

Design, Implementation, and Evaluation of Duplicate
Transfer Detection in HTTP

Jeffrey C. Mogul, Yee Man Chan, Terence Kelly
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2004-29
February 18, 2004*

E-mail: JeffMogul@acm.org, ymc@shgc.stanford.edu, terence.p.kelly@hp.com

HTTP, aliasing,
duplicate transfer
detection

Organizations use Web caches to avoid transferring the same data twice
over the same path. Numerous studies have shown that forward proxy
caches, in practice, incur miss rates of at least 50%. Traditional Web
caches rely on the reuse of responses for given URLs. Previous analyses
of real-world traces have revealed a complex relationship between URLs
and reply payloads, and have shown that this complexity frequently
causes redundant transfers to caches. For example, redundant transfers
may result if a payload is aliased (accessed via different URLs), or if a
resource rotates (alternates between different values), or if HTTP's cache
revalidation mechanisms are not fully exploited. We implement and
evaluate a technique known in the literature as Duplicate Transfer
Detection (DTD), with which a Web cache can use digests to detect and
potentially eliminate all redundant payload transfers. We show how
HTTP can support DTD with few or no protocol changes, and how a
DTD-enabled proxy cache can interoperate with unmodified existing
origin servers and browsers, thereby permitting incremental deployment.
We present both simulated and experimental results that quantify the
benefits of DTD.

* Internal Accession Date Only
To be published in and presented at the First Symposium on Network Systems Design and Implementation, 29-31
March 2004, San Francisco, CA Approved for External Publication
 Copyright Hewlett-Packard Company 2004

Design, Implementation, and Evaluation of
DuplicateTransfer Detection in HTTP

JeffreyC. Mogul
HP Labs

Palo Alto, CA94304
JeffMogul@acm.org

YeeManChan
Stanford HumanGenomeCenter

Palo Alto, CA 94304
ymc@shgc.stanford.edu

TerenceKelly
HP Labs

Palo Alto, CA94304
terence.p.kelly@hp.com

Abstract
OrganizationsuseWebcachesto avoid transferring the

same data twice over the same path. Numerousstudies
have shown that forward proxy caches,in practice, incur
missratesof atleast50%. Traditional Webcachesrely on
thereuseof responsesfor given URLs. Previousanalyses
of real-world traces have revealed a complex relation-
shipbetweenURLs andreply payloads,and have shown
that this complexity frequently causes redundanttrans-
fers to caches.Forexample, redundant transfersmay res-
ult if a payload is aliased (accessedvia differentURLs),
or if a resource rotates(alternatesbetweendif ferentval-
ues), or if HTTP'scacherevalidation mechanismsarenot
fully exploited. We implement andevaluatea technique
known in the li teratureas Duplicate TransferDetection
(DTD), with which a Web cachecanuse digeststo de-
tect andpotentially eliminateall redundant payloadtrans-
fers. We show how HTTP can support DTD with few
or no protocol changes,and how a DTD-enabled proxy
cache can interoperatewith unmodified existing origin
serversandbrowsers,therebypermitting incrementalde-
ployment. We present both simulated and experimental
results that quantify thebenefits of DTD.

1 Intr oduction
Webcachesarewidely usedto savebandwidth andim-

prove latency. However, numerous studies have shown
that, in practice, forward proxy caches (i.e., shared Web
cachesusednearclients) incur missratesof 51-70%,and
byte-weightedmiss ratesof 64-86%[27,40]. Evenwarm
cacheswith infinitestoragecannot eliminateall misses.

In this paper, we are specifically concernedwith re-
dundant payload transfers, i.e., caseswhere a payloadis
transmitted to a recipient that has previously received it.
In a traditional Web cache, eachcacheentry is indexed
by a given URL. If a subsequent request arrives for that
URL, andthe cachecannotsatisfy the request (it “mis-
ses”), it forwards the requestto theorigin server, which
normally generatesa reply containing a payload (Sec-
tion 4.2 givesa careful definition for “payload”). If that

exactpayloadhaspreviously been receivedby thecache,
wedefinethis asa redundantpayload transfer.

Othershave identified the problem of redundantpay-
load transferson theWorld WideWeb, quantified itspre-
valence, and explored a rangeof possible solutions [2,
16,28]. According to one measurement, over 20% of
payload transfersbetween origin serversand proxiesare
redundant [16].

We do not know all causes of redundant transfers.
Many result from threecommon phenomena: aliasing,
in which the same content is referenced under two dif-
ferent URLs; rotation, in which thesamecontent is refer-
encedtwiceunderasingleURL, but anintervening refer-
enceto thatURL resolvesto dif ferentcontent;andabsent
or faulty metadatathatcausesavoidablerevalidation fail-
ures.

We previously proposeda technique called Duplic-
ate TransferDetection (DTD) [16] that allows any Web
cache to potentially eliminate all redundant payload
transfers,regardlessof cause. DTD usesmessage di-
geststo detectredundant transfers beforethey occur. In
its useof digeststo detect duplication, DTD is similar
to approaches developedfor othercontexts, e.g., router-
to-router packet transfers[32] andfile systemsfor low-
bandwidth environments[23]. Unlike an alternative pro-
posal for eliminating redundant HTTP transfers [28],
DTD doesnot require soft state that scaleswith thenum-
berof clientsand thesizeof responses.

In [16] we did not propose a concreteprotocol design
or describeanimplementation of DTD, nordid wemeas-
ure its impact on client latency. In this paper, we show
how one can usestandardHTTP, with few or no expli-
cit protocol changes, to support DTD without relying on
any additional semantics, naming mechanisms, valida-
tion mechanisms,or cooperation with or betweenorigin
servers. This allows a DTD-enabledcacheto interoper-
atewith unmodified existing origin serversandbrowsers,
therebypermitting smooth, incremental deployment.We
describehow to implement DTD in a Web cache, and re-
port on experiments showing that it can accomplish its

1

goal of completely eliminating redundant transfers.We
quantify the benefits of DTD using both experimental
measurementsof ourimplementation, andsimulationres-
ults.

Themaincontributionsof thispaper areawell-defined
protocol specification for DTD, the design of a real im-
plementation of DTD, and performance evaluations of
DTD.

2 Why eliminate redundant transfers?
Our DTD proposal doesnot reducethe number of

times an HTTP cache mustcontact an origin server; it
only reducesthenumber of responsebodies thatmust be
transferred.What makesthis worthwhile?

Eliminating redundant transferscan improve at least
four metrics:

Bandwidth : Web caches are often deployed to reduce
bandwidth requirements(over half of large com-
paniessurveyedin 1997cited bandwidth savingsas
their motivation for Web caching [11]). Redund-
ant transfers consume bandwidth andincreasepeak
bandwidth requirements.

Latency: Eliminating a redundant transfer can save
latencyin two ways: directly, by making the res-
ult available sooner(i.e., without having to wait for
the redundant transfer to finish), and indirectly, by
reducing channelutilization and therebyreducing
queueingdelaysfor subsequentresponses.

Per-byte charges: Network tarif fs areoften flat-rate, but
not always. In particular, wireless-datatariffs range
from a few dollars to tens of dollars per Mbyte [3].
Redundant transfersonsuchnetworksdirectly waste
money.

Energy: Studieshave shown thatenergy consumption for
wireless(andhenceportable) networking is at least
somewhat dependent on the amountof datatrans-
ferred [10]. Eliminating some redundanttransfers
might thereforeimprove batterylife.

In our previous study, using two large real-world
traces, we showed that roughly 20% of payload trans-
fers betweenorigin serversandproxycachesare redund-
ant [16]. Therefore, a solution to the redundant-transfer
problem could yield significantsavings onsomeor all of
themetrics listedabove. In this paper, weconcentrateon
quantifying theseimprovements.

3 Related work
The first published suggestion to eliminate redund-

ant HTTP payload transfersusing messagedigests,and
a trace-based evaluation of its impact on Web cache
hit rates,appeared in [15]. A recent unpublished un-
dergraduatedissertation [4] develops a similar idea for
GPRSWeb access.

Santos & Wetherall [32] and Spring & Wetherall [33]

describe protocol-independentnetwork-level analogues
of DTD that employ packetdigests to save bandwidth.
Muthitacharoenet al. designeda network file system for
low-bandwidth environmentsthat performssimilar oper-
ationson chunksof files [23].

Web cachescan use payloaddigests to avoid wasting
storageaswell asbandwidth. We have implementedthis
natural counterpart of DTD (seeSection 8) but we are
not the first. Bahnet al. report that by using digests to
avoid storing redundant copiesof payloads a Webcache
can reduceits storagefootprint by 15% andincreaseits
hit rates[1]. Inktomi Corporation has patented such a
scheme[18].

A variety of “duplicate suppression” schemes have
been proposedfor the Web. Thesediffer from DTD
chiefly in that 1) they aretypically end-to-endmechan-
ismsrequiring theparticipation of orgin servers,whereas
DTD canbeused hop-by-hop at any level of acachehier-
archy, 2) theyavoid theextraroundtrip thatsomevariants
of DTD suffer upon amiss,and3) theycan reducebut not
eliminate redundant transfers. Mogul [19] reviews sev-
eral duplicatesuppression schemes(e.g.,theDistribution
andReplication Protocol (DRP) of van Hoff et al. [38])
andreported that they improve hit ratesby modest mar-
gins,atbest.

Previous studies have shown that redundant pay-
load transfers on the Web are caused by complexit-
ies in the relationship between URLs and reply pay-
loads (e.g., aliasing and rotation) [16], andby deficien-
ciesin cachemanagementalgorithmsand server-supplied
metadata [41,42].

Rheaet al. describe a sophisticatedgeneralization of
DTD called “Value-Based WebCaching” (VBWC) [28].
WhereasDTD operateson entire payloads,VBWC de-
tectsandeliminatesredundanttransfers atfinergranular-
ity by employingfingerprintscalculatedonvariable-sized
blocks. Block boundariesare computed as in Spring &
Wetherall's approach [33]. In VBWC, editing a file af-
fectsonly payloadblocksin theimmediateneighborhood
of thechange,ensuring thatminor changesdon' t elimin-
atebandwidth savings. Rheaet al. implemented VBWC
andevaluatedit by polling seventeen popular Web sites;
their evaluationalso includescomparisonswith deltaen-
coding. Theydid not evaluateVBWC basedonan actual
clientor proxy reference stream.

DTD sometimes entails an additional round trip
between client and server, but requires no additional
server state. By contrast, VBWC proxies must expli-
citly track client cachestatein order to avoid the extra
RTT except in rare circumstances. This is soft state, but
it scaleswith both the numberof clients andthesize of
responses,which makesVBWC less easily deployable
than DTD. VBWC is also harder to evaluateusing an-
onymizedtraces,becauseexisting tracesthatincludeonly

2

MD5 digests of responsebodiescannotbeusedto com-
pute partial-payload fingerprints.

VBWC wasdesigned to berunbetween anISP'sproxy
and the endclients. While DTD can be usedserver-to-
client or server-to-proxy, it can also be used proxy-to-
client or proxy-to-proxy. In the latter cases, DTD im-
posesa store-and-forwardcost(for computing thedigest
at the first proxy) on theentire payload,while VBWC's
store-and-forward costs are per-block and thus poten-
tially smaller. We do not yet know how significant these
overheadsare.

4 Duplicate Transfer Detection
Motivated by the wish to eliminate redundant HTTP

transfers,we proposed“Duplicate TransferDetection”
(DTD). This solution applies equally to all redundant
payloadtransfers, regardlessof cause. Herewe provide
an overview of DTD (derived from [16]), and discuss
several general design issues. In Section 5, we wil l
present a more detailed protocol design, showing how
DTD can be defined as a simple, compatible extension
to HTTP/1.1 [9].

4.1 Overview of DTD
First, consider the behavior of a traditional HTTP

cache, which werefer to asa“URL-indexed” cache,con-
frontedwith a requestfor URL U . If the cachefindsthat
it doesnot currently hold an entry for thatURL, this is a
cachemiss,andthecacheissuesor forwardsarequest for
theURL towardstheorigin server, whichwould normally
senda responsecontaining payload P. (If thecachedoes
hold anexpired entry for the URL, it may send a “con-
ditional” request, andif theserver's view of theresource
hasnotchanged, it mayreturn a“Not Modified” response
withoutapayload.)

Now supposethat an idealized, infinite cacheretains
in storageevery payload it has ever received, whether
or not thesepayloads would be consideredvalid cache
entries. A finite, URL-indexed cachedif fers from this
idealization becauseit implementsboth an updatepolicy
(it only stores the mostrecent payload received for any
given URL), and a replacement policy (it only storesa
finite set of entries).

The concept behind Duplicate TransferDetection is
quite simple: If our idealized cache candetermine, be-
fore receiving the server's response,whetherit had ever
previouslyreceived P, thenwecanavoid transferringthat
payload. Sucha cachewould suffer only compulsory
misses andwould never experienceredundant transfers.
A finite-cacherealization of DTD would, of course,also
suffer capacity misses.

How doesthe cache know whether it hasreceived a
payloadP before the server sends the entire response?
In DTD, the server (origin server or intermediate proxy
cache) initially replieswith adigestD of thepayload,and

the cachechecksto see if any of its entries hasa match-
ing digest value. If so, thecache can signaltheservernot
to send the payload(although the server muststil l send
the HTTP message headers,which might be dif ferent).
Thus,whileDTD doesnotavoid therequestandresponse
messageheaders for a cache miss,it canavoid thetrans-
fer of any payload it hasreceived previously. We say a
“DTD hit” occurswhenDTD preventsa payloadtransfer
that would haveoccurred in aconventional URL-indexed
cache.

An idealized DTD cachestoresall payloadsthat it has
received,and is ableto look up a cached payloadeither
by URL or by payload digest. In particular, it does not
deletea payloadP fromstoragesimply because it hasre-
ceived a dif ferentpayloadP

�
for the same URL U. A

realistic DTD cache, with finite capacity, mayeventually
deletepayloadsfrom its storage, basedon somereplace-
ment policy.

4.2 What is a “payload”?
We have describedDTD asoperating on “payloads.”

In orderto preciselyspecify DTD, wemustalsoprecisely
specify theterm“payload.” That is,overwhatset of bytes
is a digest calculated?

HTTP servers (the term “server” includesboth origin
serversandproxies)can sendresponsemessagescontain-
ing either the full currentvalue of a resource, a partial
responsecontaining one or moresub-rangesof the full
value, or morecomplex partial responses (suchaswith
delta encoding [21] or rsync [37]). HTTP responsescan
alsobe encodedusing various compressionformats, or
with “chunked” encoding.

Whatever the format of the response, theultimatecli-
ent almostalways wants to obtain a full current value
of the referenced resource.1 One of us introduced the
term “ instance” to mean “The entity that would be re-
turned in a status-200 response to a GET request, at
the currenttime, for [...] the specified resource,” in an
IETF standards-trackdocument specifyinghow to extend
HTTP/1.1to support “instancedigests”[20]. An instance
consists of an “instance body” andsome“instancehead-
ers.”

Our DTD design equates “payloads” and “ instance
bodies.” That is, servers provide instance digests, and a
cacheentry is indexedby thedigestof the instancebody
it stores.

Onecould imaginean alternative in which DTD's di-
gestsare computed on HTTP messagebodies, which
might be partial responses. However, this seems less
likely to eliminate redundant transfers; two partial re-
sponses for the same instancemight not spanthe same
range.

The “payloads are instance bodies” model works
nicely with partial responses. Forexample, if a client re-

3

questsbytes0-10000 of URL X, and the server responds
with a digestof the entire instance body, a DTD client
checks its cachefor a matching instancedigest. If such
an entry is found, the transfercan beavoided; theclient
caneasily extract therequired byte-rangefrom its cache
entry, rather than relying on theserver's extraction.

Nothingin theDTD designpreventsacachefrom com-
puting digestson non-instancedata(suchas partial re-
sponses,encoded responses, etc.) and matching incom-
ing instancedigests against cached non-instance data.
Our intuition, however, is that such matcheswil l occur
too rarelyto justify the additional overhead.

4.3 Deployment of DTD
DTD is bestthought of asa hop-by-hop optimization

of HTTP caching,2 which can be implemented between
any HTTP server and client (either one of which could
bea proxy; DTD canbe implementedbetween any data
sender andreceiver). In particular, DTD canbedeployed
unilaterally by anorganizationthatcontrolsboth browser
and proxy caches, e.g., AOL or MSN. It can also be
deployed incrementally by any implementor of clients,
servers,or proxies,becauseit is alwaysoptionalfor either
end of a transfer. In the experiments described in Sec-
tion 9 we demonstrate that DTD can be enabled purely
throughproxy modifications,if theorigin serversupports
digestgeneration.

DTD'smainrequirement for server implementors is to
computeandsendinstancedigests. Thealgorithmused to
compute the digestvalueD mustnotusetoomuch server
CPU time, and the digest representation mustnot con-
sumetoo many bytes, or elsethe cost of speculatively
sending digestswil l exceed thebenefits of theDTD hits.
Also, the digest must essentially never yield collisions,
or else the client could endup with the wrong payload.
A cryptographic hashalgorithmsuch asMD5 [29] might
havetherightproperties.Wewil l assumetheuseof MD5
for this paper; Section 10.1 covers some issuesin the
choiceof digest algorithm.

Note that DTD doesnot inherently require theclient to
computeany digests,if all serverssend digests. However,
to check againsttransmission errorsor servers sending
bogus digests, clients should probably compute digests
anyway (seeSection 10).

5 Protocoldesign issues
Our previous paper [16] briefly covered protocol

design issuesfor DTD. In this section, we expand that
discussion, including mechanisms for suppressing data
transferandspecific HTTPmechanismsto supportDTD.

5.1 Options for suppressing data transfer
Onekeyaspect of DTD isthemechanismby whichthe

client avoidsreceivingapayload,if thedigestD matches
an existing cache entry. This could beaccomplished by

deferring the transfer until thedigest can bechecked,or
by aborting thetransfer in progressif thedigest matches
somecacheentry.

In thefirst category of approaches,theserversends the
responseheadersbut deferssending thepayload until the
client sendsanexplicit “proceed” message. In the other
category, theserver sends thepayload immediately after
the headers,but stopsif theclient sendsan “abort” mes-
sage. The“proceed” model imposesanextra round-trip
time(RTT) on every cachemiss,but never sends anyre-
dundantpayload bytes. The “abort” model imposesno
additional delays, but theabort messagemay fail to reach
theserver in timeto saveany bandwidth. Thus,thechoice
between alternatives requires consideration not only of
implementation issues,but alsoof the magnitudeof the
RTT, andwhether oneis moreconcernedwith optimiz-
ing bandwidth util ization or latency.

Each of thesebasicmodels allowsseveral alternatives.
Theseinclude:

Pure-proceed: Upon receiving the client's request,the
HTTP server replies only with the HTTP headers
(including digest D). Theclient sends a “proceed”
messageif D is notfound in itscache,and theserver
sendsthe HTTPbody (payload).Otherwise, no fur-
ther messagesare sent.

Proceed/don't bother: In the pure-proceed alternative,
the server might need to buffer responsesindef-
initely, waiting for a possible “proceed” message.
The “proceed/don't bother” alternative addresses
this concernby allowing theclient to senda “don't
bother” message, if digest D does matcha cache
entry; the messageallows theserver to freethebuf-
fer more quickly.

Auto-proceedfor short responses: The proceed model
risks exchanging an extra setof headersanddelay-
ing an extra RTT. For short payloads, the trans-
fer time saved by a DTD hit might not be worth
this overhead. The server could optimize the short-
payload case by sending the payload immediately
for payloadsizesbelow a threshold.

Abort: The server sends the payload immediately after
the HTTP headers(asin normal HTTP operation).
Theclient sendsa special HTTP “abort” messageif
digestD matchesa cache entry, telling theserver to
terminate the transferassoonaspossible.

Notethat in theproceed model,noteverypayloadneed
be delayed. Web pagesoften include multiple images;
for example, we previously found 8.5 image references
per HTML reference in an uncachedreference stream,
and1.9 images per HTML reference in a client-cached
stream[16]. A client that pipelines [26] its requestsfor
imagescan alsopipeline its “proceed” messages. Thus,
the extra RTT delay can beamortized over all of the im-

4

ages on a Web page,rather thanbeing paidonceperim-
age.

In this paper, we examine only the pure-proceed
model, for reasonsof spaceandsimplicity.

5.2 Extending HTTP to support DTD
Thechangesrequired to extend HTTP/1.1 [9] to sup-

port DTD depend on which transfer-suppressionap-
proachis chosen. The“pureproceed” approach to DTD
can be implementedwithout any changesto HTTP/1.1
beyondexisting IETF standards-track proposals.

Theclient first usesmechanismsspecified in the Pro-
posedStandard for instancedigests [20] to obtaincurrent
instance headers, including aninstancedigest.It obtains
theseviaaHEAD request,whichpreventstheserver from
sending an instancebody [9, Section 9.4]. If the client
finds no cacheentry with a matching instancedigest,or
if a non-DTD server fails to return a digest, the client
simply issuesa GET request to obtain the full instance
body.

This protocol design, while simple, hasseveraldraw-
backs:

� It potentially addsoneextra RTT per miss: The
client sendsboth a HEAD anda GET requeston a
DTD miss,sothis could add anextraRTT of latency
per request. In practice, most HTTP requestsare
for images embeddedin HTML pages,which al-
lowsanHTTP/1.1client to pipeline someor all of a
page's image requestsin onetransmission(and the
server can likewise batchthe HEAD and GET re-
sponses).So for typical compound Web pagesthe
pure-proceed approach adds at mosttwo additional
mandatory RTTs: onefor theHTML containerand
onemore for all of theembeddedimages.� It addsan extra setof request and responsehead-
ers per miss: This cuts into the bandwidth savings
offeredby DTD. Therefore,DTD is not worth do-
ing if the mean savings(in response-bodybytes) is
smaller than the sum of the mean request and re-
sponseheaderlengths (seeSection6.1).� It depends on request idempotency: If the
(HEAD, GET) sequencehad different side effects
than a single GET request on the same URI,
this would give DTD incorrect semantics. The
HTTP/1.1 specification recommends that “ theGET
and HEAD methodsSHOULDNOT havethesigni-
ficanceof taking an action other than retrieval,” [9,
Section 9.1.1],but somesites might ignore this re-
commendation. If so, DTD clients might need to
apply some heuristics, such as not issuingthe ex-
tra HEAD requeston URLs containing “?”, or (per-
haps)usingDTD only for embeddedimages.� The server might never send a digest:HTTPserv-
ers are not required to send instancedigests, and

there is no (current) mechanism to discover if a
server would ever sendone. The client could thus
incur all of the costslisted above, with respect to
a given server, without ever gaining a benefit. Cli-
entsmight need to ceaseusing this DTD approach
with any server thatfails to senda digest after some
threshold number of requests.

Figure 1 shows an example of the HTTP messages
between a client and server for a DTD miss. For a
DTD hit, the secondpair of messages would simply be
omitted. The

�������
	���
��������
and

��
��������
headers arede-

scribed in RFC3230[20]; all other headersarestandard
in HTTP/1.1[9].

Using
��������	���
��������

and
��
��������

is the “ right” im-
plementation of DTD, becauseit works evenfor partial-
content responses,isextensibleto digestalgorithmsother
than MD5, andavoids unnecessary digest computations
at the origin server. But since RFC 3230 is not widely
implemented,we testedDTD using the ��� ���
������	������
support available in major Webservers (e.g., Apache and
IIS). This is sub-optimal becauseit doesnot allow the
server to avoid computing MD5s whentheclient has no
usefor them.

Thepure-proceed approach is equally usablehop-by-
hop or end-to-end, because any intermediate proxy can
generate or check digests. (A proxy-to-proxy imple-
mentation mustuse

��
��
�
���
becauseHTTP/1.1 [9, sec-

tion 14.15] specifically prohibits proxies from adding
��� ���
������	������ .) Note that proxy-to-client or proxy-to-
proxy DTD could impose an extra store-and-forward
delay, while the first proxy computesthe digestheader.
(Someexisting proxies might alreadybuffer short re-
sponses,in any case.)

6 Trace-basedperformanceanalysis
Section 9 presentsmeasured performanceof anactual

DTD implementation. However, thosemeasurementsare
driven from a synthetic reference stream, which can-
not prove how frequentredundant transfersare in real-
world workloads.Herewe analyzetwo real-world traces
to show how many redundanttransfers, and how many
bytes, could beeliminatedby DTD.

Relatively few existing client andproxy HTTP traces
includetheresponsebody digestsweneeded for ourana-
lysis. For example, the trace used by Douglis et al. [5]
may have beenlost in a disk crash; other such traces
are unavailable due to proprietary considerations. We
re-analyzed theanonymizedclient andproxy traces from
our prior study [16]. These were collected,respectively,
at WebTV Networks in September 2000 and at Com-
paqCorporation in early 1999. The WebTV trace was
made with client cachesdisabled; both traceswere made
without proxy caching. Both traces includean MD5 di-
gestfor each payload transferred.TheWebTV trace in-

5

First client request: Second client request:� ��!#"%$'&)(�* +-,/. $ 0/1/+-1�23+�&54%��6 6/7-$�8�258 9��#6:$�&)(�*/+-,/. $ 0/1/+-1�23+�&)4:�/6 6/7-$�8�258�-1�.<;�=>,/?/*<(�@-0 ,�23A 15(��1#.B;
=>,/?/*<(�@'0 ,�2)A 1C(D-*BEB;�F<"�&<+ , ./;�=HG "-I
Second server response:

First server response:
��6#6�7-$�8�258KJML L%N/O� 6�6#7�$ 8�258KJ/L/LPNMO "�*#;�,�=H6/Q-,�RTS LVU/Q-0WJ<L�L-JW85X
=3S/L
=3L/Y%9MG-6" *�;B,�=H6/Q-,�RTS LVU/Q'0VJML L�JW8<X�=3S L�=3L-IZ9MG-6 "�&[+�, .M;
=\(�] I/^ �M_-`-aMb-cBb<G�Q'd/$/O a I/O/"-A/U/7-A NM! ^�^"�&M+B,�.<;�=\(�]-IM^ �/_ `-a/b c/bMG Q�d#$BO-a/I/O " A/U 7 A NM! ^ ^ e�*BA#f',/F A 1gE-;/h-1 0�=i(�* ?�F<*�+-,M^ S/Y L Le *�A5f�,#F�A 1gE-; h 1 0�=\(�*/?-FM* +�,<^�S Y/L L ��6#*�+
=kj<?/l m/m l�j� 6�*#+�=kj<?/l m m/l�j
(messagebody omitted)

Figure1: Exampleof HTTPmessages(pure-proceed approach).

cludes326 million references from 37 thousandclients
to 33 mill ion URLs on 253thousandserversoversixteen
days; the Compaqtrace includes 79 mill ion references
from22thousandclientsto 20mill ionURLson 454thou-
sand serversover 90 days. Many further details of these
tracesaredescribed in [16] andareomittedherefor space
reasons.

Given arequestfor URL X thatresultsin reply instance
bodyB, thefollowing propertiesmay or may not hold:

i) thereexistssomeURL Y suchthatY no X andB was
themost-recentinstancebody for Y.

ii) thereexistssomeURL Z suchthatZ no X and B was
a pastinstancebody for Z, but not themostrecent.

ii i) B was a pastinstancebody for X, but not themost
recent.

iv) B wasthemostrecent instancebody for X.

Properties (ii i) and (iv) are mutually exclusive, but any
other combination ispossible, soatotalof twelvepossib-
il itiesexist: a giventransactionmight have noneof these
properties (if it hasnever been seen before), or several
at once (e.g., both most recent for X andmost recent for
Y no X).

We analyzedboth theWebTV andCompaqtraces ac-
cording to this categorization. Theresults arein Tables1
and 2 respectively. The cold-startresults cover the en-
tire traces.Consistent with our earlier methodology[16],
for thewarm-start results we (only somewhatarbitrarily)
warmthesimulated cachewith the first 186 milli on ref-
erences (for WebTV) or 50 million references(for Com-
paq).

In the WebTV warm-startresults, 10% of the trans-
fersinvolvepayloadsnever beforeseenin thetrace(“new
payloads”); these wil l miss in any kind of cache. An-
other 87% have property (iv), for which a traditional, in-
finite cache with perfect revalidation would avoid a pay-
load transfer. (This “hit rate” seemshigh, but remember
that the WebTV tracewasmadewith client cachesdis-
abled.) Theremainder, about 3%, are transfers thatDTD
would avoid. In otherwords,a traditionalURL-indexed
cache would see a missrate of at least13%, compared

to a DTD-cache missrate of 10%; DTD would eliminate
23%of a conventional cache'smisses.

In the Compaqwarm-start results, 37% arenew pay-
loads, and55% have property (iv). The remainder, about
8%, are transfers that DTD would avoid. A traditional
cachewould seea missrate of 45%, versusaDTD-cache
missrate of 37%; DTD would eliminateroughly 18% of
a conventionalcache's missesfor this trace.

If we restrict the DTD implementation to save at most
one entry per URL (i.e., to store no more entries than
a traditional cache), then the DTD cache will require
transfersfor properties (ii) and (iii), but will still avoid
transfersfor property (i). In this situation, DTD would
avoid 2.6% of thetransfersin theWebTV trace,and5.8%
of the transfersin the Compaqtrace, assuming a warm
cache. (Thesevalues are the sums of the Warm-start
Transferscolumn for rows whereproperty (i) holds and
property (iv) doesnot.)

Weighting the results by bytes transferredbetter de-
scribes bandwidth savings, of course. Looking just at
the warm-cachedata,new (i.e., mandatory-transfer) pay-
loads account for 30% of theWebTV bytes,and 57%of
the Compaq bytes. Variationsof property (iv), hits for a
perfect traditional cache, account for 64%of the WebTV
bytes, and34% of the Compaqbytes. Thetransfersthat
DTD would avoid account for 5% of the WebTV bytes,
and9%of the Compaqbytes.

In other words,atraditional URL-indexed cachewould
see a byte-weighted miss rate of at least 36% for the
WebTV trace, comparedto a DTD-cache miss rate of
30% (66% vs. 57% for the Compaqtrace). In terms of
the reduction in the number of bytes sentfrom the ori-
gin server, DTD would save (relative to a URL-indexed
cache)15%for theWebTV trace, and14% for theCom-
paqtrace.

6.1 Overheads from theproceedmodel
Becausethe proceed model for DTD causes an ex-

tra pair of request andresponseheaderswhen thedigest
doesnot match,to evaluate theoverall byte-transfersav-
ings for this modelwe mustcomparethebytessaved by
DTD (for properties (ii) and (ii i)) with the number of

6

property Cold-start Cold-start Warm-start Warm-start
iv iii ii i Transfers % MBytes % Transfers % MBytes % Current reply payload was...

0 0 0 0 36,573,310 11.22 609,935 32.40 13,915,207 9.94 245,010 30.40 never returned before
0 0 0 1 6,047,586 1.85 39,205 2.08 2,332,816 1.67 15,735 1.95 most-recent for otherURL
0 0 1 0 94,375 0.03 1,937 0.10 43,313 0.03 1,066 0.13 returnedfor otherURL, not most recent
0 0 1 1 2,070,537 0.64 8,820 0.47 908,075 0.65 3,715 0.46
0 1 0 0 1,048,493 0.32 35,074 1.86 465,865 0.33 16,906 2.10 returnedfor current URL, not most recent
0 1 0 1 129,349 0.04 3,089 0.16 62,776 0.04 1,551 0.19
0 1 1 0 150,533 0.05 2,189 0.12 67,477 0.05 1,093 0.14
0 1 1 1 681,840 0.21 3,350 0.18 309,030 0.22 1,655 0.21
1 0 0 0 131,262,060 40.26 662,120 35.17 52,607,080 37.56 272,289 33.79 mostrecent for currentURL
1 0 0 1 138,927,549 42.61 490,892 26.08 64,263,811 45.88 231,911 28.78
1 0 1 0 290,628 0.09 2,202 0.12 168,472 0.12 1,143 0.14
1 0 1 1 8,784,417 2.69 23,740 1.26 4,916,756 3.51 13,857 1.72

326,060,677 1,882,552 140,060,678 805,928 Totals

Table1: WebTV tracecategorization.

property Cold-start Cold-start Warm-start Warm-start
iv iii ii i Transfers % MBytes % Transfers % MBytes % Currentreply payload was...

0 0 0 0 30,591,044 38.77 512,562 59.53 10,575,651 36.58 182,372 56.56 never returned before
0 0 0 1 3,504,391 4.44 49,967 5.80 1,291,369 4.47 21,793 6.76 most-recent for otherURL
0 0 1 0 148,533 0.19 1,357 0.16 49,339 0.17 490 0.15 returnedfor otherURL, not most recent
0 0 1 1 604,076 0.77 2,721 0.32 229,799 0.79 1,146 0.36
0 1 0 0 1,554,331 1.97 10,521 1.22 612,795 2.12 3,741 1.16 returnedfor current URL, not mostrecent
0 1 0 1 130,356 0.17 1,010 0.12 48,965 0.17 430 0.13
0 1 1 0 164,992 0.21 1,091 0.13 62,984 0.22 432 0.13
0 1 1 1 264,100 0.33 1,812 0.21 112,359 0.39 789 0.24
1 0 0 0 20,492,740 25.97 166,360 19.32 7,230,114 25.01 59,824 18.55 mostrecent for currentURL
1 0 0 1 19,126,071 24.24 106,183 12.33 7,587,555 26.24 47,811 14.83
1 0 1 0 165,425 0.21 943 0.11 65,695 0.23 397 0.12
1 0 1 1 2,167,290 2.75 6,442 0.75 1,046,725 3.62 3,198 0.99

78,913,349 860,970 28,913,350 322,421 Totals

Table 2: Compaqtracecategorization.

extra headerbytes spent on the new-payload transfers.
We can ignoreproperty(iv) by assuming that theseref-
erences could be cachehits. DTD (warm-start)savesa
meanof 3036 bytes of payload transfer for each new-
payloadreferencein theWebTV trace (warm-start), and
2857bytes for each new-payload reference in theCom-
paqtrace. Thesesavings are much larger than themean
request+responseheadersizesreported in previous stud-
ies (e.g., [6, 13]) 3 so the proceedmodeldoes not waste
too muchof thepotential savings.

DTD requires digestsin responseheaders(for MD5,
24 bytesplusabout 10 bytesof syntaxoverhead), which
further reduces savings. However, digests areuseful for
integrity checks,and somightbesentevenwithoutDTD.

6.2 If-None-Match with multiple entity tags
HTTP/1.1 supports the use of entity tags to valid-

ate cache entries: a server may provide an instance-
specific entity tag in the p�q
r�s response header, and a
client may send this entity tag back to the server in ant�u
v�w�x�y
z�v�{ r�|~}�� requestheader to check if its cache
entry is still valid.

t�u
v�w�x�y�z�v�{ r�|
}�� may carry multiple
entity tags,in which case theserver canreturn “304 Not
Modified” (along with the current entity tag) if any of

thosetagsis current.
This feature would allow a non-DTD cache to avoid

transferswhen property (iii) holds. Referring to the
warm-startcolumns in Tables1 and2, we seethat this
could avoid atmost 0.6%of thetransfersand2.6%of the
bytesfor theWebTV trace, and 2.9%of thetransfers and
1.7%of thebytesfor theCompaq trace.

However, theseare upper bounds, since this simple
analysisassumesthateveryresponsecarriesanentity tag,
andtheserversalwaysuseexactly oneentity tagper dis-
tinct instancebody. Neither is true in practice; only 66%
of the responses in the WebTV trace carried entity tags,
andwe know that someserverscan assign different en-
tity tagsto identical instancebodies. In summary, DTD
avoidstransferring significantly morebytesthancould be
avoidedusing multiple entity tagsin

t�u�v'w�x�y
z�v�{ r�|~}�� .

6.3 Multiple cacheentries per URL?
Thefull benefit of DTD accrueswhenthecache stores

morethan onepayload per URL. The mostnaturalclean-
slateDTD cachedesigntreatspayloadsratherthan URLs
asthe basic storagetype. URLs aremerelyoneway to
index into this underlying store; payload digestsarean-
other. The cachemay thereforestore multiple payloads

7

for agiven URL, andalsopayloads thatarenot themost-
recent responsefor any URL (as in the case of rotated
resources). Theseproperties, while desirable, might be
difficult to retrofit onto somelegacy cacheimplementa-
tions; how much do they help? It helps for references
thathave eitherproperty (ii) or (iii) while having neither
property (i) nor (iv). These representjust 0.4% of the
warm-starttransfersin theWebTV trace, but 2.5%of the
warm-starttransfersin theCompaqtrace, so it probably
is useful to store multiple payloadsper URL.

7 Model-basedlatencyanalysis
Theanalysis in Section 6 concentrateson thenumber

of bytesthat could be saved using DTD, which may be
of economic interest to network operators. End users,
however, caremoreaboutlatency. Predicting the latency
effectsof change to Webprotocols canbedifficult, since
somany variablescan affect overall latency.

We have developed a simple modelfor understanding
whenpure-proceed DTD might improve latencyover a
traditionalWebcache.This model ignoresissuessuchas
responsepipelining,networkcongestion, TCPalgorithms
such as slow-start, and correlations of the hit ratio and
duplication ratio with other parameters, but it can help
guideintuition.

Given theseparameters:

RTT � round trip time,cacheto server

BW � effective link bandwidth, bits/sec

Lresp � responselength,bits

HRConv � conventional-cachehit ratio

HRDTDonly � DTD-only hit ratio

Tlookup � Cache-lookup latency

thenwecanderivetheselatencies(if weover-simplify by
assuming thatHTTPheadersarenegligible in length):

TConvHit � Tlookup

TConvMiss � Tlookup � RTT � Lresp� BW

TDTDonlyHit � Tlookup � RTT � TConvHit

TDTDMiss � Tlookup � RTT � TConvMiss

The extra RTT in TDTDonlyHit and TDTDMiss comesfrom
the HEAD operation that a DTD cache performsafter
the conventional lookup misses. The extra Tlookup in
TDTDonlyHit andTDTDMiss comesfrom theneedto do look-
upsboth on theURL andthedigest in thosecases.

Wesimpli fy by assuming thatTlookup � 0, areasonable
approximation for awell-implemented cache.

Wecanthen expresstheexpected latenciesfor conven-
tionaland DTD caches:

EConv � HRConv � TConvHit

��� 1 � HRConv � TConvMiss

Break-even responsesize(bytes)
Scenario RTT Bandwidth WebTV Compaq
Cellphone 100ms 10Kb/s 415 549
Modem 100ms 56Kb/s 2325 3075
DSL 30ms 384Kb/s 4783 6325
WAN 42ms 6000Kb/s 104629 138367

Table 3: Examplesof modeloutput.

EDTD � HRConv � TConvHit

� HRDTDonly � TDTDonlyHit

��� 1 � � HRConv � HRDTDonly �M� TDTDMiss

DTD improves the expected latency if EDTD � EConv,
which (by algebra) is trueif

BW � Lresp � HRDTDonly

RTT � 1 � � HRConv � HRDTDonly �<� (1)

DTD is thus more likely to pay off as the effective
link bandwidth and/or RTT decrease,and as the transfer
length and hit ratios increase.

We evaluated Equation 1 using warm-cache hit-ratio
values taken from the WebTV and Compaq trace ana-
lyses in Tables1 and2 and variouscombinationsof RTT
and bandwidth. Table 3 shows the results for several
scenarios: “cellphone,” “modem,” “DSL,” and“WAN,”
corresponding respectively to the results shown later in
Figures4(a), 4(b), 4(c), and6. The break-even response
sizes shown in the table imply thatDTD would improve
latencyon cellphoneand modemlinks, and perhaps on
DSL links, given the typical mean responsesizessum-
marizedin Table4 of [16]. DTD would hurt latencyon
high-speedWAN links exceptif itsusewererestrictedto
relatively large responses.

8 Implementation design and experience
Mostof thenew coderequiredfor DTD, using thepro-

ceed model, is located in cache implementations. (We
alsoneededserver support for digests;we relied on ex-
isting support for �������
������������� , which is only partially
appropriate; seeSection 5.2.) Both clients (browsers)
andproxieshavecaches; for ourexperiments,welimited
ourselvesmodifying a proxy cacheserver. By running a
“private” proxy cacheco-locatedwith a browser, we can
emulate mostof the benefitsof integrating DTD into a
browser cache. (It should be simpler to addDTD to a
browser cachethan it wasto add it to a proxy cache.)

We choseto implement the pure-proceed approach to
DTD as modifications to the Squid proxy server [34]
(version 2.4.STABLE7). Our code is available from� �������<���������������<�����¡ �
�£¢�¤�¢ � ���<��¥�¦
��������� . The major
changeswemade are:

§ Creatinga“payload” datatypeseparatefrom acache
entry. This inverts the existing data-structure de-
pendencebetween a payloadanda URL.

8

¨ Indexing into thepayload databaseby digestaswell
asby URL.¨ Generating a preliminary HEAD requestto obtain
theserver'sdigest.¨ Checking the returned digest for DTD-related
HEAD requests,andgenerating aGET requestif the
digest is not foundin thecache, or if nodigestis re-
turned.

Our modified Squid uses“Duplicate StorageAvoid-
ance” (DSA). Each distinct payload(i.e., with agivendi-
gest) is stored only once; if thepayload iscurrent for sev-
eral URLs,theURL-indexed entries incorporatethepay-
load by reference (see ©�ª�ª�«�¬<­�­�®�¯�°
¯�±�²M³'´�µ¡¶�®�·£¸�¹
¸�©�¯\²º�»�¼ ­�®~³�¹�­).

The DTD and DSA changes together involve about
3420lines of mostly simple but tedious“dif fs” to Squid;
much of thenewcoderepresentsmodified versionsof ex-
isting Squid code. About one third of the new lines are
pre-processor directives(e.g.,“#ifdef”).

A cachethat supports partial content (HTTP status-
206responses)mustbecareful not to associate anentire-
instancedigestwith astoredpartial-instancebody, or else
DTD could unwittingly supply incomplete bodies. Our
implementationdoesnot yetsupport partial content.

In hindsight, the choice to modify Squid may have
been a mistake. The existing Squid codeis extremely
complex and hard to understand, and we found many
bugs in our own code that resulted from our failure to
maintain poorly documented invariants expected by the
restof Squid. Weknow somebugs remain.

9 Experimental results
Theanalysis in Section 6, based on tracesof real users,

predictsthebandwidthsavingsfrom DTD, but cannottell
us how DTD affects latency. To help answer this ques-
tion, we ran experiments using our modified version of
Squid.

9.1 Experimental design
We tested our DTD implementation in two different

environments The first wasan “Emulated-WAN” envir-
onment, in which the two systems (server, proxy+client)
were physically close,andconnected by a 10 Mbit/sec
LAN. We thenemulateda variety of WAN environments
using theDummynet[30] featureof FreeBSD,which al-
lowedus to choosea variety of latencyand bandwidths
between the server and proxy, enabling us to measure
how DTD performance varieswith network characterist-
ics. Thesecond was a “Real-WAN” environment, using
aserverat WorcesterPolytechnic Institute(WPI) in Mas-
sachusetts, while the DTD-capableproxy andthe client
ran on asystemat theUniversity of Michigan.

In our tests,weran theproxy (modified or unmodified)
on thesamesystem astheclient, to simulatethe use of a

client cachewith or without support for DTD. Al l sys-
temswere otherwiseunloaded,exceptfor the real-WAN
origin server.

All of the hostsran Linux, except for the emulated-
WAN server which ran FreeBSD.TheserveratWPI uses
Apache/1.3.12, while the emulated-WAN server uses
Apache/2.0.47. For theemulated-WAN experiments, the
proxy/client wasa 550 MHz Pentium III andthe server
wasa 466 MHz AlphaServer DS10L.For the real-WAN
experiments, the proxy/client was a 4-CPU 450 MHz
Pentium II andthe serverwasa 600MHz Pentium III.

We measureda mean RTT of 42 msecfor the real-
WAN path, andapproximateeffective bandwidths from
6.1to 7.7 Mbits/sec. In theemulated-WAN tests,weused
Dummynetto imposesymmetric RTTsof 0, 30, and100
msec, andbandwidth limits of 10K, 56K, 384K, 1.5M,
and10M bits/sec.

We ran trials with file (body) sizes (not including
HTTP headers) of 2i bytes, for i ½ 10¾ 11¾M¿<¿<¿M¾ 20; i.e.,
between 1KB and1MB.4 Eachfile bytewasderivedfrom
a pseudo-random number generator, thusmaking it diffi-
cult for any network element(such as a modem) to com-
pressthefilesandchangetheireffective transfer sizes.

For each combination of network characteristics and
body size,weran experimentsusingthreedifferent proxy
configurations: no proxy, unmodified Squid, and our
DTD-capable modified Squid proxy. With unmodified
Squid, we ran trials wherethe references werearranged
to becompulsory cachemisses,and trials wheretheref-
erenceswereguaranteed to becachehits. With ourDTD-
capable Squid, we rancompulsory-miss,guaranteed-hit,
andDTD-only-hit trials; thelastcategorywerereferences
wherewearranged thatthecachecontainedan entry with
a matching digest value, but not a matching URL. Wear-
rangedcompulsory cachemissesby restarting the proxy
software with a cold cache as necessary; we arranged
guaranteed hits by careful choice of the referencese-
quence, andby ensuring that the working set wasmuch
smaller thanthecachesize.

In each set of experiments, we measuredend-to-end
responsetime using httperf [22]. This programreports
the latencybetween issuing a requestandreceiving the
first byte of the responseheaders(time-to-first-byte, or
TTFB), aswell asthelatencybetweenreceiving the first
byte of the responseheadersandthe last byte of the re-
sponsebody(transfer duration,or TD). Forthe1KB body
size, the headers andbody might fit into onepacket, in
which caseTD would be negligible. The total response
latencyis thusTTFBÀ TD. In each trial, we used httperf
to fetch “bunches” of 10 distinct files with the same
length.

For a givennetwork configuration, we measure laten-
ciesfor onebunch for each combinationof body sizeand
proxy configuration, thenrepeatthatsetof measurements

9

N times. Results in this paper show themean for N Á 9
unlessotherwisenoted.

9.2 Measuredoverheads
The use of a proxy server introduces overheads that

would not be presentif our DTD implementation were
integrated into a client cache. Also, Squid is known
to add significant latency due to fundamental design
choices [17]. We can estimate theoverheadsimposed by
our implementation strategy of using Squid rather than
an integrated client cache; we do this by comparing the
no-proxy latencies with the latencies for cache-missre-
trievals via unmodifiedSquid.

-10

-5

 0

 5

 10

 1 10 100 1000

M
ea

n
ov

er
he

ad
 (

m
se

c)

Â

Body size (Kbytes)

Time to first byte
Transfer time
Total response time

(a) Measured over LAN

-20

-10

 0

 10

 20

 30

 40

 1 10 100 1000

M
ea

n
ov

er
he

ad
 (

m
se

c)

Â

Body size (Kbytes)

Time to first byte
Transfer time
Total response time

(b) Measured over real WAN (N Á 21)

Figure 2: Overheadimposedby unmodified Squid

Figure2 shows theoverheads imposedby unmodified
Squid connected to theserver overboth afull-speedLAN
and over the WAN path described above. In the LAN
case, Squid addsalmostno latencylarger thanthetrial-to-
trial measurementerrors(which causesomeof the neg-
ative “overheads”in Figure 2(a); theseerrors are below
2% of the total latencies). Overheadsfrom our WAN
tests(Figure 2(b)) are harderto interpret, although us-
ing unmodified Squid seems to consistently improvethe
transfertimes for mostbodysizes. This effect alsoholds
whenwe run experiments using an emulatedWAN with
similar delay andbandwidth. Wecannot offer aplausible
explanation, but because mostof the results in this pa-
percompareperformancefor ourmodifiedSquid against
theunmodified version, rather thanagainst the no-proxy
case, we leave thismysteryto others.

On our LAN, the TTFB latency dif ferencebetween
a Squid miss and a no-proxy operation, for most body

sizes,isabout 1 msec. Thisplacesan upper bound onthe
cache-lookup latency, becauseSquid imposesother over-
heads beyond this lookup, andso confirms our assump-
tion in Section 7 thatthelookup latencyis negligible.

DTD requires the origin server to send the digest of
the payload (body). In our experiments, we use the
MD5 digestalgorithm,whosecomputationimposessome
cost[36]. In principle, serverscould cacheMD5 compu-
tations for frequently-accessedcontent. Also, Moore's
Law suggeststhatMD5 computation wil l decline in cost
relative to speed-of-light latencies. However, current
servers(suchasApache)donot cacheMD5 values,sothe
useof DTD adds thiscomputationaloverhead.We quan-
tified the costby comparing the latenciesfor no-proxy
retrievals with andwithoutMD5 computation enabledat
the Apache server.

-30

-20

-10

 0

 10

 20

 30

 40

 50

 1 10 100 1000

M
ea

n
ov

er
he

ad
 (

m
se

c)
Â

Body size (Kbytes)

Time to first byte
Transfer time
Total response time

Figure3: Overhead for MD5 computation

Figure 3 shows the overheads that MD5 imposesfor
a LAN-based, proxyless configuration. For bodies smal-
ler than 128 KBytes, the overheads arenegligible (un-
der 3 msec). For larger bodies, MD5 computation adds
measurableoverhead, but still less than a tenth of the
absolute responsetime (e.g., 1218 msecfor 1024-byte
bodies). The increase in responsetime is smaller than
the increasein TTFB for theselarger sizes,probablybe-
causetheMD5 passeffectivelyprefetchesthefile intothe
server's file buffer; this prefetching (asFigure 3 implies)
makes the TCPtransfer slightly moreefficient.

9.3 Emulated-WAN experiments
Figure 4 shows time-to-first-byte and total re-

sponse time results, in the left and right columns
respectively, for selected emulated-WAN experiments.
For reasons of space, we only show results for:Ã
RTT Á 100msecÄ 10KbitsÅ secÆ , a plausible cell-

phone link;
Ã
RTT Á 100msecÄ 56KbitsÅ secÆ , a typ-

ical dialup modem;
Ã
RTT Á 30msecÄ 384KbitsÅ secÆ ,

a DSL connection to a regional server; and
Ã
RTT Á

100msecÄ 10MbitsÅ secÆ , abadcasefor DTD becausethe
RTT and bandwidth areboth high.

For all combinations of network parametersthat we
tested,the TTFB latencyfor a DTD-only hit is slightly
above one RTT (approximately the TTFB of a cache
miss), aswe would expect from the cost of the HEAD

10

Key for all graphs in this figure

No proxy
UnModified proxy/miss
UnModified proxy/hit
Modified proxy/miss
Modified proxy/conventional hit
Modified/DTD-only hit

 1

 10

 100

 1000

 10000

 1 10 100 1000

M
ea

n
T

T
F

B
 (

m
se

c)

Ç

Body size (Kbytes)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

M
ea

n
to

ta
l r

es
p.

 ti
m

e
(m

se
c)

È

Body size (Kbytes)

(a)100 msec RTT, 10 Kbits/sec(body size limitedto 128 KBbytes, to keep experiment durationsreasonable)

 0.1

 1

 10

 100

 1000

 1 10 100 1000

M
ea

n
T

T
F

B
 (

m
se

c)

Ç

Body size (Kbytes)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

M
ea

n
to

ta
l r

es
p.

 ti
m

e
(m

se
c)

È

Body size (Kbytes)

(b) 100msecRTT, 56 Kbits/sec (e.g., typical modem)

 0.1

 1

 10

 100

 1000

 1 10 100 1000

M
ea

n
T

T
F

B
 (

m
se

c)

Ç

Body size (Kbytes)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

M
ea

n
to

ta
l r

es
p.

 ti
m

e
(m

se
c)

È

Body size (Kbytes)

(c) 30 msecRTT, 384 Kbits/sec(e.g.,typical DSL)

 0.1

 1

 10

 100

 1000

 1 10 100 1000

M
ea

n
T

T
F

B
 (

m
se

c)

Ç

Body size (Kbytes)

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

M
ea

n
to

ta
l r

es
p.

 ti
m

e
(m

se
c)

È

Body size (Kbytes)

(d) 100 msec RTT, 10 Mbits/sec(bad case for DTD)

Figure4: Emulated-WAN results

operation. The total response latency for a DTD-only
hit is alsoapproximately one RTT, becauseno body is
transferredfrom origin server to cache.(Thecacheis co-
locatedwith theclient, sothereis almostno transfer cost
between thoseagents.)

The total latency for compulsory miss by a DTD-
capablecachewill beoneRTT higherthanthat of a tradi-
tional cache. This is clearly visible in the left column
of figures (the log scale makes it less visible in the
right column,whereresults aresometimesdominated by

11

bandwidth-induceddelays).This is a penalty that a DTD
cache must makeup by its improved latencyon DTD-
only hits, with respect to the conventional missesthat
they displace.

A DTD-only hit should never have a higher total
latencythana conventional missby a non-DTD cache,
but it can be muchlower if theconventional missincurs
a largetransfercost. For example,in Figure 4(a–c), at a
body sizeof just 8 KBytes, the total latencyis signific-
antly lower for a DTD-only hit than for a conventional
miss. In Figure4(d), however, DTD shows no latency
benefit except for very large body sizes, becausethehigh
bandwidth minimizestransfer cost,while the high RTT
dominates total latency.

Note thatwhileFigure4 showsthatDTD-only hitscan
bemuchfaster thantheconventionalmissestheyreplace,
withoutknowing thevarioushit ratios(seeSection7) one
cannot infer whetherDTD providesanet benefit.

9.4 Real-WAN experiments

 0.1

 1

 10

 100

 1000

 1 10 100 1000

M
ea

n
T

T
F

B
 (

m
se

c)

Ç

Body size (Kbytes)

No proxy
Unmodified/miss
Unmodified/hit

Modified/miss
Modified/conv. hit
Mod./DTD-only hit

Figure 5: Real WAN – Time-to-first-byte results

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

M
ea

n
to

ta
l r

es
p.

 ti
m

e
(m

se
c)

È

Body size (Kbytes)

Figure 6: Real WAN – total responsetimeresults

Figure5 and 6 show, respectively, thetime-to-first-byte
and total responsetimeresults for our real-WAN experi-
ments. (In this experiment, N É 21.) Theseresults agree
quite closely with our emulated-WAN results (not shown
in Figure4) for similar RTT andbandwidth.

9.5 Implicationsof results
Ourexperimentalresultsgenerally confirm theanalytic

model in Section 7, although our experiments do not at-

temptto model missratios.
We canevaluatewhether DTD is beneficial at a par-

ticular point in the parameter space. For this example,
we assume the miss ratios reported from the WebTV
trace in Section 6, 10% for a DTD client cache vs.
13% for a conventional client cache, and assume that
these ratios are independentof response size. Using
the results in Figure4(b), a modem user with Ê RTT É
100msecË 56KbitsÌ secÍ who retrieves a number of 8
KByte files would have a mean expectedlatency im-
provementusingDTD of about 15 msec(comparedto an
overall expectedmean, without DTD, of 185msec). The
same user retrieving a number of 32 KByte files would
seeamean improvementof 126msec (vs.an overallnon-
DTD mean of 661 msec).

A user on a slower network, with Ê RTT É
100msecË 10KbitsÌ secÍ , would see even larger improve-
ments from DTD. However, a userof our relatively good
WAN connectionwould seea netlatency lossfrom DTD
for body sizesbelow a break-even point of about 64
KBytes. SincemostWebresponsesaresmaller thanthat,
ongoodWAN links onemight only wantto useDTD for
special taskssuch as downloading software (theoriginal
motivation for DRP[38]).

10 Security considerations
Measuresthat improve the performanceof computing

systemsoften create subtle security vulnerabilities, and
caching is aprimeexample. Timingattacksonprocessor
memory hierarchieshave beenknown for decades, e.g.,
the famousTENEX passwordattack [35, pp.183–4]. Re-
cently Felten et al. have describedvariants applicable to
Webcaching [8]. DTD addsat leasttwo additionalsecur-
ity problems.

First, if an attacker can generatepayload digest col-
lisions, then shecan cause a DTD proxy to deliver in-
correct payloads. The details are omitted here but are
available in [14]. The attack is straightforward and can
be prevented through the useof secure messagedigest
functions (seeSection10.1).

A more subtle problem involvesinformation leakage;
interestingly, theattack does not rely on timing informa-
tion of anykind.5 A server can exploit DTD to learnthe
contents of a client's cache:

1. User Bob's browser and the Î�Ï�Ð�ÑiÒMÓ�Ï�Ô server em-
ploy DTD.

2. Bob issuesa requestfor uninterestingURLÕ�Ö�Ö�×�Ø<Ù�Ù Î�Ï�Ð�ÑiÒ/Ó�Ï�Ô Ù�Õ�Ú Ô
Û�Ü Ú ÔHÒ Õ�Ö Ô
Ý .
3. Î
Ï�Ð-Ñ�Ò/Ó�Ï�Ô replieswith digest(Î�Þ Ú�ß�Õ�Ö Ñ�Ò ß�à�á), even

though it never receives or serves requests for this
interesting payload.

4. Bob's browser fails to retrieve the full payload,
therebyrevealing that Bobalreadyhasit.

12

Sophisticatedimplementations of this attack might em-
ploy JavaScript within HTML pages to systematically
search a client's cachefor interesting payloads,analog-
ousto the timing attacks describedby Felten et al. [8].
Attacksof this form can be detectedeasily, by simply re-
trieving afull payload andverifying thedigestpreviously
obtainedfrom the server. Furthermoresuchattacks can
be avoided if the client simply refrains from employing
DTD when communicatingwith untrustedsites. Another
possible countermeasureis to employ DTD only within
sites;in the exampleabove, Bob'sbrowserwould always
fetch payloadsexceptwhenit founda matchsuppliedby
the sameserver. This ensures that DTD reveals nothing
about Bob'ssurfing thatthe server doesn' t alreadyknow.
However this approachmay severely limit the benefits
of DTD, becausemostaliasing occursacrosssitesrather
thanwithin sites[16].

10.1 Choiceof digest algori thm
DTD would be unreliable if the digest function were

prone to accidentalcoll isionsundernormal usage. MD5
mightnot besufficientfor widespreaddeployment; if not,
onecouldachieveanarbitrarily low rateof accidentalcol-
lisionsby increasing thehashsize, at thecostof slightly
higher overheads. (Henson[12] discusses somerisks as-
sociated with digest-basedprotocols; we disagreewith
someof theconclusionsin thatpaper.)

DTD would bevulnerable to attack if it werecomputa-
tionally feasibleto generatedigestcoll isionsdeliberately.
Our work hasassumed theuseof MD5 [29], but MD5's
colli sion-resistancehas been questioned[31]. Other al-
gorithms,such asSHA1[24], mightbemoreappropriate.

11 Future work
We seemany possible extensions of this work. We

would like to exploreandevaluatetheprotocol alternat-
ivesin Section 5, andperhaps to unify DTD with similar
techniques suchas rsync [37]. We would alsolike to see
thetrace-basedanalysisof Section6 applied to abroader
set of traces. Onecould also improve on our synthetic
benchmarksby usingmiss-ratio and response-length dis-
tributions taken from traces.

Neither our model nor the original Squid codebase
supports pipelining, which is known to benefit HTTP
performance in general [25], andought to improve the
tradeoff in favor of DTD; evaluation of a pipelined DTD
cache would require shifting to a newcodebase.

Because a DTD cache, unlike a traditional cache,
might store multiple entries per URL, cache replace-
ment policies designedfor traditional caches might in-
teract poorly with DTD. We suspect that the mostnat-
ural replacementpolicy for DTD is to redefinean exist-
ing policy with respect to uniqueinstancesratherthanto
URLs. Whilewehavenot yet evaluatedsuchpolicies,we
believe thata DTD cache with sucha policy wil l notsuf-

fer a highermiss ratethana conventional URL-indexed
cachewith the analogous policy.

12 Summary and conclusions
This paperhasdescribed how Duplicate Transfer De-

tection can be implemented in HTTP without expli-
cit protocol changes,and briefly sketched several al-
ternative designs. We showed, using two real-world
traces,how DTD could reducemiss ratesandbandwidth
requirements—14% to 15% of the bytes transferred in
our traces. We provideda simple model to show when
useof DTD should reduceexpectedlatency relative to a
conventional cache. We described a simple implementa-
tion of DTD for Squid. Usingtestsof real andemulated
WANs, we showed measurements that clarify thecondi-
tionsunderwhich DTD reducesoverall latency. For real-
istic hit ratiosand responsesizes,DTD doesprovideanet
latencybenefit for somecommon network environments.

Acknowledgments
We thank Microsoft for allowing us to study their

data,especially Stuart Ozer, Arnold de Leon, and Jay
Logue(and otherslisted in [15]) for gathering the trace,
andDavid Surovell andJake Brutlag for describing how
WebTV client caches work. HP Labs gave us ac-
cessto the Compaqtraceand generous equipment sup-
port. Glenn Cooper (HP Labs)and Jeff Kopmanis (U.
MichiganAI Lab)providedcomputer support.

We would especially like to thank Alex Rousskov,
for spending late nights adding aliased-content support
to Polygraph, and for answering many novice ques-
tions. Duane Wessels helped us with Squid. Mikhail
Mikhailov lent us a server that made our WAN tests
possible, configuredit to order, and answered numerous
questions.Anja Feldmann, James Hall, and Kevin Jeffay
each providedinformation on requestsizes. Fred Doug-
lis, the reviewersfrom both USITS and NSDI, andour
shepherdGeoff Voelker provided helpful comments.

References
[1] H. Bahn, H. Lee, S. H. Noh, S. L. Min, and K. Koh.

Replica-awarecachingfor Web proxies. Computer Com-
munications, 25(3):183–188, Feb. 2002.

[2] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of theWeb. In Proc. 6th
WWWConf., Apr. 1997.

[3] cellular-news. GPRS architecture tariffs. â�ã-ã�ä�å5æ�æ�ç�ç�ç�èé�ê�ë�ëBì�ë�í î�ï�ð�ê ç'ñ¡è é�ò�ó æ ô�ä î ñ�æ�ã í î�õ ö�ö ñ�è÷ä�â�ä , 2002.Tariff
dataseemsto havedisappeared fromthispagesince2002.

[4] A. Clark. Optimising theWeb for a GPRS link. Under-
graduatedissertation, Univ. of Cambridge, 2002.

[5] F. Douglis, A. Feldmann, B. Krishnamurthy, and
J.Mogul. Rateof changeand other metrics: A live study
of theWorld Wide Web. In Proc. 1st USITS, pages147–
158, Dec. 1997.

[6] A. Feldmann, J. Rexford, and R. Caceres. Efficient

13

policiesfor carrying Web traffic over flow-switchednet-
works. IEEE/ACM Trans. Networking, 6(6):673–685,
Dec. 1998.

[7] E. W. Felten,Sept. 2003. Personal communication.
[8] E. W. Felten andM. A. Schneider. Timing attackson Web

privacy. In Proc. of 7th ACM Conference on Computer
andCommunications Security, Nov. 2000.

[9] R. Fielding,J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, andT. Berners-Lee. RFC2616: Hypertext trans-
fer protocol—HTTP/1.1, June1999.

[10] J. Flinn, E. de Lara, M. Satyanarayanan, D. S. Wallach,
andW. Zwaenepoel. Reducingthe energy usage of office
applications. In Proc. IFIP/ACM Int'l Conf. on Distrib-
utedSystems Platforms (Middleware 2001), pages 252–
272, Heidelberg, Germany, Nov. 2001.

[11] B. Hannigan, C. D. Howe, S. Chan, and T. Buss. Why
caching matters. Technical report, Forrester Research,
Inc., Oct.1997.

[12] V. Henson. An analysis of compare-by-hash. In Proc.
HotOSIX, Lihue, HI, May 2003.

[13] F. Hernandez-Campos, K. Jeffay, and F. Smith. Tracking
the evolution of Web traffic: 1995-2003. In Proc. MAS-
COTS, Orlando, FL, Oct.2003.

[14] T. Kelly. Optimization in WebCaching. PhDthesis, Uni-
versity of Michigan, July 2002.

[15] T. Kelly. Thin-clientWebaccess patterns: Measurements
from a cache-busting proxy. Computer Communications,
25(4):357–366, Mar. 2002.

[16] T. Kelly and J.Mogul. Al iasing on theWorld WideWeb:
Prevalenceand performance implications. In Proc. 11th
Intl. World Wide Web Conf., pages 281–292, Honolulu,
HI, May 2002.

[17] C. Maltzahn, K. J. Richardson, and D. Grunwald. Per-
formanceissuesof enterpriselevel Webproxies. In Proc.
SIGMETRICS, pages 13–23, Seattle, WA, June1997.

[18] P. Mattis, J. Plevyak, M. Haines, A. Beguelin, B. Totty,
and D. Gourley. U.S. Patent #6,292,880: “Alias-free
content-indexed object cache”, Sept. 2001.

[19] J. C. Mogul. Squeezing morebits out of HTTP caches.
IEEE Network, 14(3):6–14,May/June2000.

[20] J. C. Mogul andA. V. Hoff. Instancedigests in HTTP.
RFC3230, IETF, Jan. 2002.

[21] J.C. Mogul, B. Krishnamurthy, F. Douglis, A. Feldmann,
Y. Goland,A. van Hoff, and D. Hellerstein. Deltaencod-
ing in HTTP. RFC3229,IETF, Jan.2002.

[22] D. Mosberger andT. Jin. ø�ù�ù�ú�û ü�ý : A tool for measur-
ing Web server performance. In Proc. First Workshopon
Internet Server Performance, pages59–67,Madison,WI,
June1998.

[23] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-
bandwidthnetwork file system.In Proc. 18thSOSP, pages
174–187, Oct. 2001.

[24] National Institute of Standardsand Technology. Secure
hash standard. FIPSPub. 180-1, U.S.Dept. of Commerce,
Apr. 1995. ø�ù�ù�úÿþ���������ü����	��
���ù���
�������ú�������
�����ù�
��������ý�
/ú�����ý�
/ú������������ ��ý!
/ú"� �����#���3ù�$�ù .

[25] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud'hom-
meaux, H. W. Lie, and C. Lil ley. Network performance
effectsof HTTP/1.1, CSS1,andPNG.In Proc. ACM SIG-

COMM, pages 155–166, Sept.1997.
[26] V. N. Padmanabhanand J. C. Mogul. Improving HTTP

latency. In Proc. 2nd WWW Conf., pages 995–1005,
Chicago,IL, Oct.1994.

[27] M. Rabinovich andO. Spatscheck. Web CachingandRep-
lication. Addison Wesley, Dec. 2001.

[28] S. C. Rhea, K. Liang, and E. Brewer. Value-based Web
caching. In Proc. WWW2003, pages619–628, Budapest,
May 2003.

[29] R. L. Rivest. RFC 1321: The MD5 message-digest al-
gorithm, Apr. 1992.

[30] L. Rizzo. Dummynet: asimpleapproach to theevaluation
of network protocols. Computer Communication Review,
27(1):31–41,1997.

[31] M. J. B. Robshaw. On recent results for MD2, MD4 and
MD5. RSALabs Bulletin, 4(12):1–6,Nov. 1996.

[32] J.SantosandD. Wetherall.Increasing effectivelink band-
width by suppressing replicateddata. In Proc. USENIX
Annual Technical Conf., June1998.

[33] N. T. Spring and D. Wetherall. A protocol-independent
technique for eliminating redundant network traffic. In
Proc. ACM SIGCOMM, pages 87–95, Aug. 2000.

[34] Squid Team.Squid Web proxy cache, Aug. 2002. ø�ù�ù�ú£þ
���&%�%�%��'� (���
�)��������Bø�û��*��ü�
�� .

[35] A. S. Tanenbaum. Modern Operating Systems. Prentice
Hall, 1992. ISBN 0-13-588187-0.

[36] J. Touch. Performanceanalysis of MD5. In Proc. SIG-
COMM, pages 77–86,Cambridge, MA, Aug. 1995.

[37] A. Tridgell andP. Mackerras.The ü���+&��� algorithm. Tech-
nical Report TR-CS-96-05,Dept. of Computer Science,
AustralianNational University, June1996.

[38] A. van Hoff, J. Giannandrea, M. Hapner, S. Carter, and
M. Medin. The HTTP distribution and replication pro-
tocol. Technical Report NOTE-DRP, World Wide Web
Consortium, Aug. 1997.

[39] D. Wallach, Sept. 2003. Personalcommunication.
[40] D. Wessels. Web Caching. O'Reilly, June2001.
[41] C. E. Wil ls and M. Mikhailov. Examiningthe cacheab-

il ity of user-requested Web resources. In Proc. 4th Web
Caching Workshop, Apr. 1999.

[42] C. E. Wil ls and M. Mikhailov. Towardsa better under-
standing of Web resources and server responses for im-
provedcaching. In Proc. 8thWWWConf., May 1999.

Notes
1In somerare cases, the client may only want to render a well-

definedsub-part,suchas achapter of aPDFfile.
2The“proceed” model, describedin Section5.1,alsosupportsend-

to-end use.
3Webasedthisconclusiononothertraces,becausetheCompaqtrace

doesnot include thisdata,andtheheader-sizedata in theWebTV trace
appears to be unreliable, possibly the result of incorrect logic for re-
cording header lengthsin thetrace-gatheringprocess.

4MostWebresponsesareat the low end of this range; wepreviously
summarizedresults from several tracesshowing mean sizes between
6,054B and21,568B, and mediansbetween1,821 and 4,346B [16].

5WethankFlavia PeligrinelliRibeirofor pointing out thisattack. As
far aswe can determine[7, 39], this form of attack hasnot previously
beenreportedin theliterature.

14

