

A Sense of Place: Toward a Location-aware Information
Plane for Data Centers

Justin Moore, Jeff Chase, Keith Farkas, Partha Ranganathan
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2004-27
February 23, 2004*

E-mail: {justin,chase}@cs.duke.edu {keith.farkas,partha.ranganathan}@hp.com

data center
instrumentation

The continuing drive to improve operating efficiency of information
technology is motivating the development of knowledge planes or
frameworks for coordinated monitoring and control of large data
computing infrastructures. In this paper, we propose the notion of a
location- and environment-aware extended knowledge plane. As an
illustration of such an extended knowledge plane, we architect the Splice
framework, that extends the knowledge plane to include data from
environmental sensors and the notions of physical location and spatial
and topological relationships with respect to facilities-level support
systems. Our proposed architecture is designed to support easy
extensibility, scalability, and support the notion of higher- level object
views and events in the data center. Using the above architecture, we
demonstrate the richness of queries facilitated by Splice and discuss their
potential for automating several categories of data center maintenance
and control. We also discuss our experience with deploying Splice on
real-world data centers and discuss the value from Splice in the context
on one specific optimization that would have otherwise not been possible
without the extended knowledge plane. Finally, we also provide evidence
of the scalability of this deployment with number of readings, both in
terms of database storage and query performance.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

A Sense of Place: Toward a Location-aware Information Plane for
Data Centers

Justin Moore and Jeff Chase�

Department of Computer Science
Duke University

fjustin,chaseg@cs.duke.edu

Keith Farkas and Partha Ranganathan
HP Labs, Palo Alto

fkeith.farkas,partha.ranganathang@hp.com

Abstract

The continuing drive to improve operating efficiency of
information technology is motivating the development of
knowledge planes or frameworks for coordinated monit-
oring and control of large data computing infrastructures.
In this paper, we propose the notion of a location- and
environment-aware extended knowledge plane. As an il-
lustration of such an extended knowledge plane, we ar-
chitect the Splice framework, that extends the knowledge
plane to include data from environmental sensors and the
notions of physical location and spatial and topological
relationships with respect to facilities-level support sys-
tems. Our proposed architecture is designed to support
easy extensibility, scalability, and support the notion of
higher-level object views and events in the data center.
Using the above architecture, we demonstrate the richness
of queries facilitated by Splice and discuss their potential
for automating several categories of data center mainten-
ance and control. We also discuss our experience with de-
ploying Splice on real-world data centers and discuss the
value from Splice in the context on one specific optimiza-
tion that would have otherwise not been possible without
the extended knowledge plane. Finally, we also provide
evidence of the scalability of this deployment with num-
ber of readings, both in terms of database storage and
query performance.

1 Introduction

A continuing trend is the drive to improve the operating
efficiency of information technology (IT) by reducing the
costs to operate the physical infrastructure. In particu-
lar, server infrastructure is increasingly consolidated in

�This work is supported in part by the U.S. National Science Found-
ation (EIA-9972879) and by HP Labs. Justin Moore was supported in
part by an HP Labs Internship.

data centers and server networks under unified adminis-
tration. As the complexity and scale of these systems
grows, it is increasingly hard for facilities personnel to
monitor the thousands of systems, locate those that have
failed, and diagnose problems in the interconnected sys-
tems for power, communications, and cooling.

This concern has motivated recent work on frameworks
for coordinated monitoring and control of large-scale
computing infrastructures. For example, commercial
frameworks such as HP's OpenView and IBM's Tivoli ag-
gregate information from a variety of sources and present
a graphical monitoring and control interface to adminis-
trators. Recent research focuses on extending the state of
the art in three significant ways. The first is to extend it
to Internet-scale systems, often using a sensor metaphor
for the instrumentation, and leveraging research in large-
scale sensor networks [10] and queries on massive sensor
fields [14, 8] for wide-area infrastructures such as Planet-
Lab [15] or the Grid [5]. The second is to develop ana-
lysis tools to recognize patterns and diagnose anomalies
in the data [3, 2, 1, 9]. Finally, since human operators may
be unable to assess events quickly enough to respond ef-
fectively, there is increasing interest in “closing the loop”
with tools to plan responses, and execute them through
programmatic interfaces (actuators) for system manage-
ment; for example, this is a key long-term goal of initi-
atives for autonomic computing and adaptive enterprises
at IBM and HP respectively. These trends combine in the
idea of a “knowledge plane” for the Internet and other
large-scale systems [4].

This paper explores a new dimension of the emerging
knowledge plane: the role of environmental sensors,
physical location, and spatial and topological relation-
ships with respect to support systems such as cooling
and power distribution. We claim that this information
is needed in any comprehensive monitoring system, and

1

that it is important to integrate it with conventional met-
rics such as system utilization and performance. For ex-
ample, location is useful to isolate and localize problems
that require manual intervention. It can also help to pre-
dict failures resulting from environmental conditions, and
to improve availability by selecting resources to avoid a
common scope of failures, such as those resulting from
destruction of a building to failure of a shared power dis-
tribution system.

Physical information has an important role to play in dy-
namic monitoring and control for data center automation
as well, particularly when coupled with performance met-
rics. As a motivating example, consider the need to man-
age power and cooling in a data center. The cost of energy
to power and cool the equipment of a large data center is
significant (e.g., $72,000 per month for a 40,000 sq. ft.
facility[11]). Moreover, technology trends are driving in-
creasing power density, in part to reduce costs for space
and cabling. As a result, the infrastructure for power and
cooling is critical to reliability, and automated mechan-
isms to control power consumption and cooling resources
are essential. Combined instrumentation is a prequis-
ite for intelligent control to adjust a software-controlled
cooling infrastructure [12], place workloads to balance
thermal load and improve energy efficiency, or forecast
thermal events and respond by migrating or throttling
workloads or failing over to backup systems.

To illustrate the role of environmental sensors and loc-
ation in an information plane for a data center, we re-
port on experiments with an instrumentation infrastruc-
ture for a data center comprising approximately 320 sys-
tems. Our test data center is instrumented with tem-
perature sensors and monitors for power consumption.
A key element of our work is a database engine to fil-
ter sensor data and index it in an archive supporting an
SQL query interface optimized for selected spatial quer-
ies. This component—called Splice—combines environ-
mental sensor readings with performance measures col-
lected from a standard instrumentation framework such as
HP OpenView or Ganglia [13], and normalizes all read-
ings to a common spatial frame of reference. Splice can
act as a building block for a variety of analysis tools, in-
cluding correlation analysis on an archived history as well
as event triggers and other queries over the current state
of the infrastructure.

We begin in Section 2 with an overview of the Splice
architecture and data model and a summary of related
work. Section 3 discusses the architecture and design of
the key system components. Then, in Section 4, we dis-
cuss important queries enabled by a location-aware and
environment-aware information plane. Section 5 presents
results illustrating the correlations of workload perform-
ance metrics and environmental data, and evaluating the

performance and scalability of the Splice aggregation and
query interface.

2 Overview and Related Work

We designed Splice as a component of a unified monitor-
ing and control system for a utility data center, although
it is not limited to that context. Our model includes a
set of data sources or sensors that export current values
for named metrics of interest, a set of consumers or sinks
that import sensor readings, and a network that dissemin-
ates streams of sensor readings to sinks, such as an over-
lay network based on a publish/subscribe model. The
sensor set includes physical sensors, e.g., for temperat-
ure or other environmental conditions that might affect
equipment functioning, such as dust, humidity, or electro-
magnetic noise.

In this context, Splice is a component that subscribes to
some set of sensors, e.g., all of the sensors in a data cen-
ter or region. Figure 1 depicts the structure of Splice. Its
purpose is to filter and normalize the sensor readings, in-
tegrate them with other configuration state, and archive
them, indexed by time and location. It exports an SQL
query interface to higher-level tools or agents that access
the data, e.g., for analysis tasks as described below. Note
that Splice is compatible with any method of dissemin-
ating the sensor data, and that it may coexist with other
data consumers or intermediaries that process or log raw
sensor streams.

Each sensor is associated with an object occupying a spe-
cific location in a three-dimensional coordinate space.
Examples of objects are servers, switches, storage units,
or standalone sensing devices such as the Motes used as
temperature sensors in out test data center. Each object
is associated with an extensible set of named attributes
with string values, similar to LDAP or SNMP. Object at-
tributes include a type, a location, and dynamic attributes
derived from the sensors currently bound to that object.
Administrative tools (agents) may define or update addi-
tional attributes for an object, e.g., to record the physical
or software configuration of a server. For example, an ad-
ministrative agent might populate the database with a data
center configuration specified externally using Data Cen-
ter Markup Language (DCML [7]), Microsoft's Systems
Definition Model, or the Common Information Model
defined by the Distributed Management Task Force [6].

The Splice data model does not distinguish between the
dynamic attributes and configuration attributes normally
considered to be fixed. The fixed attributes include data
that changes rarely, such as physical configuration data,
including memory size, physical relationships among
components (e.g., system X is located in rack R), and
properties related to location (e.g., the power circuit feed-

2

Figure 1: Splice consists of an engine for data aggregation and filtering that interfaces with a dynamic collection of data sources
(sensors). It archives a filtered history of sensor readings and other object attributes in a database, and exports an SQL query interface
to management and analysis tools (agents).

ing a given system). These attributes are represented and
processed in the same way as dynamic sensor readings.
This principle allows the system to naturally record a his-
tory of the evolution of the data center over its lifetime
(see Section 3).

Agents may use the Splice query interface to perform a
variety of analysis and management tasks. For example,
they may monitor status in real time for health monitoring
and problem determination, or to drive control policies
in response to events. Agents may query the data along
multiple dimensions, involving the history of object sets
defined by arbitrary collections of attributes, or activity
within specified regions and locations over specified time
intervals. Section 4 discusses the rich set of queries made
possible by integrating environmental and location data
into the archived history.

Splice is built above a relational database package to
handle these queries efficiently. This use of a database
does not require full transactional atomicity or concur-
rency control: each sensor reading is an independent and
immutable update, and there is no requirement for atomic
update or retrieval of groups of sensor readings. Our pro-
totype uses mysql, which does not impose transactional
overheads.

2.1 Related Work

Splice complements other projects working on different
aspects of massive instrumentation. For example, others
have addressed the design of scalable overlay structures
to disseminate sensor information to distributed analysis
components. Astrolabe [14] is one related project that
has addressed this issue. While any structured overlay
could be used, Astrolabe propagates information among

zones organized to reflect a logical administrative hier-
archy, similar to LDAP or DNS. One strength of Astro-
labe is that attribute values are replicated, improving the
robustness of the instrumentation layer.

Astrolabe supports distributed queries over attributes, in-
terposing operators for information reduction and aggreg-
ation along the zone hierarchy. Similar approaches appear
in sensor networks that construct ad hoc overlays based
on proximity, and combine and process information—
including spatial information—as it moves through the
overlay (e.g., TAG [10]).

Other recent work has addressed massively distributed
queries over current readings in sensors distributed across
a wide area (e.g., Sophia [15] and PIER [8]). PIER uses an
overlay to combine partial results from distributed query
engines.

Relative to these efforts, Splice focuses on queries over
history and uses location to integrate environmental
sensors into an information/knowledge plane for compute
infrastructure. Splice could function as a component in
each of these systems, to extend it to the wide area or
improve its robustness. For example, it is possible to de-
ploy Splice aggregators in a hierarchy, in which each ag-
gregator subscribes to sensor data from its local region,
and acts as a query engine for hierarchical queries across
many aggregators, as in PIER or Astrolabe.

There has been much recent progress on statistical ana-
lysis tools that infer component relationships from histor-
ies of interaction patterns (e.g., from packet straces) [3, 2,
1, 9]. This work has demonstrated the value of pervasive
instrumentation as a basis for problem determination and
performance profiling.

3

3 Splice Architecture

The design of Splice was guided by two emerging data
center trends. First, data centers are increasingly dy-
namic. New equipment is continually added and exist-
ing equipment is often reconfigured or removed; both
kinds of changes may include adjustments to the support-
ing power, cooling, and network infrastructure. Similarly,
each successive generation of equipment offers new cap-
abilities and new features. Second, with the drive towards
larger data centers and consolidation, the number of meas-
urement points and objects within data centers continues
to grow.

These trends drive the following goals for the Splice data
model:

1. It must be extensible to support new data sources,
new objects, and new object properties.

2. It must archive a history of changes to the state of
the data center over time, although most queries ap-
ply to the current state. In this context, state includes
the objects that comprise the data center, their loca-
tion and other properties, how they are composited,
and their infrastructure connection points. As such,
Splice must enable an agent to retrieve the state of
the data center at any time in the past.

3. The architecture must be scalable to large numbers
of objects and attributes, and long histories.

This section outlines the design of Splice, focusing on the
choices we made to meet these goals.

3.1 Data collection and filtering engine

The data collection and filtering engine logs changing val-
ues of dynamic attributes for environmental and perform-
ance metrics, such as CPU utilization, power draw, and
CPU temperature for a server, along with other informa-
tion that defines the state of the data center.

Splice gathers data from many sources that may pub-
lish data through different interfaces and with different
formats. The data collection engine includes modules that
implement the required elements of the communication
interface associated with each such data source. For ex-
ample, we have built a communication module to inter-
face the engine to both the Ganglia and OpenView Ser-
vice Reporter performance tools, as well as to temperature
and power sensors using proprietary interfaces and OPC
(OLE for Process Control), a standard that is widely used
in commercial sensors for process control and manufac-
turing automation.

Along with each such data item, the communication in-
terfaces also gather a time stamp corresponding to when

the item was recorded. Many sensors timestamp data at
the source; for example, some sensor interfaces cache
data readings locally until the aggregator “pulls” it us-
ing operations for polling and retrieval. In our current
implementation, we rely on the Network Time Protocol
(NTP) for clock synchronization of server-hosted sensors.
For sensors that produce data at regular intervals, Splice
timestamps each reading locally before entering it in the
database.

A second role performed by the data collection and filter-
ing engine is to filter the incoming data streams or filter
the values already recorded in the database. Filtering re-
duces the amount of data that is stored in the database, im-
proving scalability. The amount of data impacts the speed
at which data can be inserted into the database, and to a
greater degree, the speed at which data can be retrieved;
Section 5 discusses this issue in more detail.

Splice uses a change-of-value filter that retains only those
values that differ significantly from the previously logged
values; this reduces data size significantly, with minimal
loss of information. Splice also supports a variation of
this approach in which a more aggressive filter is applied
to older data thereby trading increased information loss
for greater compression ratios. The filter parameters are
defined on a per-data-source basis. Some sensors may
also filter continuous readings before publishing values
for a measurement interval.

3.2 Database schema

Splice aggregates sensor and performance data in a re-
lational database using a database schema that has been
designed to treat information that rarely changes in much
the same way as those that frequently change. That is, the
schema uses the same set of tables to store information
that rarely changes, such as the physical memory size of
a system and the power circuit to which it is attached, and
information that frequently changes, such as the power
consumption and CPU utilization of the system. In so do-
ing, the schema addresses our two extensibility and adapt-
ability goals. However, there are two exceptions. First, we
assume that the size of objects is immutable, and hence,
this information is stored as part of the objects definition.
Second, we track separately the current and past location
of objects so as to reduce the time required to access this
important parameter.

Turning to specifics, the database schema comprises eight
tables, which are illustrated in Figure 2. The object types
table records the basic information about the types of ob-
ject in the data center, while the objects table records the
instances of each object type, its parent object identifier,
its location identifier, and whether it is currently present
in the data center. The parent object identifier is used to
specify an “attached-to” relationship between two objects,

4

Objects

• object id

• object type id

• location id

• parent object id

• is valid

• label

• description

Objects Deltas

• time

• object id

• location id

(new, old)

• parent object id

(new, old)

• event id

Input Types

• input type id

• units

• label

• description

Locations

• location id

• coordinate (x, y, z)

• label

• description

Readings

• time

• object id

• location id

• input type id

• value

• event id

Current Readings

• time

• object id

• location id

• input type id

• value

• event id

Events

• time

• event id

• object id

• type

• description

Object Types

• object type id

• size (x,y,z)

• label

• description

Figure 2: Database schema of the Splice architecture.

such as, that a system is a part of a rack, or a power grid
connection point connects to a particular system. If an
object is moved, its earlier location and “attach-to” rela-
tionship is recorded in the object deltas table before the
new location is recorded into the objects table.

With the exception of object size and location, the read-
ings table records all the properties of the objects, both,
as noted above, those that are dynamic and those that are
static. For each reading, this table records the object that
provided the reading (e.g., a power meter, a temperature
sensor), the location identifier of the object, the input-type
identifier of the reading, and the reading value. The loca-
tion identifier is included so as to support objects that are
mobile, and thus, the object identifier alone is not suffi-
cient to locate the reading. The input-type identifier keys
into the input types table, which provides the units for the
reading along with a description and label. These items
are useful to agents. Finally, the current readings table re-
cords the latest reading for each property. A separate table
is provided to reduce the time required to extract the cur-
rent value of all properties, and hence, facilitates agents
that require real-time access to the information, such as
monitoring functions or control systems.

Each of the above mentioned tables records a location
identifier rather than spatial coordinates. This approach
was chosen to reduce the amount of duplicate informa-
tion in the database. Location identifiers are mapped to
spatial coordinates by the locations table. The frame of
reference for the spatial coordinates is a top-level object,
namely, the data center. Multiple data centers may be sup-
ported by defining a non-overlapping region of 3D space
for each.

Finally, the events table allows a management agent to log

an user-defined event. Event types may be stand-alone
occurrences (e.g., a new system was installed), or may
mark the start and end of a sequence (e.g., the cooling
system was down for a day). As such, the event table
provides context for the other information maintained in
the database.

4 Extending the Information Plane

In this section, we illustrate the power of incorporating
location-awareness and environmental data (power, tem-
perature) into an information plane. Extending the in-
formation plane in this way facilitates data center automa-
tion for several new categories of maintenance and con-
trol. Table 1 gives some examples of the kinds of rich
queries possible with Splice, broadly classified into five
categories based on their usage. This list is intended to be
suggestive and illustrative: some of these queries may re-
quire substantial post-processing within the analysis tools,
and many useful queries are not included in this list.

The first class of queries deal with simple data collection
and to monitor data center health and to present resource
status to a human administrator. These queries may focus
on individual sensor or system readings or collate sum-
maries over multiple readings clustered by geographic
location (e.g., servers in a rack), application grouping
(systems associated with an application), or by some other
form of topological grouping (e.g., sytems in a power-
grid).

The second class of queries extend simple collection for
monitoring to include some basic intelligence to identify
fault patterns or automate maintenance tasks. For ex-
ample, for services that provide high availability through
running multiple instances of the same service in parallel,
it is important to avoid running multiple instances on sys-
tems that share a common infrastructure dependence or
failure scope. Such dependencies include being located
in same geographic region such as a cooling zone, room,
or building, or sharing the same power circuits. Simple
Splice queries can identify such dependencies ahead of
time, as well as detect potential overloading of power or
thermal limits under coincident heavy loads.

Other queries in this class include monitoring systems for
thermal failure and characterizing the availability of sys-
tems based on their past histories. Finally, when a system
fails, location information is required in order to physic-
ally find it and repair it. Though this is a relatively simple
query in Splice, this addresses a significant problem in
many current data centers that are densely populated or
have significant churn in the location of individual serv-
ers.

The third and fourth classes of example queries listed in

5

Visualization and monitoring of the data center
What are the current power readings for a subset of the nodes associated with some physical meaning (e.g.,
power-grid)?
What is the current average temperature for all racks that are more than some distance away from another
location or object?

Problem detection/avoidance and task automation
Which racks have had power or temperature rise above threshold T over time interval I, and where are they
located?
Which servers have had more than D units of downtime over time interval I, and where are they located?
Which servers in a redundantly provisioned cluster share the same power circuit or are in the same fault
scope?
Is the backup node for server S within 3 miles of its location?
When a node fails or needs a hardware upgrade, where is it physically located?

Understanding historical data for better data center designs and policies
What was the power and utilization of the machines in a given rack during time interval I?
What is the average power consumption of the tier-1 workload in a three-tier system that ran on a given set
of machines over a period of a week?
For a given period of time, which locations in the data center were most often hotspots?
In the last hour, how many times did the temperature at location L rise above threshold T ?
What was the difference in aggregate power consumption over time interval I across the power grids in a data
center?
How many of the servers that received memory upgrades last month have failed in the last week?

Understanding causal relationships between events
How does the power dissipation impact inlet temperature at the racks?
When a cooling unit fails, what are the servers that show thermal redlining and how long does it take for the
temperature to reach within a threshold of the redline limit?
What is the impact on the inlet temperature for certain predefined nodes for a given change in the resource
utilization of a given rack?
Over a period of a year, is there a correlation between server downtime and the average temperature at its
location?

Understanding resource properties for dynamic resource allocation decisions
What are the nodes that are present in a cool region, have a CPU load below threshold T and are located no
more than one rack apart?
Which nodes have been up for longer than two months and have lifetime failure rates below threshold T ?

Table 1: Example queries enabled by Splice.

6

Table 1 demonstrate how Splice can be used to parse the
collected data to understand historical trends and causal-
ity in events. This information can be used to optimize
the data center design or improve policies for resource
management. Splice can be used to understand the av-
erage behavior of a metric of interest over time either for
an individual sensor of for some topological grouping of
readings. For example, it could be used to understand the
thermal profile of hotspots and coolspots in a data center
for a given cooling configuration and relate it to system
thermal redlining limits. Such averages, when computed
for power, can also be used in aid of power grid balancing.
Similarly, understanding correlations between server re-
source utilization, power consumption, inlet temperature
variation, and need for cooling for a given data center can
lead to significant optimizations in the design of the data
center to reduce overprovisioning of power and cooling
resources. Finally, causal information can also be used to
determine the root cause of failure.

The final class of example queries help in understanding
dynamic resource utilization properties of the data center
to improve policies for workload placement and resource
allocation in the data center. For example, a snapshot of
system resource utilization across a rack of servers that
constitute a solution (e.g., a three-tier workload) can aid
in power-sensitive workload placement to improve power
consumption. This technique is based on the observa-
tion that when workloads exercise systems differently it
is possible to improve overall energy efficiency by alloc-
ating workloads to heterogeneous servers in a utility data
center. Other similar heuristics can be envisioned that im-
prove costs associated with cooling or risk tolerance by
leveraging information about prior dynamic changes in
the system from Splice.

4.1 Test Data Center

We conducted several experiments on a test data center at
HP Labs (HPL). The HPL facility houses the first produc-
tion installation of the Utility Data Center (UDC) solu-
tion from HP's Infrastructure Solutions division. The data
center contains approximately 320 servers and over 40
TBytes of storage. This environment is set up to run the
entire production load of HP Labs as well as the comput-
ing needs of the individual research groups. The room
power and cooling, as well as the operational parameters
of all the components are instrumented to aid the data ag-
gregation for the Smart Data Center research program.

The HP UDC has four primary data sources.

� Power meters: An OLE for Process Control (OPC)
server maintains the one-minute average power con-
sumption for each rack. This data is logged in a Sy-
base database and exported through a DCOM net-

work service. The server updates power values once
every sixty seconds.

� Temperature sensors: A separate OPC infrastruc-
ture monitors temperature through a series of wired
sensors that are attached to the front and back of the
racks. Temperature data is only available through the
DCOM network interface. OPC clients can specify
what temperature delta is sufficient to trigger a call-
back message over the network containing the new
valule.

� HP OpenView: The performance infrastructure uses
Service Reporter on the server and Performance
Agent on the clients. Service Reporter polls the
clients periodically and updates its MS-SQL data-
base with traditional measurements: load averages,
memory use, disk utilization, and others.

� Configuration descriptions: Location information
was fed into the database through an XML descrip-
tion of the room created by the system administrator.

4.2 Cooling-Aware Workload Placement

The previous section highlighted several classes of quer-
ies possible with Splice and their potential benefits. In
this section, we focus on one particular example in the
context of our instantiations of Splice. Specifically, we
discuss how Splice could be used as a basis for cooling-
aware workload placement.

As noted in Section 1, there is growing interest in improv-
ing the energy efficiency of data centers. Approximately
1/3 of the total amount of energy consumed by a data cen-
ter is consumed by the cooling resources (e.g., air condi-
tioners, cooling towers, pumps). One possibility is to al-
locate workloads so as to minimize the energy required to
extract the heat they produce from the data center. Con-
ventional raised-floor cooling tends to cool unevenly, thus
some locations are inherently cooler than others. The data
center scheduler can save energy by scheduling workload
on the machines in these cool locations, minimizing the
load increase on the cooling system.

Figure 4.2 illustrates this effect for a row of systems in the
HP Labs data center. This figure plots the median temper-
ature recorded by 12 temperature sensors over a 23 day
period. These sensors were positioned to measure the in-
let temperatures of 72 systems arranged in 6 racks1. The
figure also gives the 20th and 80th percentile temperat-
ures, indicating the temperature spread. Observe that this
spread is typically 4 deg F and increases to as much as 7
deg F.

1While more sensors would give more temperature precision, 12 is
sufficient for mapping out the thermal zones for these 72 machines.

7

55

60

65

70

75

80

85

90

1 1 2 2 3 4 4 5 5 6 7 7 8 9 9

1
0

1
0

1
1

1
2

1
2

1
3

1
3

1
4

1
5

1
5

1
6

1
7

1
7

1
8

1
8

1
9

2
0

2
0

2
1

2
2

2
2

2
3

days

80th percentile

20th percentile

median

te
m

p
e
ra

tu
re

Figure 3: The median and range of inlet temperatures for
6 racks reported by 12 temperature sensors.

This spread occurs in part because the temperature of the
air entering systems at the top of racks is several degrees
hotter than that entering systems at the bottom. In addi-
tion, owing to complex air flow patterns, systems located
in different parts of a data center can experience radically
different inlet air temperatures.

Cooling-aware workload allocation requires the historical
and present-time inlet temperatures for all available and
suitable systems. This information is readily available
from Splice, as illustrated in Figure 4.2. From this in-
formation, we can select the temperature sensors having
the lowest temperature, and hence allocate the workload
to the systems in the vicinity of these sensors, taking into
account other relevant attributes of those systems, such as
their resource types and current utilizations.

For the same sensors shown in Figure 4.2, Figure 4.2
plots the three temperature sensors with the lowest read-
ing. Each data point �x� y� indicates that the temperature
sensor y yielded one of the three lowest readings over the
five-minute interval x.

¿From the figure we can see that certain rack positions are
often but not always among the coolest. Hence, there is
an energy advantage to allocating workloads to those po-
sitions, since doing so would reduce, possibly eliminate,
the amount of additional cooling required. However, the
location of these positions relative to other racks and ob-
jects must also be taken into account. One reason is that
a high power workload at the end of a row of racks can
cause the inlet temperatures of some of the machines in
this rack to increase. This effect results from hot exhaust
air drawn around the end of the row and into the inlets
of the machines; such recirculation is much less likely to
occur for machines in the middle of the row.

Figure 5 illustrates this recirculation effect. This figure
shows the average inlet temperatures for each of the 6

1

3

5

7

9

11

0 5 10 15 20 25

2l

2m

2u

3m

3u

4u

5u

6m

6u

7l

7m

7u

Figure 4: The three sensors with the lowest average tem-
perature, computed every five minutes, over 23 days. The
Y-axis labels provide the location of the sensors. E.g.,
sensor 2l is located near the bottom or rack 2, 2m near the
middle, and 2u near the top.

Figure 5: The inlet temperatures of the 6 racks when a
high power workload was deployed at time T on 10 of the
12 machines in the rack at one end of the row.

racks described above, when a new workload is deployed
on 10 of the 12 machines located in the rack at one end of
the row.

Hence, an effective policy must take into account the tem-
perature distribution in the data center, the position of the
cooler spots relative to the rows and other objects, and the
likely power consumption of the workload. Clearly, to
implement such a policy, our extensions to the knowledge
plane are required.

5 Experimental Results

In this section we examine the results of running Splice
on two clusters: HP's Utility Data Center (UDC) and the
Duke Computer Science “Devil Cluster”. The amount of
data arriving at the database from the conduits has the po-

8

Metric Interval (s) Avg. Value Avg. Delta Dev. Delta P(0—0) P(!0—!0)
Power (W) 60.4 1481 0.0 95.5 0.83 0.91
Temp. (F) 153 68.6 0.0 1.06 0.37 0.81

1-min load 265 0.96 0.0 0.61 0.75 0.73

Table 2: Important Characteristics of Data Flows. Power and temperature metrics are from the HP UDC, while load
average and memory utilization are taken from the Duke trace. As temperature data is partially pre-filtered on the
OPC end of the conduit, the probability of three consecutive identical readings – two deltas with a value of zero – is
significantly lower than for the other metrics.

tential to be very large; after only six weeks the Duke
database has over thirteen millions rows, consuming 800
MB in data and index files. Complex queries over large
data sets need to scale gracefully if the data is to be useful.
For a single Splice site to attain such scalability we ex-
plore the benefits of simple data filtering techniques. For
example, we can often discard consecutive identical or
near-identical readings from a given sensor. In this man-
ner, we explore delta-value filtering and age-delta value
filtering.

In delta-value filtering we take a value as it arrives at the
database and compare it to the current reading for that
sensor. If difference between the new value and the old
value is less than some threshold, we discard the new
value. If they are sufficiently different, however, we add
the new value to the database. The amount a value is al-
lowed to change before we log a new entry is the size
of the filter. We trade perfect accuracy – defined as log-
ging every reading arriving at the database – for scalab-
ility. Splice allows us to establish per-conduit and per-
sensor-type filtering policies, irregardless of any filtering
that may or may not occur on the other end of the conduit.

Age-delta value filtering is similar to delta-value filtering,
but with the addition of a postprocessing filter. The post-
processor examines historical data and allows us to in-
crease the size of the filter for older data. The rationale
behind this approach is that as data gets older the ex-
act values become less important. We view historical
data as useful for examining general trends, and for the
creation and tuning of models for MAPE control loops.
However, to ensure that old data does not indiscriminately
get filtered out, there is an upper bound on the coarseness
of the filtering granularity.

5.1 Classifying Data Flows

In order to choose a given filtering scheme and select op-
timal parameters, we must first understand certain charac-
tersitics of the incoming data flows. How often do the val-
ues change, and how much do they change? Is the rate of
change itself constant, or are the measured values constant
for extended periods of time with only bursts of activity?
Table 2 shows

� the average time between readings

� the average measured value

� the average delta when the delta is non-zero

� the standard deviation of the delta

� the probability that the delta between readings rn
and rn�� will be zero, given that the delta between
readings rn�� and rn was zero, and

� the probability that the delta between readings rn
and rn�� will be non-zero, given that the delta
between readings rn�� and rn was non-zero.

Note that a delta of zero is a special case that we separate
from other statistical properties. The distinction between
a delta of zero and non-zero is important; if we did not
make this distinction it would be impossible to distinguish
between a trace that changed steadily with a relatively
constant delta, and a trace that is largely quiescient but
with large bursts of activity. Both could have the same
average and standard deviation for their delta properties,
but only the first trace is amenable to delta-value filtering.

In spite of our rule for setting aside delta values of zero
while calculating data flow properties, the average delta
for each measurement is zero. In calculating the average
delta, we do not use the absolute value of each delta; we
simply sum the differences. An average delta of zero in-
dicates that over a long enough time window – weeks for
the load average, and months for power consumption and
temperature – the values are relatively stable. Assuming
that were not the case, and instead the average power or
temperature delta was non-zero, that would indicate that
the total power consumption or temperature in the data-
center would approach either zero or infinity. One might
see how these are less-than-desireable (or realistic) scen-
arios.

The true characteristics of the data flow are its “laziness” –
measured by P ��n�� � �j�n � �� – its burstiness –
measured by P ��n��� � �j�n� � �� – and the magnitude
of the changes –indicated by the standard deviation of the
delta.

9

5.2 Exploring Filtering

Filtering is a tradeoff between accuracy and space, and
here we explore the costs and benefits of various filtering
parameters.

Figure 6 illustrates the effect of these filtering modes
for three kinds of sensors: power, temperature, and one-
minute CPU load. The CPU data (Figure 6(a)) is presen-
ted for the Duke facility while the power (Figure 6(b)) and
temperature (Figure 6(c)) data is presented for the HPL
facility.

For each graph, the line illustrating the no-filtering de-
fault case shows a large increase in the number of read-
ings over a five-week period when compared to simple
delta-value filtering. For performance data that is logged
close to every two minutes, such as the one-minute load
average, this is almost a factor of fourteen; for the base
unfiltered graphs for the temperature and power data, the
increases are factors of five and ten respectively. Even one
sensor that logs one reading every other minute will gen-
erate over nine megabytes of data per year, not including
database metadata; one rack of machines at the HP UDC
can easily generate over a terabyte of measurements.

Focusing on Figures 6(a) and (b), the results indicate that
the delta-value filter is very effective at reducing the data-
base size. For the five-week total, this method reduces
the number of readings by almost 85% for the CPU load
(using a delta-value-threshold of 0.25 in the one-minute
CPU load-average) and 60% for the power readings (us-
ing a delta-value-threshold of 10W). As evident from the
slopes of the curves, the compression ratio is fairly con-
stant indicating that there is not too much variation for
these metrics in the sample data set we considered. This
is the due to the relatively large P ��n�� � �j�n � �� and
P ��n��� � �j�n� � �� attributes of these data flows. Fig-
ure 6 also shows the compression possible with the aged-
value-delta approach. As expected, as time progresses,
the aged-value-delta approach accomplishes better com-
pression compared to the base delta-value method by vir-
tue of its greater compression of older values.

Figure 6(c) represents an interesing case where the data
collection agent already includes some non-trivial amount
of base pre-filtering. The OPC server logs temperat-
ure data only when the temperature difference exceeds
0.05 degrees F or if more than a half-hour has elapsed.
Also, the collected-data-graph shows other variations in
the slope due to periods when the temperature sensors
were offline (days 25-32) and due to other idiosynchrasies
of interactions between the OPC server and our con-
duit. In particular, when our conduit re-connects with the
OPC server, the protocol sends out the current values of
all sensors irrespective of when the previous value was
logged. As seen from Figure 6(c), the delta-value and

the aged delta-value filtering methods still perform bet-
ter than the default filtering achieving almost 77% to 98%
compressions.

5.3 Query Times

Table 3 lists the time taken to process three representat-
ive queries that stress different axes of time, space, and
objects:

Q� What is the average temperature right now for all
racks less than some distance away from some
location?

Q� Find a row with an average inlet temperature below
some threshold and that has four machines with a
load less than 0.75.

Q� For the time interval X-Y, what racks had power
consumption of above a certain threshold and where
are they in the data center?

For each query (horizontal row in the table), we present
data for three database sizes corresponding to a week, two
weeks, and three weeks of sensor information. For each
database size, we present the query speed assuming data-
bases with (Delta-Value) and without (Raw) filtering.

As seen from the results, in the absence of filtering, query
performance for archived (i.e., non-current) data is very
poor. For example, the response for query 3 time goes
from a five seconds to 17 minutes when we disable fil-
tering. In contrast, as the results in Table 3 show, the
query performance for the database with filtering turned
on is more manageable. For example, the response time
for query 3 goes from five seconds to 95 seconds when
the database size increases from one week to three weeks.
Deeper analysis revealed that this jump was due to the
default MySQL configuration allocating small buffers to
sort ordered data; unfortunately we did not have enough
time to replicate the results with other standard server op-
timizations enabled.

6 Conclusion

“Knowledge planes” or frameworks for co-ordinated
monitoring and control of such large-scale systems have
recently emerged as valuable tools to address the health
monitoring, problem diagnosis, and closed-loop control
issues associated with IT management. However, these
have all predominantly focused on conventional IT-level
metrics such as system utilization, memory usage, net-
work congestion, etc.

10

0

200000

400000

600000

800000

1e+06

0 168 336 504 672 840

N
um

be
r

of
 R

ea
di

ng
s

Time (hours)

’load-total’
’load-flat-25’

’load-aged-25-10-75’

0

500

1000

1500

2000

2500

0 168 336 504 672 840

N
um

be
r

of
 R

ea
di

ng
s

(t
ho

us
an

ds
)

Time (hours)

’power-total’
’power-flat-25’

’power-aged-25-10-75’

0

50000

100000

150000

200000

250000

300000

0 100 200 300 400 500 600 700 800

N
um

be
r

of
 R

ea
di

ng
s

Time (hours)

’temp-total’
’temp-flat-25’

’temp-aged-25-10-75’

(a) Performance (b) Power (c) Temperature

Figure 6: Demonstrating the filtering modes in Splice.

Query 1-week database 2-week database 2-week database
Raw DV Raw DV Raw DV

Q� 0.18 0.21 – 0.0 0.24 0.0
Q� 1.18 1.25 – 0.0 1.25 0.0
Q� 1057 5.82 – 63.37 1316 94.91

Table 3: Performance of three representative queries with and without filtering for various database sizes.

In this paper, we propose the notion of a location- and
environment-aware extended knowledge plane. We argue
that extending the knowledge plane to include data from
environmental sensors and the notions of physical loca-
tion and spatial and topological relationships with respect
to facilities-level support systems is likely to be critical
to manage and optimize future data centers. As an illus-
tration of such an extended knowledge plane, we architect
the Splice framework that combines environmental sensor
readings with performance measures all normalized to a
common spatial frame of reference. Our proposed archi-
tecture includes a data communication and filtering en-
gine and a database schema implemented on top of a re-
lational database and is designed to support easy extens-
ibility, scalability, and support the notion of higher-level
object views and events in the data center.

Using the above architecture, we demonstrate the richness
of queries facilitated by Splice and discuss their poten-
tial for automating several categories of data center main-
tenance and control. In particular, our queries illustrate
how Splice can act as a building block for a variety of
analysis tools include visualization agents, health mon-
itors, resource management agents and actuator control
engines. Furthermore, we discuss our experience with de-
ploying Splice on two collections of systems, a data cen-
ter at HP Labs and at Duke University, and discuss the
benefits from Splice in the context on one specific agent,
namely a cooling-aware workload placement engine. Our
data for this experiment both motivate and discuss a po-
tential implementation of an optimization that would have
otherwise not been possible without the extended data

plane. Finally, we also demonstrate the effectiveness of
our filtering methods in addressing the scalability of our
solution, both in terms of database storage and query per-
formance.

As part of ongoing work, we are examining interesting
trends from topological relationships in current data cen-
ters that extend beyond the cooling subsystem that we fo-
cused on in this paper. Further, also, as we collect longer
traces of data with longer passage of times, we expect the
value from our Splice deployments to be even higher, par-
ticularly in identifying trends between system failure (and
availability guarantees) and enviromental properties of the
data center.

As future data centers evolve to include ever larger num-
ber of servers operating in increasingly denser configura-
tions, IT and facilities management in such environments
is likely to emerge as one of the key challenges. We be-
lieve that knowledge planes extended to include location
and spatial information and environmental sensor inform-
ation, such as Splice, will be an integral part of future data
centers to address these challenges.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reyn-
olds, and A. Muthitacharoen. Performance debugging
for distributed systems of black boxes. In Proceedings
of the ACM Symposium on Operating Systems Principles
(SOSP), Bolton Landing, NY, Oct. 2003.

[2] M. Chen, E. Kiciman, A. Accardi, A. Fox, and E. Brewer.
Using runtime paths for macro analysis. In Proc. HotOS-
IX, Kauai, HI, May 2003.

11

[3] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem determination in large, dynamic sys-
tems. In Proc. 2002 Intl. Conf. on Dependable Systems and
Networks, pages 595–604, Washington, DC, June 2002.

[4] D. Clark, C. Partridge, J. C. Ramming, and J. Wroclawski.
A knowledge plane for the Internet. In Proceedings of
ACM SIGCOMM, August 2003.

[5] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kessel-
man. Grid information services for distributed resource
sharing. In Proceedings of the Tenth IEEE International
Symposium on High-Performance Distributed Computing
(HPDC), August 2001.

[6] www.dmtf.org, 2003.

[7] T. Howes and D. Thomas. Gaining control of complexity:
The DCML standard for the data center. www.dcml.org,
2003.

[8] R. Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo, S. Shen-
ker, and I. Stoica. Querying the internet with pier. In Pro-
ceedings of 19th International Conference on Very Large
Databases (VLDB), September 2003.

[9] R. Isaacs and P. Barham. Performance analysis in loosely-
coupled distributed systems. In 7th CaberNet Radicals
Workshop, Bertinoro, Italy, Oct. 2002.

[10] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: A Tiny AGgregation service for ad-hoc sensor net-
works. In Proceedings of the 5th Symposium on Operat-
ing System Design and Implementation (OSDI), December
2002.

[11] J. D. Mitchell-Jackson. Energy needs in an internet eco-
nomy: a closer look at data centers. Master's thesis, Uni-
versity of California, Berkeley, 2001.

[12] C. Patel, R. Sharma, C. Bash, and A. Beitelmal. Thermal
Considerations in Cooling Large Scale High Compute
Density Data Centers. In ITherm 2002 - Eighth Interso-
ciety Conference on Thermal and Thermomechanical Phe-
nomena in Electronic Systems, May 2002.

[13] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E. Culler.
Wide area cluster monitoring with ganglia. In Proceedings
of the IEEE Cluster 2003 Conference, 2003.

[14] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system mon-
itoring, management, and data mining. ACM Transactions
on Computer Systems, 21(2):164–206, May 2003.

[15] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An
information plane for networked systems. In Proceedings
of ACM HotNets-II, November 2003.

12

