08 2,332816 1.67 15735 1.95 most-recenfor other URL
0010 94,375 0.03 1,937 0.10 43313 0.03 1,066 0.13 returnedfor otherURL, nat most reent
0011 2,070537 0.64 8,820 0.47 908075 0.65 3,715 0.46
0100 1,048493 0.32 35074 1.86 465865 0.33 16906 2.10 returnedfor currert URL, nat most recent
0101 129349 0.04 3,089 0.16 62776 0.04 1551 0.19
0110 150533 0.05 2,189 0.12 67,477 0.05 1,003 0.14
0111 681840 0.21 3,350 0.18 309030 0.22 1655 0.21
1 0 00 131,262060 40.26 662120 35.17 52607080 37.56 272289 33.79 mostrecert for curentURL
1 0 01 138,927549 42.61 490892 26.08 64263811 45.88 231,911 28.78
1010 290628 0.09 2,202 0.12 168472 0.12 1,143 0.14
1011 8,784417 2.69 23740 1.26 4916756 3.51 13857 1.72
| 326,06Q677 1,882552 140060678 805,928 Totals
Tablel: WebTV trace categprization.
property Cdd-start Cold-start Warm-start Warmstart
iv i i Trarsfers % MBytes % Trarsfers % MBytes % Currentreply payload was...
0 0 0 0O 3059,044 38.77 512,5&@ 59.583 105hH,651 36.58 182,32 5656 neverreturnal befae
0 0 01 350391 444 499/ 58 129,3® 447 21,78 6.76 most-recatfor otherURL
0010 148,533 0.19 1,357 0.16 4931 0.17 490 0.15 returnedfor otherURL, nat most recent
0011 604,076  0.77 2721 0.2 220,79 0.79 1,14 036
01 00 15%331 197 1052 1.2 612,7% 2.12 3,74L 116 returnedfor currert URL, not mostrecert
0101 130,356 0.17 1,00 0.12 4896 0.17 430 013
0110 164,992 0.21 1,04 0.13 62,98 0.22 432 013
0111 264,100 0.33 1,82 0.2 112,39 0.39 789 024
1 0 00 20,49,740 25.97 166,3® 19.2 7,290,114 25.01 59,824 1855 mostrecen for curentURL
1 0 01 19,1%,071 24.24 106,18 12.8 7,58,5% 26.24 47,81 1483
1010 165,425 0.21 943 0.1 65,66 0.23 397 012
10 11 2167290 275 642 0.7 1,046,75 3.62 3,18 099
| 78,913,349 860,90 28,913,390 322,42 Totals
Tabk 2: Compaqrace categrization.
extra headerbytes spant on the newpayload transfers.  thosetagsis current.

We can ignore property (iv) by assumimg that theseref-
erences could be cache hits. DTD (warm-start)savesa
meanof 3036 bytes of payload transfe for each new-
payloadreferencein the WebTV trace (warm-start), and
2857bytes for each new-payload reference in the Com-
paqtrace. Thesesavngs are much larger than the mean
requed+respanseheadersizesrepotedin previous stud-
ies(e.g., [6, 13]) ® sothe proceed modeldoes not waste
too muchof the potential savings.

DTD requres digestsin responsénealers(for MD5,
24 bytesplusabou 10 bytesof syntax overhea), which
furtherreduce savings. Howeer, digeds areusdul for
integrity cheds, and somightbesentevenwithoutDTD.

6.2 If-None-Match with multiple entity tags
HTTP/1.1 supports the use of entity tags to valid-
ate cache enries: a sener may provide an instance-
speific enity tag in the ETag respose header and a
client may send this entity tag badk to the sener in an
If-None-Match requesthealer to check if its cate
entry is still valid. If-None-Match may carry multiple
entity tags,in which ca® the saver canreturn “304 Not
Modified” (along with the current entity tag) if ary of

This feature would allow a nonDTD cacheto awid
transferswhen property (iii) hdds. Referring to the
warm-startcolumnsin Tables1 and 2, we seethat this
could avoid atmost 0.6% of thetransfersand 2.6%of the
bytesfor theWebTV trace, and 2.9%of the transfes and
1.7%of the bytesfor the Compaq trace

Howewer, theseare upper bounds, since this simple
andysisassumsthateweryrespasecarries anentity tag,
andthe seversalwaysuseexadly oneentiy tag per dis-
tinctinstancebody. Neither is truein practice; only 66%
of theresponses in the WebTV trace caried entiy tags,
andwe know that someseverscan assign different en-
tity tagsto identical instancebodies. In summay, DTD
awidstransferring significanty morebytesthancould be
awidedusing multiple entity tagsin If-None-Match.

6.3 Multiple cache entries per URL?

Thefull benefi of DTD acaues whenthe cadhe staes
morethan onepaylcad per URL. The mostnaturalclean-
slateDTD cachedesigntreatspayloadsratherthan URL s
asthe basic storagetype. URLs are merely oneway to
indexinto this underlying store; paylcad digestsare an-
other The cachemay thereforestae multiple paylcads



for agiven URL, and alsopayloads thatare not the most-
recentresponsdor any URL (as in the case of rotated
resaurces). Theseproperties, while desirable, might be
difficult to retrofit onto somelegacy cacheimplementa-
tions; how muchdo they help? It heps for reference
thathave eitherproperty (ii) or (iii) while having neither
property (i) nor (iv). These representjust 0.4% of the
warm-startransfersin theWebTV trace but 2.5%of the
warm-starttransfersn the Compadtrace, soit probaby
is usdul to stae multiple payloadsper URL.

7 Model-basedlatency analysis

Theandysisin Section 6 concentratesn the number
of bytesthat could be saved using DTD, which may be
of economc interestto network operdors. End uses,
however, caremoreaboutlatency Predicting the latency
effects of change to Web protocols can bedifficult, since
somary variablescan affect overdl latency.

We hawe deweloped a simple modelfor understanding
when pure-praeed DTD might improve latencyover a
traditionalWebcade. This modelignoresisaues suchas
responsepipelining, network congestion, TCP algorithms
sud as slow-start and correlatons of the hit ratio and
duplication ratio with other parameers, but it can help
guideintuition.

Given theseparameers:

RTT = roundtriptime,cacheto server
BW = effective link bandwdth, bits/sec
Liesp = regonselength, bits
HRconv = convenional-cachehit ratio
HRptpony = DTD-only hit ratio
Tiookup = Cadve-lookup latency

thenwe canderive theselatendges (if we over-simpify by
assumiry thatHTTP healersare negigible in lengh):

TCon/Hit Tlookup
Tcowmiss = Tlookup+ RTT + Lresp/BW
TotoonyHit = Tiookup+ RTT + Teonvhit
Totomiss = Tlookup+ RTT + Teonvmiss

The extra RTT in Tptponynit 8d TpTpmiss COMesfrom
the HEAD operaton tha a DTD ceche performsafter
the corventional lookup misses. The extra Tigokyp N
ToTDoniyHit aNdTpTpmiss COmMesfrom theneedto do look-
upsboth on the URL andthedigestin thosecass.

We simplify by assumimg that Tjgoup = 0, areasonable
approximétion for awell-implementd cache.

We canthen expresgheexpeded latencies for corven-
tionaland DTD cadhes:

HRcon X TeovHit
+(1 —H RConv)TCon/Miss

ECon/ =

Break-ezen respmsesize(bytes)

Scermrio RTT Bandvidth WebTV Compay
Cellplone 100ms 10Kb/s 415 549
Modenm 100ms 56Kb/s 235 3075
DSL 30ms  384Kb/s 4783 6325
WAN 42ms  6000Kb/s 104629 138367

Table 3: Exanplesof modeloutput.

HRcow X TconwHit
+HRbTDony X ToTDONIYHIt
+(1— (HRcow +HRo1ponly)) ToToMmiss

DTD improves the expeded latency if Eptp < Ecow,
which (by algebra) istrueif
BW < Lresp X HRDTDoriy
RTT (1~ (HRcon + HRoTDONY))

DTD is thus more likely to pay off as the effective
link bandvidth and/or RTT decrease,and as the transfer
lengh and hit ratiosincrease.

We evaluatd Equation 1 using warm-cache hit-ratio
values taken from the WebTV and Compagq trace ana-
lysesin Tables 1 and2 and variouscombinationsof RTT
and bandwidth. Table 3 shaws the reallts for several
seenaric: “cellphane; “modem, “DSL,” and“WAN,”
corresponthg respectively to the results shavn later in
Figures4(a), 4(b), 4(c), and6. The break-esen respmse
sizes shawn in thetable imply thatDTD woud improve
latencyon cellphoneand modemlinks, and perhaps on
DSL links, given the typical mean respase sizessum-
maizedin Table4 of [16]. DTD would hurt latencyon
high-speedVAN links exceptif its usewererestictedto
relatively large repponses

Eprp =

1)

8 Implementation desgn and experience

Mostof thenew coderequiredfor DTD, using the pro-
ceed model, is locaed in cache implementations. (We
alsoneededsener support for digests;we relied on ex-
isting support for Content-MD5, which is only partially
appropiate; seeSection 5.2.) Both clients (browsers)
andproxieshawe cacdhes; for our experiments, we limited
oursdvesmodifying a proxy cachesener. By runring a
“private” proxy cadeco-locatedwith abrowser we can
emulate mostof the benefitsof integrating DTD into a
browse cache. (It shoud be simplerto addDTD to a
browse cachethan it wasto add it to a proxy cache)

We choseto implement the pure-pracead approad to
DTD as modffications to the Squd proxy sener [34]
(version 2.4.STABLEY). Our codeis available from
http://devel.squid-cache.org/dtd/. The mgor
changes we made are:

¢ Creathga“payload” datatye separte from acade
entry This inverts the exsting data-strature de-
pendencéetwea apayloadanda URL.



¢ Indexing into the payload databaeby digestas well
asby URL.

e Generating a preliminay HEAD requestto obtain
thesener'sdigest

e Cheking the returned digest for DTD-related
HEAD requeds, andgeneating aGET requestif the
digestis not foundin the cache, or if nodigestis re-
tumed.

Our modified Squd uses“Duplicate Storage Avoid-
ance” (DSA). Each distinct payload (i.e., with agivendi-
geq) is stored only once; if thepayload is current for sev-
eral URL s, the URL-indexed entries incorporatethe pay-
load by reference (see http://devel.squid-cache.
org/dsa/).

The DTD and DSA changes together involve abou
3420lines of mosty simple but tedious*diffs’ to Sauid;
much of the new coce represats modified versimsof ex-
isting Squd code. About one third of the new lines are
pre-praeessr directives(e.g.,“#ifdef”).

A cachethat supports partial content (HTTP status-
206respases) mustbe cargul not to assocate anenire-
instance digestwith a storedparial-instancdody; or else
DTD could unwittingly sypply inconplete bodies. Our
implementation doesnot yet suppat partial conent.

In hindsight the choice to modify Squid may have
been a mistake. The exising Squd codeis extremdy
complex and hard to understand, and we found mary
bugsin our own code that resuled from our failure to
maintain poolly documeted invariants expeded by the
restof Squid. We know somebugs reman.

9 Experimental realts

Theanalysisin Secion 6, basel on tracesof red uses,
predictsthebandwith savingsfrom DTD, but cannottell
us how DTD affects latency. To help answe this ques-
tion, we ran experimens using our modified version of
Squd.

9.1 Experimental design

We teded our DTD implementaton in two different
environmens The first was an “Emulated-WAN”" envir-
onmant, in which the two systens (server, proxy+client)
were physicdly close,and conneded by a 10 Mbit/sec
LAN. Wethenemulateda variety of WAN ervironments
using the Dummynet[30] feaure of FreeBSD, which al-
lowed usto chaosea variety of latencyand bandwidths
betwea the sener and proxy, enablhg us to meaure
how DTD performane varieswith network charaterist-
ics. Theseond was a “Red-WAN” environment using
asaverat WorcesterPolytechnic Institute (WPI) in Mas-
sechuset, while the DTD-capableproxy andthe client
ran on asystematthe University of Michigan.

In ourtests, we ran theproxy (modified or unmodfied)
on thesamesysem asthe client, to simulatethe use of a

client cachewith or without sypportfor DTD. All sys-
temswere otherwise unloaded, exceptfor the real-WAN
origin sener.

All of the hostsran Linux, except for the emulated-
WAN sener whichran FreeBSD.TheseaveratWPI uses
Apacde/1.312, while the enulated-WAN sener uses
Apacde/2.047. For theemulated-WAN experiments, the
proxy/client wasa 550 MHz Pentum Il andthe sever
wasa 466 MHz AlphaSever DS10L.For the real-WAN
experiments, the proxy/client was a 4-CPU 450 MHz
Pettium Il andthe severwasa 600 MHz Pentium 11.

We meaureda mean RTT of 42 msecfor the real-
WAN path, and apprximate effective bandwidths from
6.1to 7.7 Mbits/sec In theemulated-WAN testswe used
Dummynetto imposesymmeéric RTTs of 0, 30, and100
msee, and bandwdth limits of 10K, 56K, 384K, 1.5M,
and10M bits/sec

We ran trials with file (body) sizes (not induding
HTTP heades) of 2' bytes, for i = 10,11,...,20; i.e.,
betwe@ 1KB and 1MB.* Eachfile byte wasderivedfrom
apseaudo-randan numbe generatar, thusmaking it diffi-
cult for any network element(suc as amoden) to com-
presshefiles and changeaheir effective transfer sizes.

For each combination of network charateristics and
body size,weran experimens usingthree different proxy
configuations: no proxy, unmodfied Squid, and our
DTD-capabé modified Squid proxy. With unmodfied
Squd, we ran trials wherethe references were arranged
to be compulsoly cachemisses, and trials wherethe ref-
erenceswereguaranteed to becacdhe hits. With our DTD-
cgpabk Squd, we ran compusory-miss, guaranteed-it,
andDTD-only-hit trials; thelastcategorywerereferences
wherewe arranged thatthe cachecortainedan entry with
amatchirg digest value, but not amatchirg URL. We ar-
rangedcompulsay cachemissesby redarting the proxy
software with a cold cache as necesay; we arranged
guaranged hits by careful choice of the referencese
guence andby ensung that the working se¢ wasmuch
smadler thanthe cadesize.

In each setof experiments, we measuredend-b-end
responsdime using httperf [22]. This program reports
the latencybetwee issuing a requestandreceiving the
first byte of the responseheaders(time-tofirst-byte, or
TTFB), aswell asthelatencybetweerreceving the first
byte of the resppnseheadersandthe last byte of the re-
sporse body(transfe duration, or TD). Forthe 1KB body
size the heades and body might fit into one padet, in
which case TD would be negigible. Thetotal respmse
latencyis thusTTFB+TD. In each trial, we used httperf
to fetch “bunches” of 10 distinct files with the same
lengh.

For a given netwak corfiguration, we meaglrre laten-
ciesfor onebunch for each combination of body size and
proxy configuation, thenrepeatthatsetof measirements



N times Resllts in this paper shav the mean for N =9
unlessotherwisenoted.

9.2 Measuredoverheads

The use of a proxy saver introduces overheals that
woud nat be presentif our DTD implemaentation were
integraed into a client cache. Also, Squid is known
to add significant latency due to fundamental design
choices[17]. We can esimate the overheadsimposed by
our implementaton stratg@y of using Squd rather than
an integated client cache; we do this by comparng the
no-proxy latendes with the latencies for cache-missre-

trievals via unmodified Squid
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Figure 2: Overheadimposedby unmodfied Squd

Figure 2 shows the overheals imposedby unmodified
Squid conneted to thesener over baoth afull-speedLAN
and over the WAN path desribed above. In the LAN
case Squid addsalmostno latencylarger thanthetrial-to-
trial measwementerrors(which cause someof the neg-
ative “overheads’in Figure 2(a); theseerrors are below
2% of the total latendes). Overheadsfrom our WAN
tests(Figure 2(b)) are harderto interpret, althoud us-
ing unmodfied Squd seensto consstently improvethe
transfertimes for mostbodysizes. This effect alsoholds
whenwe run experimens using an enulated WAN with
similar dday andbandvidth. We canrot offer a plausible
explanation, but because mostof the resuts in this pa-
percompareperformane for our modified Squid agairst
the unmodfied version, ratherthanagairst the no-proxy
case we leae this mysteryto others.

On our LAN, the TTFB latency differencebetween
a Squid missand a no{proxy operation, for most body

10

sizes,isabout 1 msee. This placesan upper bourd onthe
cache-lokup latency beauseSaquid imposesther over-
heads beyond this lookup, andso confirms our assump-
tionin Sedion 7 thatthelookup latencyis nggligible.

DTD requiresthe origin sever to send the digest of
the paylbad (body). In our experimens, we use the
MD5 digestalgaithm,whosecompuationimposessome
cost[36]. In principle, severscould cache MD5 compu-
tations for frequently-accessedcontent Also, Moore's
Law suggestghatMD5 compugtion will dedine in cost
relatve to speed-oflight latenées. However, current
savers(suchasApache)dona cacheMD5 values, sothe
useof DTD adds this compuational overhead We quan-
tified the costby comparimg the latenciesfor no-proxy
retrievals with and withoutMD5 computaibn enabledat
the Apadhe saver.
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Figure 3 shows the overheas that MD5 imposesfor
aLAN-basal, proxyless configuraton. For bodies smal-
ler than 128 KBytes, the overheas are nedigible (un-
der 3 mse). For larger bodes MD5 compuation adds
measurableoverhea, but still lessthan a tenth of the
absolue responsdime (e.g., 1218 msecfor 1024byte
bodes). Theincreasein respmsetime is smaller than
the increasein TTFB for theselarger sizes, probablybe-
causetheMD5 passeffectively prefachesthefile intothe
saver's file buffer; this prefetching (asFigure 3 implies)
makes the TCPtransfe slightly moreefficient

9.3 Emulated-WAN experiments

Figure 4 shows time-tofirst-byte and total re-
sporse time reallts, in the left and right columns
respetively, for seleted emulated-WAN experiments.
For reasons of space, we only shav resuls for:
(RTT = 100m=q 10Kbits/seq, a plausible cdl-
phane link; (RTT = 100mse¢ 56Kbits/seq, a typ-
ical dialup modem; (RTT = 30mse, 384Khits/ser),
a DSL connedion to a regional sener; and (RTT =
100mses, 10Mbits/seq), abadcas for DTD beausethe
RTT and bandwidth are both high.

For all combirations of nework paranetersthat we
tested,the TTFB latencyfor a DTD-only hit is slightly
abose one RTT (appoximately the TTFB of a cace
miss), aswe would expect from the cost of the HEAD
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Figure4: Emulatd-WAN resuls

operatim. The total resporse latency for a DTD-only
hit is also approximately one RTT, becaiseno body is
transferredrom origin severto cade. (Thecadeis co-
locatedwith theclient, sothereis almostno transfer cost
betwea thoseagents.)
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The total latency for compukory miss by a DTD-
cgpabk cachewill beore RTT higherthanthat of atradi-
tional cadhe. This is clearly visible in the left column
of figures (the log scale makes it less visible in the
right column,whereresuls aresanetimesdominaed by



bandwidthinduceddelays).Thisis a penalty that aDTD
cadhe must makeup by its improved latencyon DTD-
only hits, with regect to the conventiona missesthat
they displace

A DTD-only hit shodd never hawe a higher total
latencythan a corventional missby a non-DTD cache
but it can be muchlower if the corventiona missincurs
alargetransfercost. For examplejn Figure 4(a—), ata
body size of just 8 KBytes, the total latencyis signific-
antly lower for a DTD-only hit than for a conventional
miss. In Figure 4(d), however, DTD shaws no latency
bendit except for very large bady sizes beausehehigh
bandwidth minimizestransfer cost, while the high RTT
domirates total latency

Note thatwhile Figure4 showsthatDTD-only hits can
be muchfader thanthe conventionalmissstheyreplace,
withoutknowing the varioushit ratios (seeSection 7) one
cannd infer whetherDTD providesa net benefit.

9.4 Real-WAN experiments
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Figure5 and 6 show, regectively, thetime-tofirst-byte
and total reponsetimeresuls for our real-WAN experi-
mens. (In thisexperment N = 21.) Theseresuls agree
quite closdy with our emulated-WAN resuts (not shavn
in Figure4) for similar RTT and bandvidth.

9.5 Implicationsof results
Ourexperimentatesultsgenerdly confirm theanalytic
modd in Section 7, althouch our experiments do nat at-
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temptto model missratios.

We canevaluatewhetter DTD is benefical at a par-
ticular point in the parameter space For this exanple,
we assune the miss ratios reported from the WebTV
trace in Section 6, 10% for a DTD client cache vs.
13% for a corventional client cache, and assume that
these ratios are independenbf respase size. Using
the resuls in Figure 4(b), a modem use with (RTT =
100mses, 56Kbits/sec) who retrieves a numbe of 8
KByte files woud have a mean expectedlatency im-
provementusingDTD of about 15 msec(comparedo an
overall expectedmean, without DTD, of 185mseq. The
sane use retiieving a number of 32 KByte files would
seeamean improvementof 126 msee (vs. an overallnon-
DTD mean of 661 mseg.

A user on a slowver nework, with (RTT =
100mses, 10Kbits/sec), woud see even largerimprove-
ments from DTD. However, a userof our relatively good
WAN connectionwould seea netlatency lossfrom DTD
for body sizesbelow a break-esen point of about 64
KBytes SincemostWebresponsesre simaller thanthat,
ongood WAN links one might only wantto useDTD for
spedal taskssud as downloading sdtware (the original
motivation for DRP[38]).

10 Seaurity considerations

Measureghatimprove the perfamanceof computing
systemsoften crede sibtle searity vulnerabiities, and
caching is aprime example. Timing attackson processor
memory hierarchieshave been known for deades e.g.,
the famous TENEX password attack [35, pp. 183-4]. Re-
cently Felien etal. have descibed varians applcable to
Webcading [8]. DTD addsatleasttwo addtionalsecur
ity prodems.

First, if an attadker can generatepayload digest col-
lisiors, thenshecancausea DTD proxy to ddiver in-
corred payloads. The detaik are omitted here but are
awailablein [14]. The attad is straightforward and can
be prevented through the use of secure messagedigest
functions (seeSection 10.1)

A more subte probdem involvesinformation leakage;
interestingly, the attack does not rely on timing informa
tion of anykind® A sener can exgoit DTD to learnthe
conents of aclient's cache:

1. Use Bob's browse and the nosy.com sener em-

ploy DTD.

Bab issues arequesfor uninterestng URL

http://nosy.com/humdrum.html.

nosy.com replieswith digestfaughty.gif), even

thoughit never receives or senes requess for this

interesting payload.

. Bob's browse fails to retrieve the full paylad,
therebyrevealing that Bob already hasit.

2.

3.



Sophsticatedimplementtions of this attack might em-

ploy JavaScipt within HTML pages to systematically

sard a client's cachefor interesing payloads,anala-

ousto the timing attadks descibed by Felten et al. [8].

Attacksof this form can be detectedeasily, by simply re-

trievng afull paylcad andverifying thedigest previously

obtainedfrom the sener. Furthermore suchattadks can
be avoided if the client simply refrains from enploying

DTD when communcating with untrustedsites. Another
possitke countermeasureis to emplgy DTD only within

sites;in the exampleabove, Bob's browserwould always
fetch paylbadsexceptwhenit found a matchsuppled by

the same sever. This ensues that DTD reweds nothing

about Bob's surfing thatthe server doesn't already know.

However this approachmay seerely limit the benefits
of DTD, becausemostaliasng occursacrosssitesrather
thanwithin sites[16].

10.1 Choiceof digest algorithm

DTD would be urreliable if the digest function were
prore to acddentalcollisions under normal usage MD5
might not besufiicientfor widespreaddeployment; if not,
onecould achievean arbitrarily low rate of accidentalcol-
lisionsby increasing the hashsize, at the costof slightly
higher overheals. (Henson[12] discusse somerisks as-
sodated with digest-tased protocols; we disagreewith
someof the conclusionsin thatpaper)

DTD woud bevulneraleto attad if it were computa-
tionally feasible to generatedigest collisionsddiberately.
Ourwork hasassume the useof MD5 [29], but MD5's
colli sionregstancehas been questoned[31]. Other al-
gorithms, such as SHA1[24], mightbemore appopriate.

11 Future work

We seemany possble extensiors of this work. We
would like to explore andevaluatethe protocol alternat-
ivesin Section 5, andperhaps to unify DTD with similar
tedhniques suchas rsyrc [37]. We would alsolike to see
thetracebasedanalysisof Section 6 appledto abroader
sd of traces. One could alsoimprove on our synhetic
bendmarksby using miss-rato and resporse-length dis-
tributions taken from traces.

Neither our model nor the origind Squd codebas
suppaets pipelining, which is known to bendit HTTP
performane in general[25], and ouglht to improve the
tradeof in favor of DTD; evaluaion of a pipelined DTD
cadhe would requre shiftingto anew codebase

Because a DTD cache, urlike a tradiional cache
might store multiple enties per URL, cacde replace-
ment policies designedfor traditional caches might in-
terect poaly with DTD. We suspect that the most nat-
ural replacementpolicy for DTD is to redefinean exist-
ing policy with respect to uniqueinstancesratherthanto
URLs. While we have not yet evaluatedsuchpadlicies, we
believe thata DTD cache with sucha policy will not suf-
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fer a highermiss ratethana convenional URL-indexed
cachewith the analogous pdicy.

12 Summary and conclusiors

This paperhasdesribed how Duplicate Transfer De-
tection can be implementedin HTTP without expli-
cit protocol changes,and briefly sketched sewerd al-
ternatve designs. We shaved, using two real-world
traces, how DTD coud reducemiss ratesand bandwidth
requrements—149% to 15% of the bytes transferred in
our traces. We provideda simple modelto shav when
useof DTD should reduceexpectedlatency relative to a
conventiona cache. We described a simpleimplement-
tionof DTD for Squd. Usingtestsof red andemulated
WANSs, we shaved measurements that clarify the cond-
tionsunderwhich DTD reducesoverall latency For real-
istic hit ratios and resporsesizes,DTD doesprovideanet
latencybenefit for somecommon network ernvironments.
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