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Network proximity estimation is an important component in discovering
and locating services and applications. With the growing number of 
services and service providers in the large-scale Internet, accurately 
estimating network proximity with minimal probing overhead becomes
essential for scalable deployment. Although there exist a number of
network distance estimation schemes, they either rely on extensive 
infrastructure support, require the IP address of the potential targets,
falsely cluster distant nodes, or perform poorly with few measurement
errors. We propose Netvigator, a scalable network proximity estimation
tool that uses information obtained from probing a small number of
landmark nodes and intermediate routers (termed milestones) that are
discovered en route to the landmarks, to identify the closest nodes. With
very little additional probing overhead, Netvigator uses distance 
information to the milestones to accurately locate the closest nodes. We 
developed a Netvigator prototype and report our performance evaluation
on Planet-Lab and in the intranet of a large enterprise. We also test its
scalability using simulations. 
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Abstract—Network proximity estimation is an important com-
ponent in discovering and locating services and applications. With
the growing number of services and service providers in the large-
scale Internet, accurately estimating network proximity with min-
imal probing overhead becomes essential for scalable deployment.
Although there exist a number of network distance estimation
schemes, they either rely on extensive infrastructure support, re-
quire the IP address of the potential targets, falsely cluster distant
nodes, or perform poorly with few measurement errors. We pro-
pose Netvigator, a scalable network proximity estimation tool that
uses information obtained from probing a small number of land-
mark nodes and intermediate routers (termed milestones) that are
discovered en route to the landmarks, to identify the closest nodes.
With very little additional probing overhead, Netvigator uses dis-
tance information to the milestones to accurately locate the closets
nodes. We developed a Netvigator prototype and report our per-
formance evaluation on Planet-Lab and in the intranet of a large
enterprise. We also test its scalability using simulations.

I. INTRODUCTION

The Internet provides a platform for various services and ap-
plications. An important recent trend is that users are no longer
satisfied with receiving services that are targeted at mass au-
diences. They demand services that are tailored to individual
needs. These services can potentially come from hundreds and
millions of organizations and individuals that are connected to
the Internet. With the proliferation of personalized services, an
important challenge facing future network infrastructure is to
balance the tradeoffs between providing individualized service
to each client and making efficient use of the networked re-
sources. Efficient resource utilization enables the same infras-
tructure to accommodate more services and clients and respond
better to flash crowds.

A key in effectively utilizing network resources and services
is efficiently and quickly locating the desired resources or ser-
vices in specific network locations. These kinds of location ser-
vices allow a client to identify the closest cache/proxy that has
the desired data or service, enable a client to quickly locate a
well provisioned nearby server for participating in a massive
multiple-user online game, or to quickly construct a proximity-
aware peer-to-peer (P2P) overlay for applications such as con-
tent sharing. Hence, techniques that accurately and efficiently
estimate locality of resources/services and compute network
distances have become important.

Unfortunately, existing Internet proximity estimation tools
have shortcomings. Many schemes require considerable

amount of infrastructure support, and therefore have deploy-
ment issues. Such schemes provide a distance estimate between
any two given nodes. They find the node closest to a client
from a given set of potential targets by computing the distance
to each node and picking the minimum. This process requires
the client to obtain a list of all potential hosts providing a spe-
cific service from a directory service. In practice, when finding
a service/resource, knowledge about the complete set of poten-
tial servers is usually not of interest, and ideally, the proximity
estimation tool should be able to answer client queries such as
“Which is the closest node that can provide a media transcod-
ing service?” without requiring information about all poten-
tial nodes. The important issue is whether the client can find a
server that provides the right service with appropriate quality-
of-service guarantee.

Landmark clustering [8], [11] is a popular scheme used for
network distance estimation that uses a node’s distances to a set
of landmark nodes to estimate the node position. However, cur-
rent landmark clustering techniques are prone to false cluster-
ing where distant nodes are clustered near each other. Further,
the estimation quality of current landmark clustering schemes
depends on the measurement quality and can be significantly
inferior to the optimal when there is bad measurement data.

In this paper, we describe Netvigator (Network Navigator),
a new network proximity estimation tool. It uses an enhanced
landmark clustering technique that is more efficient and accu-
rate than the existing schemes. Our approach employs a small
number of landmarks and a relatively large number of mile-
stones. Each node performs round-trip time (RTT) measure-
ments to landmarks and also records its distances to the mile-
stones that the probing packets encounter en route to the land-
marks. The milestones could be the routers encountered in a
traceroute between the client node and a landmark node.

This paper makes the following contributions:

• We propose three novel clustering algorithms that utilize the
distance information from the landmarks as well as the mile-
stones to obtain higher accuracy in finding the closest node.
Utilizing distance information from both the landmarks and
milestones makes our technique robust to bad measurements.

• We developed a prototype of our scheme and evaluated it
on PlanetLab [10] and intranet of a large enterprise (Hewlett-
Packard). We also performed a simulation study to evaluate
its scalability. To the best of our knowledge, we are the first
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to present an experimental report on network proximity esti-
mation on PlanetLab. Our experiments show that with 90%
confidence, the real closest node falls in the top two nodes
our algorithm identifies.
The remainder of the paper is organized as follows. Sec-

tion II surveys the related work. Section III describes the de-
tails of Netvigator, followed by experimental results in Sec-
tion IV. Concluding remarks and directions for future work
are presented in Section VII.

II. RELATED WORK

Several schemes have been proposed to estimate Internet dis-
tances. Internet Distance Maps (IDMaps) [6] places tracers at
key locations in the Internet. These tracers measure the latency
among themselves and advertise the measured information to
the clients. The distance between two clients A and B is es-
timated as the sum of the distance between A and its closest
tracer A′, the distance between B and its closest tracer B ′, and
the distance between the tracers A′ and B′.

M-coop [13] utilizes a network of nodes linked in a way that
mimics the autonomous system (AS) graph extracted from BGP
reports. Each node measures distances to a small set of peers.
When an estimate between two IP addresses is required, several
measurements are composed recursively to provide an estimate.
King [7] takes advantage of the existing DNS architecture and
uses the DNS servers as the measurement nodes.

King, M-coop, and IDMaps all require that the IP addresses
of both the source and the destination are known at the time
of measurement. Therefore, they cannot be used when the IP
address of the target node is unknown.

There are schemes that use landmark techniques for net-
work distance estimation. Landmark clustering [8], [11] uses
a node’s distances to a common set of landmark nodes to es-
timate the node’s physical position. The intuition behind this
technique is that if two nodes have similar latencies to the land-
mark nodes, they are likely to be close to each other. There
are several variations of landmark clustering. Landmark order-
ing is used in topologically-aware Content Addressable Net-
work (CAN) [11]. With landmark ordering, a node measures
its round-trip time to a set of landmarks and sorts the landmark
nodes in the order of increasing round-trip time (RTT). There-
fore, each node has an associated order of landmarks. Nodes
with the same (similar) landmark order(s) are considered to be
close to each other. This technique however, cannot differenti-
ate between nodes with the same landmark orders.

Another variation is GNP (Global Network Positioning) [8].
In this scheme, landmark nodes measure RTTs among them-
selves and use this information to compute the coordinates in
a Cartesian space for each landmark node. These coordinates
are then distributed to the clients. The client nodes measure
RTTs to the landmark nodes and compute the coordinates for
itself, based on the RTT measurements and the coordinates of
the landmark nodes it receives. The Euclidean distance between
nodes in the Cartesian space is directly used as an estimation of
the network distance.

GNP requires that all client nodes contact the same set of
landmarks nodes, and the scheme may fail when some land-
mark nodes are not available at a given instant of time. To
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Fig. 1. Example of the enhanced landmark scheme.

address this problem, Lighthouse [9] allows a new node wish-
ing to join the network to use any subset of nodes that is al-
ready in the system (i.e., lighthouses) as landmarks to compute
a global network coordinate based on measurements to these
lighthouses.

Despite the variations, current landmark clustering tech-
niques share one major problem. It causes false clustering
where nodes that have similar landmark vectors but are far away
in network distance are clustered near each other. To solve this
problem, [16] for example, uses landmark clustering as a pre-
selection process to identify nodes that are potentially close to
a given node, and actual round-trip time measurements are used
to identify the closest node. The effectiveness of this approach,
unfortunately, is dependent on the topology being tested.

Vivaldi [5] is another scheme that assigns coordinate space
for each host, but it does not require any landmarks. Instead of
using probing packets to measure latencies, it relies on piggy-
backing when two hosts communicate with each other. With the
information obtained from passively monitoring packets (e.g.,
RPC packets), each node adjusts its coordinates to minimize
the difference between estimates and actual delay. Although
Vivaldi is fully distributed, it takes time to converge, requires
applications to sample all nodes at relatively same rate to en-
sure accuracy, and packets need to add Vivaldi-specific fields.

III. NETWORK PROXIMITY ESTIMATION

Before describing our enhanced landmark clustering tech-
nique we look at how network proximity estimation methods
can be used in general. One of the primary use is to find the
closest node providing a particular service such as caching,
transcoding, etc. Proximity estimation can also be used to nar-
row down choices in a multi-attribute constraint scenario. In
this case, k closest nodes are first computed using proximity
estimation and then the constraint matching is performed on
the smaller set (k nodes).

In Netvigator, each node measures distances to a given set
of landmarks, similar to other landmark clustering techniques.
Netvigator additionally records the distances to the milestones
that are encountered while probing the landmarks. The idea
behind this approach is illustrated in Figure 1 using a simple
analogy. Two people estimate their physical location by mea-
suring their distances to the two houses (i.e., the landmarks).
Each of them also records their distances to the trees (i.e., mile-
stones) that are on the way to the two houses. Without using
the distances to the trees 3 and 4, a naı̈ve landmark cluster-
ing approach would conclude that the two people are close to
each other because they have similar distances to the two land-
marks. By accounting for the distances to the milestones, false
clustering can be avoided, thus increasing the accuracy of the
proximity estimation.
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The details of the enhanced landmark scheme are described
below. A small number of landmarks are used for bootstrapping
and a large number of milestones are used for refinement. The
milestones are discovered during the probing process, e.g., the
intermediate routers encountered during a traceroute. The
milestones have the capability to intercept measurement pack-
ets and respond to the client nodes. It must be noted that our
scheme does not require deploying milestones as part of the in-
frastructure.
(1) Each node sends probe packets to the landmarks for

round-trip time measurement.1 These packets may encounter
milestones en route to the landmarks. When a milestone node
receives a probe packet, it sends an acknowledgment packet
back to the node that originated the probe packet.

(2) After a node receives all acknowledgment packets from
the landmarks and milestones (if any), it constructs a land-
mark vector that includes the distances to all the landmarks
as well as the milestones the measurement packets have en-
countered.

(3) Each node submits its landmark vector to a repository
called global information table.

(4) Upon receiving a query from a node to find the k closest
nodes, the infrastructure carries out the following steps:

(4.1) With the landmark vectors of all the candidate nodes
stored in the global information table and the landmark vec-
tor of the querying node, apply the clustering algorithm to
reduce the size of the candidate set to k and identify a very
small number of top candidates.2

(4.2) Send the information of these identified candidates to
the client node.

(5) The client node performs RTT measurements to the iden-
tified top k candidates.
Compared with the strategy that blindly increases the size

of the landmark set and/or the candidate set for RTT measure-
ments to increase accuracy, our scheme has three advantages.
First, each client needs to probe only a small number of land-
mark nodes. Second, the milestones have accurate information
of the local network characteristics. Third, after performing
clustering, a client needs to perform RTT measurements to only
a small number of top candidate nodes the clustering algorithm
identifies. Note the only additional overhead of our scheme is
the ACK packet transmissions from the milestones. A node
does not send additional messages to locate the milestones, as
they are encountered by probe packets on their way to at least
one landmark.

A. Clustering Algorithms

Before we describe the clustering algorithms, we first define
notations in Table I. The three clustering algorithms we present
are: min sum, max diff , and inner product. The cluster-
ing algorithms min sum and max diff assume that the trian-
gle inequality works reasonably well in the network topology.
For each node, the k candidates having the smallest clustering
metric values are picked as the k closest candidates.

1We assume the nodes have landmark information through some announce-
ment and discovery mechanisms.

2Section III-A describes the clustering algorithms.

TABLE I
NOTATIONS.

Notation Description

n a node that wants to find the nearest service node.

C
the set of candidate nodes the global information table
identifies by examining only the distances to the land-
marks.

L(n, c) and c ∈ C the common set of nodes (landmark and milestone) that c
and n have measured to.

dist(a, b) the distance(latency) between nodes a and b.

1) min sum: The intuition behind min sum is that if there
are sufficient number of landmark nodes that two nodes n and
c measure against, it is very likely one of the landmark nodes
is located on the shortest path between the two nodes. Suppose
this landmark node is l. The sum of dist(n, l) and dist(c, l)
should be minimal if the triangle inequality holds. For node
n and its candidate node set C, min sum(n, C) is formally
defined as

min∀c∈C:l∈L(n,c)(dist(n, l) + dist(c, l)).

2) max diff : Similar to min sum, the idea behind
max diff is that if there are sufficient number of landmark
nodes that both n and c measure against, then there is a large
likelihood that there exists a landmark node l such that c is on
the shortest path from n to l, or n is on the shortest path be-
tween c and l. In that case, ABS(dist(n, l) − dist(c, l)) is
the maximum when the triangle inequality holds.3 The formula
max diff(n, C) is defined as

max∀c∈C:l∈L(n,c)ABS(dist(n, l) − dist(c, l)).

3) inner product: The algorithm inner product is moti-
vated by document ranking algorithm used in information re-
trieval [15]. The semantic information of a document is repre-
sented as a term vector. The weight of each term is set to be
proportional to the frequency of the term in the document and
inversely proportional to the total number of documents that
contain this term in the entire corpus. The intuition is that the
more frequent a term in a document, the more likely the term
uniquely identifies the document. However, if the term also ap-
pears in a lot of other documents, the importance of the term
should be diminished. The similarity between a document and
a query is determined using the inner product of the vector rep-
resentation of the two. Applying this concept, inner product
expects that if a landmark node is close to node n, then it can
give a better indication of the physical network position of n.
inner product(n, C) is defined as

maxΣl∈L(n,c)
((1.0/(dist(n, l)2)) × (1.0/(dist(c, l)2))).

Our experimental results in the following section will show
that the algorithms min sum and max diff perform bet-
ter than the inner product algorithm. For inner product,
the choice of square in 1.0/dist(n, l) is somewhat arbitrary
with a goal to favor a close landmark node than a far away
one. In the future, we will explore possible improvements to
inner product.

3The function ABS(x) returns the absolute value of x.
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IV. PERFORMANCE EVALUATION

We prototyped our network proximity estimation system,
Netvigator, based on the algorithms described in the previous
section. Netvigator comprises of the following three modules:
• Path Probing Module: The path probing module resides

on all participating nodes. It sends probes towards the land-
marks to collect the path information. Our system uses the
traceroute tool. Each client periodically collects the path in-
formation and sends landmark vectors to the information data
module.

• Information Data Module: The information data module
collects the path information from the participating nodes.
The data is filtered to remove any specious information. If
available, it also consults a router-alias database to further
enhance the data. The router-alias database contains a list of
interface IP addresses assigned to the same physical router.
This enables the identification of multiple interface IP ad-
dresses to a single router, rather than identifying each inter-
face IP address as a separate router.

• Clustering Module: From the partial topology informa-
tion, the clustering module performs the proximity compu-
tation for different nodes.
We experimented with Netvigator on two different real net-

works: a geographically distributed HP network and a set of
PlanetLab nodes connected via open Internet [10].

Netvigator computes k closest nodes for each participating
node. There are no other available methods that directly output
the k closest nodes. Thus for comparison purposes, we need to
use the output of a distance estimator indirectly. We compare
our results with GNP [8], which has been shown to outperform
other schemes such as IDMaps. For GNP, the k closest nodes
for each participating node were computed based on the Eu-
clidean distance calculation from the network coordinates GNP
generates. For the dimension parameter of the coordinate space
in the GNP method, we use values between 5 and 7, which
were shown by its authors to give good performances. For both
Netvigator and GNP, the end-nodes perform direct ping mea-
surements to these k nodes to find the closest target.

A. Metrics

We define three metrics for comparing the performance of
Netvigator with other proximity estimation schemes. For each
node i of the N participating nodes, let Si

e,k denote the set of
k closest nodes estimated by the scheme. We also collected
the N2 ping measurements to find the actual closest nodes.
These ping measurements are for verification purposes only to
comparatively evaluate the performance of the algorithms. Let
Si

a,k denote the corresponding set of k actual closest nodes. Let
ci denote the actual closest node to node i.
• Accuracy: It measures whether the actual closest node was

returned in the proximity set Si
e,k.

a(i) =

{

1 if ci ∈ Si
e,k

0 o.w.

Mean accuracy is represented as:

acck =

N
∑

i=1

a(i)/N

• Precision: It measures the overlap between the k actual
closest nodes and the k closest nodes computed by the prox-
imity scheme. Mean precision averaged over all N nodes for
a given k is defined as:

preck =

∑N

i=1

|(Si
a,k∩Si

e,k)|

k

N

• Penalty: It evaluates the potential cost due to inaccurate
proximity estimation. Relative penalty for node i can be rep-
resented as:

penaltyk,i =
(min∀s∈Si

e,k
dist(s, i)) − dist(ci, i)

dist(ci, i)

The numerator in the above equations is the absolute penalty.
The average penalty is computed over all N nodes. The
penalty metric depends on the topology as well as the lo-
cation of the client nodes.

B. Enterprise Network

We ran our experiments on a well managed and provisioned
enterprise intranet at Hewlett-Packard. We selected 43 globally
distributed end-hosts for the experiments. NetIQTM Char-
iot [4] performance endpoints were installed on these hosts run-
ning Linux or Microsoft windows operating systems. informa-
tion when remotely triggered via the Chariot console. Com-
plete router-aliasing information about the enterprise network
was available from the management servers. The endpoints
were also used for conducting 432(=1849) ping measurements
required for algorithm verification.

We assigned up to 7 landmark nodes among 43 end hosts
in this set of experiments. The landmark nodes were selected
manually with some coarse geographical input. We varied the
number of landmark nodes (1, 2, 3, and 7 nodes) and computed
the metrics for the 43 end nodes as a function of k, the number
of top closest candidates returned by the proximity estimation
algorithm.

We use our three clustering algorithms— min sum,
max diff and inner product for Netvigator. We denote these
as m0, m1, and m2 in the plots. When the router aliasing infor-
mation is incorporated in the solution, we denote the schemes
as m0 R, m1 R, and m2 R respectively.

In Figure 2 (a), the mean accuracy is plotted against k for the
min sum (m0), as the number of landmarks (L) is varied. For
each of the four curves, as k is increased, the mean accuracy
improves. The trend is less clear as L is increased, except for
very low values of k when having 7 landmark nodes is clearly
better than other cases. In fact, with k = 1, i.e., when the
Netvigator returns just one candidate, the scheme returns the
actual closest node in over 50% of the cases when L = 7. As
k is increased to 15, the mean accuracy for all four landmark
values is around 75%.

In Figure 2 (b), we explore the effect of using the router
aliasing information for the min sum clustering (m0 R) as
the number of landmark nodes is varied. Compared with Fig-
ure 2 (a), the mean accuracy is significantly improved when the
router aliasing information is incorporated in the clustering al-
gorithm. With L = 7, over 90% accuracy is achieved with just 5
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Fig. 2. Accuracy results from the HP intranet.

top candidates (k = 5). Furthermore, while the single landmark
scenario improves only slightly, the performance with L=2, 3,
and 7 landmarks improves significantly and are comparable to
each other. This is of great benefit as the fewer the number of
landmark nodes, the less the measurement overhead.

Figure 2 (c) plots the mean accuracy for the GNP method as
L and k are varied. Two observations from the result: having
more landmark nodes shows clear advantage and the accuracy is
very poor when k is small. These results indicate that for GNP
to have the same accuracy as Netvigator, the overhead has to be
significantly higher than Netvigator. Comparing Figures 2 (b)
with 2 (c), with 5 candidates, Netvigator has an accuracy of
90.7% (L=7) and 86.05% (L=2,3), while GNP has an accuracy
of only 72.09% (L=7).

In Figure 2 (d), we compare the different clustering algo-
rithms for the Netvigator. With 7 landmarks and using the
router aliasing information, m0 R, m1 R and m2 R are com-
pared with each other as k is increased. We find that the
inner product (m2 R) algorithm performs the worst, while
the performance of m0 R and m1 R are similar. Although the
accuracy of m1 R is the highest when k is large, m0 R has
the advantage of providing a higher accuracy at low values of
k (which reduces the total overhead). Thus in the remainder
of the paper, we only show the results for the min sum (m0)
algorithm.

In Figures 3 (a) and 3 (b), the mean precision and mean
penalty incurred for Netvigator m0 R and GNP (with dimen-
sion 5: G5) are compared for the 7 landmarks case. The ab-
solute penalty numbers are in milliseconds. As expected, the
precision values increase with k, while the penalty numbers de-
crease with k. We find that Netvigator outperforms GNP in
both metrics.

In summary, although the accuracy and precision of Netviga-
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tor are not 100%, with L=7, it incurs a significantly less mea-
surement overhead of about 15% (of what the brute force 100%
accurate method would take), and provides over 90% accuracy,
with a low penalty. The reason for the superior performance of
the Netvigator over existing schemes stems from the fact that it
uses a lot of additional information that is easily available with-
out incurring high overhead. Utilizing the additional topology
information provides robustness to incomplete measurements
or measurement errors and also provides high accuracy, high
precision, and low penalty. These features of Netvigator be-
come even more apparent in the next section when we discuss
an environment that is less predictable than the enterprise in-
tranet.

C. PlanetLab

We also conducted experiments on unmanaged, poorly in-
strumented open Internet using PlanetLab [10]. A set of 131
Linux nodes with 15 landmark nodes was selected for the Plan-
etLab experiments. The 15 landmark nodes were selected with
approximate global geographical representation to the extent
possible.
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In Figure 4 (a), the mean accuracy is plotted against the num-
ber of candidates returned for Netvigator (m0) and GNP (di-
mension 7, denoted as G7). With L=15 landmark nodes, Netvi-
gator performs very well, achieving over 90% accuracy with
just 5 candidates. However, GNP performs very poorly with
L=15. We found that of the 15 landmark nodes, 3 landmarks
had missing measurement data and this affected the GNP re-
sults adversely while Netvigator was not affected. When we re-
ran the experiment with only L=12 landmarks which had more
complete measurement data, the performance of GNP improved
dramatically, although it was still comparatively poor to Netvi-
gator especially when k is small. Our experiments show that
a small number of bad measurement data can cause the estima-
tion quality of GNP to degrade more than 300%. It is interesting
to note that the performance of Netvigator with either number
of landmarks was approximately the same. This demonstrates
the strong robustness of Netvigator to bad measurements. Re-
alistically on the Internet, it is difficult to get a good and consis-
tent set of measurement data at all times and hence proximity
estimation algorithm needs to work well in spite of these mea-
surement issues.

As shown from the results in the enterprise network, the
router aliasing information improves clustering accuracy. How-
ever, unlike the HP enterprise network where we were able
to get access to a complete router aliasing database, on the
open Internet, this information is hard to obtain. Using the
scriptroute sr-ally [12], we attempted to get as much informa-
tion as possible. Due to the large number of router interfaces
encountered, the process was very slow and because of non-
responsive routers, the resulting aliasing information was in-
complete. Nevertheless, we used what aliasing information we
had to run the m0 R. Figure 4 (b) shows that with the L=12
landmarks, using the router aliasing information does give a
boost to the mean accuracy, having over 90% accuracy with
just 2 candidates.

Figures 4 (c) and 4 (d) show the precision and relative penalty
for Netvigator (m0 R) and GNP (dimension 7). Netvigator out-
performs GNP in both metrics. It is interesting to compare Fig-
ure 4 (d) with Figure 3 (b). The penalty for Netvigator is very
similar in both experiments. GNP however, shows much higher
penalty in PlanetLab experiments.

D. Simulation

In addition to the experiments on the operational networks,
we conducted large scale simulations to test the effectiveness
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Fig. 6. Simulation results with L=20.

of Netvigator and compare it with GNP. The simulation enables
us to consider larger number of nodes (10,000 node topology),
but it is important to realize that the simulation also represents
some unrealistic ideal settings (e.g., complete measurements,
no router aliasing problem, etc.).

We conduct a simulation study on a transit-stub topology
produced using GT-ITM [3] with approximately 10,000 nodes.
This topology has 25 transit domains, 5 transit nodes per transit
domain, 4 stub domains attached to each transit node, and 20
nodes in each stub domain.

We considered 128, 256, and 512 end nodes (randomly cho-
sen) whose k closest nodes are to be determined. We randomly
picked L=5, 10, 20, 40, 80 landmark nodes. We ran Netvi-
gator (with min sum) and GNP (with dimension 7) and com-
puted the performance metrics. Due to space constraints, we
show only subset of results.

Figure 5 contains the mean accuracy for Netvigator and GNP.
For Netvigator, the larger the number of returned candidates,
the better the accuracy, reaching 100%. The number of land-
mark nodes has little effect on the accuracy. Even with only
10 landmark nodes and just single top candidate identified, the
accuracy is 92.97%. On the other hand, the GNP results vary
widely as k and L are increased, thus demonstrating the high
sensitivity to these parameters. At low values of k, the accu-
racy is significantly worse than that obtained using Netvigator.

Figure 6 shows the precision and relative penalty in L=20
landmark nodes and 128, 256, and 512 end nodes for Netviga-
tor and GNP. The precision values are very high, close to 100%
for Netvigator, while GNP only achieves about 70% at best.
The penalty values for Netvigator are lower than that of GNP,
although at high values of k, the values get similar.

V. CASE STUDY

As a case study for our network proximity estimation tech-
nique, we demonstrate how Netvigator can be used to efficiently
construct a high-quality application-level multicast structure
such as Host Multicast Tree Protocol (HMTP) [17] or Service
Adaptive Multicast (SAM) [2]. These multicast protocols rely
on network proximity information for efficient multicast tree
creation. Note that we are applying our scheme to overlay net-
works for a case study but it can be used for Internet proximity
estimation.

We compare the quality of trees constructed using GNP and
those constructed using Netvigator. We conduct a simulation
study using the two transit-stub topologies as used in Sec-
tion IV-D. We evaluate the tree quality using the stretch metric.
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TABLE II
GNP: STRETCH INCREASE (%) COMPARED WITH THE MINIMUM POSSIBLE

VALUE.

N small-transit large-transit

512 2.36∼12.43 4.7∼19.4
1,024 6.32∼22.6 7.37∼24.58
2,048 9.6∼47.9 10.50∼28.4

Stretch is defined as the ratio of the tree cost (the sum of link
delays) to that of a minimal spanning tree.

A. GNP Results

For GNP, we use the k-mean method (described in [8]) to
select L landmarks out of the 200 nodes. With only the infor-
mation of the distances to the L landmarks, we identify the set
of k closest candidates. We then perform RTT measurement
to select the closest node among the k candidates. The over-
head involved in the measurements is therefore on the order of
O(k + L).

To show how measurement overhead affects the resulting tree
quality, we vary the number of candidate nodes (k) returned
k = 10, 20, 30 and the number of landmark nodes (L) L =
20, 50, 100, 150. We consider three overlay network sizes for
the small-transit topology, with the number of nodes N equal
to 512, 1,024, and 2,048 nodes. As a baseline, we also consider
the extreme and impractical case, i.e., k = N , where N is the
number of overlay nodes. This case is equivalent to an exhaus-
tive search for the closest node, and represents the best possible
case.

The results of our evaluation is summarized in Table II,
where we provide the range of percentage values with which
the stretch may be larger than the minimum possible value. For
example, for the 2,048-node overlay in the small-transit topol-
ogy, depending on the combination of L and k, the stretch varies
from 9.6%∼47.9% larger than the minimum possible value.

The number of landmark nodes L and the number of candi-
dates k impact the overall accuracy of the node proximity mea-
sure. The clustering mechanism in [8] may not be sufficiently
robust for all topologies. It is non-trivial to select the optimal
combination of L and k for the best results. Careless selection
of the combinations may produce results that are up to 47.9%
worse than the best case for the considered examples. An ideal
mechanism would work well independent of topology and the
size of the overlay, and be relatively insensitive to parameters
such as L and k. Moreover, it is preferable to have small values
of both L and k to keep the operating overhead low.

B. Netvigator Results

For Netvigator, we use the k-mean method (described in [8])
to select 15 landmarks from 100 nodes. With only the infor-
mation of the distances to the 15 landmarks, we use GNP [8]
to identify the initial candidate set C. The results (reported in
Table III) show the percentage increase of the stretch values
over the minimum possible value using the enhanced clustering
technique. It also shows the minimum number of candidates
(k) required to compute the closest node. Comparing this result

TABLE III
NETVIGATOR: STRETCH INCREASE (%) COMPARED WITH THE MINIMUM

POSSIBLE VALUE.

N small-transit min k large-transit min k

512 1.8 1 1.7 6
1,024 3.4 2 2.9 5
2,048 5.8 3 4.8 3

with Table II, it is evident that the stretch values are dramati-
cally improved using our enhanced clustering mechanism. In
all of the cases, the stretch values are within 6% of the optimal
value. In most cases, only one RTT measurement was needed to
locate the nearest node as the DHT infrastructure performs ac-
curate computation, and no cases required more than 10 mea-
surements. Note that all of these results were obtained using
only 15 landmark nodes.

VI. SCALABILITY CONSIDERATIONS

A. Distributed Global Information Table

Using a centralized server to store all information is not scal-
able as it requires all nodes to report and query a central unit.
This can cause a concentration of network traffic and single
point of failure. In this section we describe a distributed global
information service to make Netvigator more robust and scal-
able. We build global information service on top of a distributed
hash table (DHT) based overlay network. A DHT-based overlay
provides a hash table abstraction that maps “keys” to “values”
on top of an overlay network, and has the advantages of good
scalability, fault-tolerance and low management cost [14]. Our
solution takes advantage of the locality of interest since nodes
usually are interested in finding resources or services that are
close by in network proximity. This will result in shorter re-
sponse time and better network resource utilization. This sec-
tion outlines our basic approach.

Netvigator requires each node on the DHT to perform RTT
measurements to the landmark nodes to obtain a landmark vec-
tor. The landmark vectors without distances to the milestones
are used as the DHT keys for the infrastructure nodes to join
the DHT. When a service/resource node stores its information
on the DHT, it computes its landmark vector in the same way
as it is done for the DHT nodes and uses its landmark vector as
the DHT key to store its information. Similarly, it retrieves in-
formation about nodes in network proximity using its landmark
vector. This approach has two advantages: (i) information of a
node is stored on a DHT node that is close to it; and (ii) infor-
mation of nodes that are near each other are stored close to each
other on the DHT. Therefore, to find information about nodes
that are close to a particular node, we first route to the zone us-
ing the node’s landmark vector as the key and then perform a
localized search.

In reality, a landmark vector is usually of a high dimension-
ality. Requiring the DHT to also have a high dimensionality
increases its management cost. We consider an extreme case
and use a Chord-like DHT to host the global information ta-
ble. This is an extreme case since it provides only a one di-
mensional abstraction. Rather than using the landmark vectors
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as the DHT keys directly, we perform dimensionality reduction
of each landmark vector to obtain a scalar number. We call
this scalar number the landmark number of the node, and use
it as the node’s DHT key. Dimensionality reduction of land-
mark vector to landmark number can be done in several differ-
ent ways, for example, using space-filling curve or Harmonic
mean of a node’s distances to the landmarks. Figure 7 illustrates
how to use a space-filling curve (in this case, Hilbert Curve [1])
to reduce dimensionality of the landmark vectors of a node.
Space-filling curves map points in the domain <d into <1 so
that the closeness relationships among the points are preserved.

Figure 8 shows how landmark numbers can be used to con-
struct topology-aware Chord and are used as keys to store in-
formation of nodes onto the DHT. There are four DHT nodes
whose landmark numbers are 1, 15, 28, and 46. There are
two nodes that have landmark number 12, and one node with
landmark number 14. The information of these three nodes are
stored on the DHT node with landmark number 15.

We have conducted preliminary simulations by randomly
picking 2,048 client nodes from the topology described in Sec-
tion IV-D. Even with a single Hilbert curve, and no replication,
a node can find the closest node on the local node (the node
where it is hashed to) with a probability of 83% when each lo-
cal node stores 256 nodes.

B. Reducing Measurement Overhead

As discussed earlier, each traceroute probe incurs mes-
sage overhead proportional to the length of the probed path.
To reduce the measurement overhead we propose “smart-
traceroute,” a smarter version of traceroute that does not
probe every hop. Instead of incrementing the TTL of the ICMP
probe packet by 1, smart-traceroute intelligently skips interme-
diate hops. It exploits the fact that fine grained delay informa-
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tion is primarily needed for the milestones closer to the node.
We used two heuristics exp and hop as skipping patterns for
smart-traceroute. The exp exponentially increases tracer-
oute TTL and probes only hops 1, 2, 4, 8, etc., whereas the
hop mimics the hierarchical network structure and uses slowly
increasing probing TTL (1, 2, 3, 6, 9, 12,. . .). If the largest path
is 32, the message overhead for each smart-traceroute probe is
less than 6 for exp and 12 for hop. Figure 9 compare these two
smart hop skipping techniques on PlanetLab. The baseline case
of m0 R is also shown.

We observe from the graph that with less measurement over-
head, both exp and hop perform similarly and are only slightly
less accurate than the baseline m0 R. This implies that the in-
formation not used in exp and hop was not adding much value.

We plan to explore this further to find how the skipping pat-
terns for smart-traceroute can be adapted to given topologies.
In addition, we will enable smart-traceroute to probe multiple
targets simultaneously. This smart version will have the fol-
lowing features: (i) Using heuristics, it avoids probing the com-
mon paths multiple times. (ii) It reports data incrementally as
it becomes available. (iii) It groups consecutive routers that are
close to each other into super-routers to increase the probability
of capturing common sub-path among different clients.

VII. CONCLUSIONS

We presented Netvigator, a network proximity estimation
tool that uses a novel enhanced landmark clustering technique
to accurately locate the closest node to a given node. Our tech-
nique uses a small number of landmarks and a large number
of milestones that assist the overall process without incurring
large overhead. Our clustering algorithms utilize distance in-
formation from the landmarks as well as milestones to obtain
high accuracy in finding the closest node and is robust to bad
measurements. We developed a prototype of our scheme and
evaluated it in the real world including on planet-lab as well
as HP intranet. We also performed simulation for scalability
testing. Our experiments show that with 90% confidence, our
algorithm identifies the actual closest node.

Our future work will extend the capability of our tool to es-
timate network distance directly and further reduce measure-
ment overhead. Another aspect of our future work is, with a
distributed information table based on DHT, to apply our tech-
niques to real applications such as constructing efficient service
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overlay networks. We also plan to install Netvigator as a run-
ning service on PlanetLab.
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