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Abstract A number of technology and workload trends motivate
us to consider the appropriate resource allocation mechanisms and
policies for streaming media services in shared cluster environments.
First, workload measurements of existing media services indicale a
“peak-to-mean” workload variance of more than one order of mag-
nitude. It is difficult to overprovision service resources for such a
highly variable workload, making the adaptive resource allocation and
economies of scale of a shared hosting environment attractive for
streaming media services. Second, in emerging workloads based on en-
terprise, news, and music content, a significant portion of the content
is short and encoded at low bit rates. Additionally, media workloads
display a strong temporal and spatial locality. This makes modern
servers with gigabytes of main memory well suited to deliver most of
the accesses to popular files from memory. Finally, end-point admis-
ston control for streaming services is more important than for tradi-
tional web services because a streaming media object delivered in the
face of insufficient server resources is doubly bad, with wasted work
at the server often resulting in aborted connection at the client.

We present MediaGuard — a model-based infrastructure for build-
ing QoS-aware streaming media services — that can efficiently deter-
mine the fraction of server resources required to support a particu-
lar client request over its expected lifetime. The proposed solution
is based on a unified cost function that uses a single value to reflect
overall resource requirements such as the CPU, disk, memory, and
bandwidth necessary to support a particular media stream based on
its bit rate and whether it is likely to be served from memory or disk.
We design a nowvel, segment-based memory model of a media server
to efficiently determine whether a request will incur memory or disk
access when given the history of previous accesses and the behavior of
the server’s main memory file buffer cache. Using the MediaGuard
framework, we design a novel, more accurate admission control pol-
icy for streaming media servers that accounts for the impact of the
server’s main memory file buffer cache. Our evaluation shows that,
relative to a pessimistic admission control policy that assumes that
all content must be served from disk, MediaGuard delivers a factor of
two 1mprovement in server throughput.
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1. INTRODUCTION

The Internet is becoming an increasingly viable vehicle for
delivery of real-time multimedia content. The measurements
of realistic streaming media workloads reveals that the “peak-
to-mean” ratio of offered load varies by at least one order of
magnitude [5]. To satisfy client requests under a variety of con-
ditions in this environment would require similar overprovision-
ing of the service delivery infrastructure, daunting from both
an economic and management perspective. In this paper, we
consider the applicability of a shared utility computing infras-
tructures [4, 21, 26, 29, 30] to a streaming media service. The
utility environment, where streaming media services may auto-
matically request the necessary resources from the infrastructure
to adapt to dynamically changing workload characteristics, be-
comes an attractive solution. It can satisfy the requirements of a
wide variety of workloads with significantly less resources than
would be required to satisfy the peak demands of all services
simultaneously.

Traditionally, network bandwidth has been the target of opti-
mizations for streaming media services because of the belief that
other system resources, such as CPU, memory, and storage are
relatively cheap to acquire. For our work, we take a more wholis-
tic approach to resource management. While network band-
width usage can be considered as a primary component in the
service billing, the cost to manage, operate, and power more tra-
ditional resources makes CPU, memory, and storage important
targets of resource management and allocation, certainly within
a shared hosting environment.

A set of characteristics of emerging streaming media work-
loads further motivates our work. Earlier analysis [5] shows
that emerging streaming workloads (e.g., for enterprise settings,
news servers, sports events, and music clips) exhibit a high de-
gree of temporal and spatial reference locality. Additionally, a
significant portion of media content is represented by short and
medium videos (2 min-15 min), and the encoding bit rates, tar-
geting the current Internet population, are typically 56 Kb/s
- 256 Kb/s CBR. These popular streaming objects have foot-
prints on the order of 10 MB. At the same time, modern servers
have up to 4 GB of main memory, meaning that most of the
accesses to popular media objects can be served from memory,
even when a media server relies on traditional file system and
memory support and does not have additional application level
caching. Thus, the locality available in a particular workload will
have a significant impact on the behavior of the system because
serving content from memory will incur much lower overhead
than serving the same content from disk.



A final motivation for our work is the observation that the
adequate resource allocation or the admission control at the ser-
vice endpoint is more important for streaming services than for
traditional Internet services. A request for a web page to a
busy web site may result in a long delay before the content is
returned. However, once the object is retrieved its quality is
typically indistinguishable to an end user from the same object
that may have been returned more quickly. However, for an
interactive streaming media service, individual frames that are
returned after a deadline lead to an inadequate service, inter-
fering with QoS requirements and the client’s ability to provide
continuous playback, and resulting in the aborted connection at
the client. Thus, a streaming media server must ensure that
sufficient resources are available to serve a request (ideally for
the duration of the entire request). If not, the request should be
rejected rather than allow it to consume resources that deliver
little value to the end user, while simultaneously degrading the
QoS to all clients already receiving content.

One of the difficult problems for real-time applications includ-
ing streaming media servers is that monitoring a single system
resource cannot be used to evaluate the currently available server
capacity: the CPU/disk utilization and the achievable server
network bandwidth highly depend on the type of workload. In
this paper, we present MediaGuard — a model-based framework
for building QoS-aware streaming media services — that can ef-
ficiently determine the fraction of server resources required to
support a particular client request over its lifetime and, as a
result, to evaluate currently available server capacity. In this
context, MediaGuard promotes a new unified framework to:

e Measure media service capacity via a set of basic bench-
marks.

e Derive the cost function that uses a single value to re-
flect the combined resource requirements (e.g., CPU, disk,
memory, and bandwidth) necessary to support a particu-
lar media stream. The cost function is derived from the
set of basic benchmark measurements and is based on the
stream bit rate and the file access type: memory vs disk.

e Determine the type of file access, i.e., whether a request (or
its fraction) can be served from memory (or disk), using
a novel, segment-based memory model of the media server,
based on the history of previous accesses and the behavior
of the server’s main memory file buffer cache.

e (Calculate the level of available system resources as a func-
tion of time to provide QoS guarantees.

We believe that the MediaGuard framework provides a foun-
dation for building QoS-aware streaming media services. For
example, consider the case where a shared media service simul-
taneously hosts a number of distinct media services. The services
share the same physical media server, and each service pays for a
specified fraction of the server resources. For such a shared me-
dia hosting service, the ability to guarantee a specified share of
server resources to a particular hosted service is very important.

The problem of allocating X% of system capacity to a desig-
nated media service s is inherently similar to an admission con-
trol problem: we must admit a new request to service s when the
utilized server capacity by service s is below a threshold X%
and reject the request otherwise. Commercial media server solu-
tions do not have “built-in” admission control to prevent server
overload or to allocate a predefined fraction of server resources
to a particular service.

Using MediaGuard framework, we design a novel, more accu-
rate admission control policy for streaming media server (called
ac-MediaGuard) that accounts for the impact of the server’s

main memory file buffer cache. Our performance evaluation re-
veals that ac-MediaGuard can achieve a factor of two improve-
ment relative to an admission control policy that pessimistically
assumes all accesses must go to disk. Our simulation results
show that more than 70% of client requests can be served out
of memory, and these requests account for more than 50% of all
the bytes delivered by the server even for the media server with
relatively small size of file buffer cache. Our workloads are based
on large-scale traces of existing media services.

The rest of this paper is organized as follows. Section 2 briefly
reviews the related work. Section 3 outlines our approach on
media server benchmarking. Section 4 introduces the segment-
based memory model. Section 5 further presents the main com-
ponents of MediaGuard framework and develops the MediaGuard
admission controller. We present the performance evaluation re-
sults in Section 6. Finally, we conclude with a summary and
directions for future work in Section 7.

2. RELATED WORK

A large-scale multimedia server has to service a large number
of clients simultaneously. Given the real-time requirements of
each client, a multimedia server has to employ admission con-
trol algorithms to decide whether a new client request can be
admitted without violating the quality of service requirements
of the already accepted requests. There has been a large body
of research work on admission control algorithms. Existing ad-
mission control schemes were mostly designed for disk subsys-
tems and can be classified by the level of QoS provided to the
clients [27].

Deterministic admission control schemes provide strict QoS
guarantees, i.e. the continuous playback requirements should
never be violated for the entire service duration. The corre-
sponding admission control algorithms are characterized by the
worst case assumptions regarding the service time from disk [11,
22, 25, 28, 31, 6]. Most of the deterministic admission con-
trol schemes conservatively constrain the number of clients that
can be serviced simultaneously, and hence lead to severe under-
utilization of server resources.

In [27, 14, 2, 12], statistical admission control algorithms are
designed which provide probabilistic QoS guarantees instead of
deterministic ones, resulting in higher resource utilization due to
statistical multiplexing gain. Statistical admission control uses
statistics of the stored data to ensure that the probability of the
overload does not exceed a predefined threshold. Most of the
papers are devoted to storage and retrieval of variable bit rate
(VBR) data. Good comparison and analysis of deterministic
versus statistical admission control strategies is provided in [15,
3, 17].

Continuous media file servers require that several system re-
sources be reserved in order to guarantee timely delivery of the
data to clients. These resources include disk, network and pro-
cessor bandwidth. A key component of determining the amount
of a resource to reserve is characterizing each streams’ band-
width. In [15, 19, 18] the admission control is examined from
the point of network bandwidth allocation on the server side.

A large portion of multimedia storage research has focused
on optimizing disk bandwidth via scheduling policies or data
placement schemes. However, there is another critical resource
that has not received as much attention: the main memory that
holds data coming off the disk. In media servers, requests from
different clients arrive independently. Commercial systems may
contain hundreds to thousands of clients. Providing an individ-
ual stream for each client may require very high disk bandwidth



in the server, and therefore, it can become a bottleneck resource,
restricting the number of concurrently supported clients in the
system. There have been several studies on buffer sharing tech-
niques to overcome the disk bandwidth restriction [7, 13, 20,
23]. The basic idea behind buffer sharing is as follows: if two
clients request the same video at different points in time, the
server may service the latter one by using the data which is read
into the buffer pool on behalf of the former one. Therefore the
requested video is read from disk only once, while the applica-
tion will be supporting two different client requests to this file.
Closely related to this technique is an interval caching scheme
proposed in [8] which selects data blocks to be cached by media
server based on the interval between two consecutive streams
referencing the same object. Our work proceeds further in the
same direction. We design a high-level model of a traditional
memory system with LRU replacement strategy as used in to-
day’s commodity systems to reflect and quantify the impact of
system level caching in delivering media applications for typical
streaming media workloads.

The current trend of outsourcing network services to third
parties has brought a set of new challenging problems to the ar-
chitecture and design of automatic resource management in In-
ternet Data Centers [1, 4, 21, 10, 26, 9]. In [4, 21, 9], the authors
design a framework and architecture for resource management
in IDCs using web server workloads. In [1], the authors pro-
pose resource containers as a new OS abstraction that enables
fine-grained resource management in network servers. In our
work we take a different approach by building a framework that
maps the application demands into the resource requirements
and provides the application-aware wrapper for managing the
server resources. In [10], the authors propose a scheduling and
admission control algorithm optimizing streaming media server
performance in an IDC environment when network bandwidth
is a resource bottleneck. In our work, we address the resource
allocation/admission control problem in a more general setting,
where under the different workloads, the different system re-
sources may limit a media server performance. In [26, 9], the
authors promote the necessity of application profiling and ade-
quate system /workload/application models, facilitating a utility
service design. Our work follows similar approach and motiva-
tion and proposes corresponding models for an efficient stream-
ing media utility design.

3. MEASURING MEDIA SERVER CAPACITY

Commercial media servers are typically characterized by the
number of concurrent streams a server can support without loos-
ing a stream quality, i.e. until the real-time constraint of each
stream can be met. A standard commercial stress test mea-
sures a maximum number of concurrent streams delivered by the
server when all the clients are accessing the same file encoded
at a certain bit rate, e.g. 500 Kb/s. However, a multimedia
content is typically encoded at different bit rates depending on
a type of content and a targeted population of clients and their
connection bandwidth to the Internet. What are the scaling
rules for server capacity when delivered media content encoded
at different bit rates? For example, if a media server is capable
of delivering N concurrent streams encoded at 500 Kb/s, will
this server be capable of supporting 2 x N concurrent streams
encoded at 250 Kb/s? The other issue with a standard com-
mercial stress test is that all the clients are accessing the same
file. Thus another question to answer is: how the media server
performance is impacted when different clients retrieve different
(unique) files of a media content?

We use two basic benchmarks for establishing the scaling rules
for server capacity when multiple media streams are encoded at
different bit rates:

o Single File Benchmark — measuring a media server capacity
when all the clients in the test are accessing the same file;

o Unique Files Benchmark — measuring a media server ca-
pacity when each client in the test is accessing a different

file.

Each of these benchmarks consists of a set of sub-benchmarks
with media content encoded at a different bit rate (in our study,
we used six bit rates representing the typical Internet audi-
ence: 28 Kb/s, 56 Kb/s, 112 Kb/s, 256 Kb/s, 350 Kb/s, and
500 Kb/s). Using an experimental testbed with standard com-
ponents and a proposed set of basic benchmarks, we measured
capacity and scaling rules of a media server running RealServer
8.0 from RealNetworks. The configuration and the system pa-
rameters of our experimental setup are specially chosen to avoid
some trivial bottlenecks when delivering multimedia applications
such as limiting I/O bandwidth between the server and the stor-
age system, or limiting network bandwidth between the server
and the clients.

Under the Single File Benchmark, the media server is CPU
bounded: CPU reaches 100% of utilization, and it is the main
resource which limits server performance. In essence, under the
Single File Benchmark only one stream reads a file from the disk,
while all the other streams read the corresponding bytes from
the file buffer cache. Thus, practically, this benchmark measures
a streaming server capacity when the media content is delivered
from memory. For Unique File Benchmark, the CPU utilization
is much lower than for Single File Benchmark. For all the tests
in this study, it is below 45% and it is not a resource which
limits server performance. Under the Unique Files Benchmark,
the server performance is disk-bound: this particular bottleneck
is hard to measure with the usual performance tools. The max-
imum bandwidth delivered by a disk depends on the number
of concurrent streams it can support without violating on-time
delivery constraints.

Figure 1 a) shows the normalized graph reflecting the scaling
rules for the media server capacity under the Single File Bench-
mark and different encoding bit rates. In this figure, point (1,1)
presents the maximum capacity achievable by a server when all
the clients in the test are accessing the same file encoded at a
500 Kb/s bit rate. Each absolute value for the other encoding
bit rates is normalized with respect to it. Figure 1 b) shows the
similar normalized graph for the Unique File Benchmark.

The measurement results show that the scaling rules for server
capacity when multiple media streams are encoded at different
bit rates are non-linear. For example, the difference between the
highest and lowest bit rates of media streams used in our exper-
iments is 18 times. However, the difference in the maximum
number of concurrent streams a server is capable of supporting
for corresponding bit rates is only around 9 times for the Single
File Benchmark as shown in Figure 1 a), and 10 times for the
Unique Files Benchmark as shown in Figure 1 b).

In our study, the media server performance is 2.5-3 times
higher under the Single File Benchmark than under the Unique
Files Benchmark as shown in Figure 2 a). This quantifies the
performance benefits for multimedia applications when media
streams are delivered from memory. Figure 2 b) shows the cor-
responding maximum bandwidth in Mb/s delivered by the me-
dia server for the Single and Unique File Benchmarks. These
results are sensitive to a disk/file subsystem used in the media
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server configuration. In our benchmark experiments, we evalu-
ated different file systems and disk configurations: it is not un-
usual, when a media server throughput is 3-7 times lower under
the Unique Files Benchmark compared to achievable through-
put under the Single File Benchmark, i.e. the maximum num-
ber of media streams delivered from memory can be 3-7 times
higher than the maximum number of media streams delivered
from disk.

The measurement results lead to an interesting conclusion: the
bottleneck resource that limits server performance as well as the
maximum bandwidth delivered by the media server are highly
workload dependent. Different system resources are limiting a
media server performance under the different basic benchmarks.
Under the Single File Benchmark, the server performance is
CPU bounded, while under the Unique Files Benchmark, the
server performance is disk-bound. A typical media server traffic
presents a combination of some clients accessing the same files
(during the same period of time) and some clients retrieving the
“unique”, different files. Under the “mixed” workload, neither a
CPU nor a disk are the limiting performance system resources,
and hence, they can not be used for monitoring of the available
server capacity.

The next question to answer is: how to compute the expected
media server capacity for a realistic workload if the measured
capacities of a streaming media server under the basic bench-
marks are given. First, we introduce a cost function derived
from the set of basic benchmark measurements. Intuitively, the
cost function defines the fraction of system resources needed to
support a particular stream depending on the file encoding bit
rate and the access type of the corresponding file.

With each stream delivered by a server we associate an access
type:

e memory access if a stream retrieves a corresponding file
(or the corresponding bytes of the file) from memory;
e disk access if a stream retrieves a corresponding file from
disk.
Additionally, we use the following notations:
® X = Xi,..., Xg - a set of encoding bit rates of the files used
in basic benchmarks,

the maximum measured server capacity in con-
current streams under the Single File Benchmark for a file
encoded at X; Kb/s,

unique
® Ny

single _
° NXi

- the maximum measured server capacity in con-
current streams under the Unique Files Benchmark for a
file encoded at X; Kb/s,
e costy; ™" - a value of cost function for a stream with
memory access to a file encoded at X; Kb/s,
e cost§** - a value of cost function for a stream with disk
access to a file encoded at X; Kb/s.
Under the Unique Files Benchmark, all the streams have a disk
access type. Hence each stream requires a fraction of system
resources defined by the cost§** value.

Under the Single File Benchmark the initial stream reads
the corresponding file from disk, while the rest of the streams
retrieve the corresponding bytes from memory and, therefore
require a fraction of system resources defined by the costmemow

Let 1 be the media server capacity. The following capaczty
equations describe the maximum server capacity measured under
a set of basic benchmarks for each encoding bit rate X; € X:

unique disk __
NXl_ X costy,” =1

memory -1

1% costd”k + (NY Smgle — 1) X costy

By solving the equations above, we can derlve the corresponding
cost function values:

; 1
costyish = —
i Nunique
i
unique __
memory NXi L
COSt unzque single
NPT S (N 1)

Let W be the current Workload processed by a media server,
where
® Xy = Xi,..Xg, - a set of encoding bit rates of the files
used in W (X, C X),
Nmemwy a number of streams having a memory access
type "for a subset of files encoded at Xw; Kb/s,

e N4isk - a number of streams having a disk access type for

a subset of files encoded at X.,; Kb/s.



Then the applied Load to a media server under workload W can
be computed by a formula:
kw kw
Load = Z N;?jfnmy X cost?j’ww + Z Nggjk X costgéik_ (1)
i=1 : : i=1 ‘ ‘

If Load < 1 then the media server operates within its capacity,
and the difference 1 — Load defines the amount of available server
capacity. We validated this performance model by comparing
the predicted (computed) and measured media server capacities
for a set of different synthetic workloads (with statically defined
request mix). The measured server capacity matches the ex-
pected server capacity very well for studied workloads (with the
error 1%-8%).

Introduced cost function uses a single value to reflect the com-
bined resource requirement such as CPU, disk, memory, and
bandwidth necessary to support a particular media stream de-
pending on the stream bit rate and type of the file access: mem-
ory or disk access. The proposed framework provides a con-
venient mapping of a service demand (client requests) into the
corresponding system resource requirements. If there is an ad-
ditional constraint on the deployed server network bandwidth it
can be easily incorporated in the equation of the server capacity.
For a given constant bit rate media request, it is straightforward
to determine whether sufficient network bandwidth is available
at the server.

4. SEGMENT-BASED MEMORY MODEL

In order to assign a cost to a media request, we need to evalu-
ate whether a new request will be streaming data from memory
or will be accessing data from disk. Note, that memory access
does not assume or require that the whole file resides in memory:
if there is a sequence of accesses to the same file, issued closely
to each other on a time scale, then the first access may read a
file from disk, while the subsequent requests may be accessing
the corresponding file prefix from memory. Thus, in order to
accurately assign a cost to a media request, a model reflecting
which file segments are currently residing in memory is needed.
Taking into account the real-time nature of streaming media
applications and the sequential access to file content, we design
a novel, segment-based memory model reflecting data stored in
memory as a result of media file accesses. This model closely
approximates the media server behavior when the media server
operates over a native OS file buffer cache with LRU replacement
policy.

4.1 Basic Definitions and Notations

For each request r, we define the following notations.

file(r) — the media file requested by r.
e duration(r) — the duration of file(r) in seconds.

e bitRate(r) — the encoding bit rate of the media file requested
by r. In this paper, we assume that files are encoded at
constant bit rates.

e tstart(r) —the time when a stream corresponding to request
r starts (once r is accepted).

e t¢7d(r) — the time when a stream initiated by request r
terminates. In this work, we assume non-interactive client
sessions ! which continue for a designated file duration: i.e.
once a request is accepted, it will proceed until the end:
duration(r) =t (r) — tstert(r),

1Proposed approach, models, and algorithms can be extended with some
modifications for the general case.

The real-time nature of streaming media applications suggests
the following high-level memory abstraction. Let request r be
a sequential access to file f from the beginning of the file. For
simplicity, let it be a disk access. Then after 10 sec of access r,
the content, transferred by a server, corresponds to the initial
10 sec of the file. The duration of transferred file prefix defines
the number of bytes ? transferred from disk to memory and
further to the client: in our example, it is 10 sec x bitRate(r).
Moreover, the real-time nature of file access defines the relative
time ordering of streamed file segments in memory. It means
that the time elapsed from the beginning of the file (we use 0 sec
to denote the file beginning) can be used to describe both the
streamed file segment and the relative timestamps of this file
segment in memory.

For illustration, let us consider the following simple example.
Let a media server have a 100 MB memory, and the media files
stored at the media server be 600 sec(10 min) long and encoded
at 100 KB/s. Let us consider the following sequence of request
arrivals as shown in Figure 3:

e request r; for a file f; arrives at time t; = 0 sec;
e request ro for a file f> arrives at time t2 = 100 sec;

e request r3 for a file f3 arrives at time t3 = 200 sec.

Bytes Transferred: 120MB

mem
Size =100MB
I I i "
ty) : : L
| | | r
bty :
I I I I3
1 1 &
| |
! ! ! time (sec)
0 100 150 200 Tour =500

Figure 3: Simple example.

Let us evaluate the memory state at time point T, = 500 sec.
At this time point, request r; has transferred 500 secx100 KB/s =
50 M B, request r» has transferred 400 sec x 100 KB/s = 40 M B,
and request rz has transferred 300 sec x 100 KB/s = 30 MB.
While the overall number of bytes transferred by three requests
is 120 MB, the memory can hold only 100 MB of the latest (most
recent) portions of transferred files which are represented by the
following file segments:

e a segment of file fi between 150 sec and 500 sec of its dura-
tion. We use a denotation < 150,500 > (150) to describe this
segment, where numbers in “ <>” describe the beginning
and the end of segment, and a number in “()” defines a
relative timestamp in memory corresponding to the begin-
ning of the segment.

e a segment of the file fo: <50,400> (150);
e a segment of the file f3: <0,300>(200).

This new abstraction provides a close approximation of file seg-
ments stored in memory and their relative time ordering (time
stamps) in memory. This new memory representation can be
used in determining whether a new media request will be served
from memory or disk. For example, if a new request rL,, arrives
at time Ty = 500 sec it will be served from disk because the ini-
tial prefix of file f; is already evicted from memory. However, if
anew request rf3,, arrives at time Tiyr = 500 sec it will be served

2To unify the measurement units between the memory size and the encod-
ing bit rates of media files, we compute everything in bytes. In examples,
while we use denotation bitRate(r), the file encoding bit rates in compu-
tations are converted to bytes/sec.



from memory because the initial prefix of the corresponding file
is present in memory.

If there are multiple concurrent accesses to the same file f then
requests with a later arrival time might find the corresponding
file segments already in memory (similar to the example de-
scribed above). In the next section, we develop a set of basic
operations to compute the unique segments of file f with the
most recent timestamps which correspond to a sequence of ac-
cesses to f.

For each file f, we use the time stamp ordering of its segments.
When the time ordering representation is used with respect to
segments of all the files that are currently stored in memory
it leads to a segment-based memory model (rather than a tra-
ditional block-based memory representation), which is actively
used in MediaGuard framework.

4.2 BasicOperationsfor Computing File Segments
in Memory

A file segment transferred by request rf during time interval
[T, T'] is defined as follows:

segm(rf T, T") =<x,y> (T) (2)

where T = mam{T tstart(,rf)} o tstart(rf),
y = mzn{tend( f) T/} _ tstart(rf),
T = maz{T, t5t"t (rF)}.

In computation of a current memory state, we need to be able to
compute the unique file segments currently present in memory.
This means that in case of multiple requests to the same file,
we need to be able to identify the accesses and the correspond-
ing file segments with the latest access time, and must avoid
the repeatable counting of the same bytes accessed by different
requests at different time points.

To explain this situation in more detail, let us consider the fol-
lowing example, graphically depicted in Figure 4. Let r{,rg,rg
be a sequence of requests accessing the same file f (with du-
ration of 300 sec) in the following arrival order: tstert(r{) = 0,
tsm”(rg) =10 sec, and t”‘”t(rg) = 20 sec.

<0, 40>(0) <40, 50>(40)
t1— = r
T <0,30>(10) <30, 40>(40
tos< = r
AR <0,30>(20) " ~o
tal r3
) ) ) time (sec)
T=0 10 20 40 T'=50

Figure 4: Multiple concurrent accesses to the same file.

While the first request r by the time 7" =50 sec had trans-
ferred segment < 0,50 > (0), the initial part of this segment
<0,40> (0) was again accessed and transferred at a later time by

the second request Tg. Thus segment < 40,50 > (40) is the only

unique segment of file f accessed by r{ most recently. Similarly,
segment < 30,40> (40) represents the only unique segment of file

f, which was accessed most recently by rg Finally, the latest

request ré‘" is accountable for the most recent access to the initial

segment < 0,30 > (20) of file f. Thus overall, the unique segments
of file f with the most recent timestamps in [0, 50]sec interval are
the following:

segm(f,0,50) ={<0,30> (20), <30, 40> (40), <40, 50> (40)}

To determine the unique, most recent segments of file f ac-
cessed by subsequent requests rlfl and 7"[2 in [T',T'] time interval,
we introduce a new operation, called segment subtraction and

denoted as “\ ”. Let rlfl
accessing the same file f such that tstart(r! f ) Ststert(r f L), Le. rf
is a more recent access than rlfl. Let segm;, =segm(r lfl,T, ) =
,T,T") > (Ts,)-

and r{; be two subsequent requests

<®iy,Yi, > (T3,) and segm;, = segm(ri;

Then

=< Tiy, Yig

<®iy,Yip; > (Tiy)
<Yin»yiy > (T},)

if ¥, < x;
segmi \ segmniy = { ECRCINC)
where Till = Til -+ (yi2 — :L‘il).

Intuitively, the operation (segm;, \segm;, ) defines a part of the
older segment segm;, which does not coincide with any part of
more recent segment segm;,. For illustration, let us consider the
example depicted in Figure 4. Let us first compute the segments

of file f accessed by r{,r;,r?{ in [0,50] sec interval:
segm;, =<0,50>(0)
segm;, =<0,40>(10)
segm;, =<0,30>(20).

Then, segm;, \ segm;, =<40,50> (40)
segmi, \ segm;, =<30,40> (40)
Let r/ r2,.. ri be a sequence of requests accessing the same

file f (]iurlng T,T'] interval, where tstart(pf) < gstarf(pfy < <
tstart(pd) e r{ is the oldest access and rJ
access to file f in [T,T"] interval.

Our goal is to compute the unique segments of file f with the
most recent timestamps which correspond to requests r{, rg, Tl
during time interval [T',7"]. The general formula to compute such
file segments is defined in the following way:

is the most recent

segm(f,T,T") = segm(r},T,T')U
n—1

U segm(r! . T, T') \ segm(r],,,T,T")
i=1

(4)

Since function segm(f, T, T") represents the unique segments of
file f accessed in [T,7"] interval, we also can compute the total
amount of unique bytes of file f accessed and stored in memory
between [T, T'] interval and denoted as UniqueBytes(f,T,T").

Let us again consider the example depicted in Figure 4. Now,
let we need to compute the unique segments of file f in [0, 70]sec
interval. This situation is represented in Figure 5.

<0, 60>(0) <60, 70>(60)

t1— = r
<0,50>(10) <50, 60>(60

tos< = r
AR <0,50>(20) " ~o

tal r3

) ) ) time (sec)
T=0 10 20 Ce 60 T'=70

Figure 5: Example: the time advancement operation.

We can compute the segments by using Formula (4), but in
practice, we use an optimized operation, called segment shift
by At. This operation can be formally defined from Formu-
las (2) and (4). Here, we only give an intuition behind this
operation. If there are already computed segments of file f in
[0,50]sec interval then it is easy to compute the updated seg-
ments of file f in [0,70]sec interval: we need to advance time by
At = 20 sec or shift by At =20 sec the existing segments:

segm(f,0,50) ={<0,30> (20), <30, 40> (40), <40, 50> (40)}
segm(f,0,70) ={<0, 50> (20), <50, 60> (60), <60, 70> (60)}

The outlined operation “shifts” in a uniform manner the seg-
ments that correspond to all the requests, except the latest, most
recent one, by At:

<z,y>(T) becomes <z+At,y+At>(T+At).



Let <,y > (T) be the latest (most recent) request. Then the
shift by At operation leads to the following result:

<z,y>(T) becomes <z,y+At>(T).

For the rest of the paper, when we use segm(f, T, T") denotation

we mean the set of segments of file f in time interval [T, 7"] with
time stamp ordering between the segments. This representation
is a foundation of the segment-based memory model. Note, that
when the shift by At operation is applied to the already ordered
set of segments, only the segment that corresponds to the lat-
est (most recent) request needs to be (potentially) reordered.
The ordering between all the other segments is not impacted by
the shift operation, and hence is preserved by this operation.
Thus, the complexity of segments re-ordering after the shift
operation is linear with respect to the number of requests for
corresponding file f.

5. MODEL-BASED ADMISSION CONTROL

The main goal of an admission control is to prevent a media
server from becoming overloaded. ® The overload for a media
server typically results in the violation of the real-time prop-
erties of the media application. The overloaded media server
continues to serve all the accepted streams but the quality of
service degrades: the packets for accepted streams are sent with
a violation of “on-time delivery”, and in such a way that the
quality of the stream received by a client is compromised.

On a time scale, we distinguish two types of events, where the
amount of available server resources needs to be reevaluated:

e acceptance of new requests;
e termination of currently accepted requests;

Multiple events can happen at the same time point. We define
the following notations associated with such time points:

e ActRegs(t): the set of requests that are currently in progress,
i.e. “active” at time t;

e TermReqs(t): the set of requests that are supposed to ter-
minate at event time t;

e Cap: the absolute server capacity. (We set Cap = 1 and
the cost function for requests is derived using this setting
as defined in Section 3.)

e ACap(t): the available server capacity at time ¢. In order
to allocate a specific share of server resources, say 50%,
to a media service s, the available server capacity in the
initial time T},;; is preallocated to a designated share: i.e.
ACaps(Tinit) = 0.5 x Cap.

Let the current event time be T..,.. If there are events of both
types, i.e. the termination of some already accepted requests and
the acceptance of new requests, then the termination events are
performed first (in order to release the corresponding resources),
and the acceptance events are performed after that.

The MediaGuard admission controller (also denoted as ac-
MediaGuard) performs the following actions depending on the
event type:

1). Termination of currently accepted requests. In the
time points corresponding to termination events, the following
actions are performed:

o ActReqs(Tcur) = ActReqs(Teur) \ TermReqs(Teur )-

3An alternative goal of admission controller can be stated as allocating
the predefined share of media server capacity according to a Service Level
Agreement (SLA).

e The server capacity is increased by the cost of the termi-
nated requests:

ACap(Teur) = ACap(Teur) + Z cost(r).
r€TermReqs(Teur)

2). Acceptance of new request. To evaluate whether a
new request r,{ew can be accepted at time Tey., the MediaGuard
admission controller performs the following two procedures:

o Resource Awailability Check: during this procedure, the
cost of a new request rhew is evaluated. To achieve this
goal, the memory state of a media server at time Tty is
computed using the new segment-based memory model.
From the memory state, we can identify whether a prefix
of requested file f is residing in memory, and whether re-
quest rlew will have a cost of accessing memory or disk
correspondingly. Then, ac-MediaGuard checks whether in
the current time, the media server has enough available
resources (capacity) to accommodate the resource require-
ments of new request 7;,.,,. In case of the positive outcome,
ac-MediaGuard moves on to the QoS validation step.

e QoS Guarantees Check: during this procedure, the admis-
sion controller verifies that the acceptance of request rie
will not violate the QoS guarantees of already accepted re-
quests at any point in the future, i.e. the media server will
not enter an overloaded state at any point in the future.
If the outcome of QoS validation process is positive then
new request ri., is accepted and the following actions
are performed:

1) the available server capacity is decreased by the cost(rrfww):
ACap(Teur) = ACap(Teur) — cost(r,{ew).

2) ActReqs(Teur) = ActReqs(Teyr) U r,{ew.

3) Let 7" = Teur + duration(r,{ew). Then
TermReqs(T') = TermReqs(T") U Tew.

Otherwise, request rf.,, is rejected.

This outlines the overall flow of ac-MediaGuard activities.

5.1 ComputingMemory Stateand Estimating Cost
of Request

The basic idea of computing the current memory state is as
follows. Let Sizemem be the size of memory * in bytes. Let
ri(t1),r2(t2),...,m(tr) be a recorded sequence of requests to a
media server. Given the current time 7', we need to compute
some past time T™¢™ such that the sum of the bytes accessed
by requests and stored in memory between 77*¢™ and T is equal
to Size™®™ as shown in Figure 6. This way, the files’ segments
streamed by the media server in [7¢™, T will be in memory.

.__mem
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Figure 6: Memory state computation example.

4Here, a memory size means an estimate of what the system may use for
a file buffer cache.



To realize this idea in an efficient way, we design an induction-
based algorithm for computing the memory state at any given
time. Let T¢y, be the current time corresponding to a new re-
quest 7., arrival, and the admission controller needs to decide
whether to accept or reject request rf.., for processing. Let Tprev
denote the time of the previous arrival event, and let Tp,c." be
a previously computed time such that the sum of bytes accessed
by requests and stored in memory between Ty and Tpreo is
equal to Size™¢™ as shown in Figure 7.

Size™"

d
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' N
: Size™" :
time

Tpra/ Tour
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Figure 7: Induction-based memory state computation.

At time point Te.,, we need to compute
e an updated time T7¢™ such that the sum of bytes stored
in memory between T%¢™ and T,., is equal to Size™c™;
e an updated information about the memory state (i.e. file
segments stored in memory) in order to determine the cost
of new request 7.,
Let Files(Tprev) = {fiy,.-» fix } be a set of files accessed during
[Torest, Tprev] interval. The main data structure that we use to
represent the unique file segments accessed during a given time
interval [T77", Tpreo] is a hash table, called FileTable(Tey", Tprev)

and defined as follows:
fiy + segm(fi, 7T$S?7Tp7‘ev)

fiN : segm(fik ) T;Zl-g:;nyTprev)

By assumption, the sum of unique bytes accessed by client
requests between the time points e and Tprev is equal to
Size™e™. Hence the segments represented above are all stored
in memory at time Tpreo.

The file set Files(Tprev) consists of the files with active re-
quests from small ActReqs(Tprev) (let Ny be the number of those
files and n be the number of active requests) and the files with
terminated requests (let Ny be the number of the corresponding
files). The files in the latter subset are represented by a single
continuous segment of the latest terminated request.

Let At = Teur — Tpreo-

For any file f € Files(Tprev) with active requests, we perform
the shift by At operation in order to advance time for active re-
quests and to compute the unique file segments accessed during
[Torer®, Teur] interval. The complexity of this operation is lin-
ear with respect to the number of current requests in the system
as it was discussed in Section 4.2.

Using FileTable(Tey, Teur), we compute the total amount of
unique bytes accessed during this time interval. The difference
AB = UniqueBytes(Tjey", Teur) — Size™*™ defines by “how far”
time Tyre® should be advanced to a new time point T,¢™.

Since the segments in FileTable(Tyrel", Teur) are ordered for
each file entry, we can completely order all the segments in the
FileTable(TE™, Teur) in O(N¢ log N¢) + O(nlog Na) time.

Using the completely ordered list of segments and the infor-
mation about their file encoding bit rates, we compute time du-
ration At during which the “oldest” segments will transfer the
amount of bytes equal to AB. Then Tye™ =T, + At. At the
same time, the corresponding data structures are updated:

o FileTable(TRe™, Teyr) contains only file segments starting
at time T/"¢™ and later on,;
o Files(T,yr) consists of only files with segments that were

cur
accessed at time 777¢™ and later.

From FileTable(Tm¢™, T,,,) that represents the current mem-
ory state, we can identify whether a prefix of the requested file
f is residing in memory or not, and whether the request rlow
will have a cost of access to memory or disk correspondingly. If
the media server has enough currently available capacity to ac-
commodate the resource requirements of new request r/..,, then
request r}., is conditionally accepted. Otherwise, request
w18 rejected.

In summary, the complexity of computing the cost of a new
request is linear with respect to the number of active requests
in the system. In Section 6, we will provide an additional anal-
ysis of the number of files in memory (i.e. N; and N,) when
processing a typical enterprise media workload.

5.2 QoS Validation Process

For long-lasting streaming media requests, an additional com-
plexity consists in determining the level of available system re-
sources as a function of time. When there is enough currently
available server capacity to admit a new request rﬁew, the Me-
diaGuard admission controller still needs to ensure that the ac-
ceptance of request 7., will not violate the QoS guarantees of
already accepted requests over their lifetime and that the me-
dia server will not enter an overloaded state at any point in the
future. °

e Let a new request r!.. be a disk access. In this case, there
is a continuous stream of new, additional bytes transferred
from disk to memory (the amount of new bytes is defined
by the file f encoding bit rate). It may result in replace-
ment (eviction) of some “old” file segments in memory. For
example, let some segments of file f be evicted. If there
is an active request r/ which reads the corresponding file
segments from memory (and has a cost of memory access)
then once the corresponding segments of file f are evicted
(replaced) from memory, the request =/ will read the cor-
responding segments of file f from disk with an increased
cost of disk access. We will call that request r/ is down-
graded, i.e. the acceptance of new request i will lead to
an increased cost of request r/ in the future.

e Let a new request rl.. be a memory access. Then we
need to assess whether request r}ew has the “memory”
cost during its life or the corresponding segments of file
f may be evicted in some future time points by already
accepted active disk requests, and request t e will read
the corresponding segments of file f from disk with the
increased cost of disk access.

We need to assess such situations whenever they may occur in
the future for accepted “memory” requests and evaluate whether
the increased cost of downgraded requests can be offset by the
overall available capacity of the server in the corresponding time
points.
The main idea of our algorithm on QoS validation is as follows.
We partition all the active requests in two groups:
e active memory requests, i.e. the requests which have a cost
of memory access, and
o active disk requests, i.e. the requests which have a cost of
disk access.
Active memory requests access their file segments in memory.
Thus, they do not bring new bytes to memory, they only re-
fresh the accessed file segments’ time stamps with the current

5When ac-MediaGuard is used for resource allocation, the QoS valida-
tion stage ensures that the allocated share of server resources will not be
exceeded over future time.



time. Only active disk requests bring “new” bytes from disk to
memory and evict the corresponding amount of “oldest” bytes
from memory. The MediaGuard admission controller identifies
the bytes in memory with the oldest timestamp (let it be T2¢t-m)
which are read by some of the active memory requests. Thus,
all the bytes stored in memory prior to T2t-" can be safely re-
placed in memory (as depicted in Figure 8) without impacting
any active memory requests.

Size™"

Bt

a2

time

Tmc:in T?S;ﬁm TCUI’
Figure 8: Safely Replaceable Bytes in Memory.

Using the information about file encoding bit rates as well as
the future termination times for active disk requests we com-
pute a time duration during which the active disk requests will
either transfer from disk to memory the amount of bytes equal
to SafelyReplBytes(Teyr) or all of them will terminate. In or-
der to make the QoS validation process terminate within a lim-
ited number of steps, we attempt to advance the clock at each
step beyond the designated ClockAdvanceTime. In the simu-
lation model that we built for performance evaluation of ac-
MediaGuard and in the results reported in Section 6, we set
ClockAdvanceTime = 1 sec.

By repeating this process in the corresponding future points,
we identify whether active disk requests are always evicting
only “safely replaceable bytes” in memory or some of the ac-
tive memory requests have to be downgraded. In latter case,
ac-MediaGuard evaluates whether the increased cost of down-
graded requests can be offset by the available server capacity at
these time points.

In summary, the complexity of QoS validation procedure
is linear with respect to the number of active requests in the
system: the QoS validation procedure is guaranteed to terminate
in a fixed number of steps, where at each step, the computation
of an updated memory state is performed in a linear time. In
Section 6, we will provide an additional analysis of the number
of steps (iterations over future time points) in QoS validation
procedure when processing a typical enterprise media workload.

6. PERFORMANCE EVALUATION

In order to evaluate the performance benefits of a new model-
based and memory-aware strategy ac-MediaGuard, we built a
simulation model. We compare ac-MediaGuard performance
against the disk-based admission control policy that pessimisti-
cally assumes that all accesses must go to disk.

For workload generation, we use the publicly available, syn-
thetic media workload generator MediSyn [24]. We performed a
sensitivity study using two workloads W1 and W2 closely imi-
tating parameters of real enterprise media server workloads [5].
The overall statistics for workloads used in the study, are sum-
marized in Table 1:

w1 w2
Number of Files 800 800
Zipf 1.34 1.22
Storage Requirement | 41 GB | 41 GB
Number of Requests 41,703 | 24,159

Table 1: Workload parameters used in simulation study.

Both synthetic workloads have the same media file duration
distribution, which can be briefly summarized via following six

classes: 20% of the files represent short videos 0-2min, 10% of
the videos are 2-5min, 13% of the videos are 5-10min, 23% are
10-30min, 21% are 30-60min, and 13% of the videos are longer
than 60 min. This distribution represent a media file duration
mix that is typical for enterprise media workloads [5], where
along with the short and medium videos (demos, news, and pro-
motional materials) there is a representative set of long videos
(training materials, lectures, and business events).

The file bit rates are defined by the following discrete distribu-
tion: 5% of the files are encoded at 56Kb/s, 20% - at 112Kb/s,
50% - at 256Kb/s, 20% - at 350Kb/s, and 5% - at 500Kb/s.

Request arrivals are modeled by a Poisson process with ar-
rival rate of 1 req/sec. This rate kept the media server under a
consistent overload.

The file popularity is defined by a Zipf-like distribution with
a shown in Table 1: a = 1.34 for workload W1, and a = 1.22
for workload W2. In summary, W1 has a higher locality of
references than W2: 90% of the requests target 10% of the files
in W1 compared to 90% of the requests targeting 20% of the
files in W2. Correspondingly, 10% of the most popular files in
W1 have an overall combined size of 3.8 GB, while 20% of the
most popular files in W2 use 7.5 GB of the storage space.

We performed a set of simulations for a media server with
different memory sizes of 0.5 GB, 1 GB, 2 GB, and 4 GB.
While 4 GB might be an unrealistic parameter for file buffer
cache size, we are interested to see the dependence of a perfor-
mance gain due to increased memory size. We define the server
capacity and the cost functions similar to those measured us-
ing the experimental testbed described in Section 3. We use
cost¥sk [cost’ L *M"Y = 3, i.e. the cost of disk access is 3 times
higher than the cost of the corresponding memory access.

The first set of performance results for both workloads is
shown in Figures 9 a), b). They represent the normalized through-
put improvements under ac-MediaGuard compared to the disk-
based admission control strategy using two metrics: the number
of accepted requests and the total number of transferred bytes.
The ac-MediaGuard policy significantly outperforms the disk-
based strategy for both workloads. For instance, for workload
W1 and file buffer cache of 2 GB, ac-MediaGuard shows a factor
of two improvement in throughput for both metrics. It reveals
that the media server performance can be significantly improved
via main memory support even for media server with relatively
small size of file buffer cache. ® The memory increase does not
result in a “linear” performance gain as shown in Figures 9 a), b).
The memory increase from 2 GB to 4 GB results in less than
10% of additional performance gain for both workloads.

Despite the fact that W2 has much less reference locality and
its popular files occupy twice as much space compared to W1,
the performance improvements under ac-MediaGuard for W2 are
only slightly lower than for W1.

Figures 10 a), b) show the overall hit and byte hit ratio for the
requests accepted by the media server and served from memory
for workloads W1 and W2 correspondingly. Even for a relatively
small file buffer cache (such as 0.5 GB), 79% of the sessions
for W1 workload and 73% of the sessions for W2 workload are
served from memory. These sessions are responsible for 55%
of bytes for W1 workload and 50% of bytes for W2 workload
transferred by the media server. For a file buffer cache of 2 GB,
the file hit ratio increases up to 90% for W1 workload and 85%
for W2 workload, that result in 79% of bytes for W1 workload
and 74% of bytes for W2 workload transferred by the media

6 . . . . .
In practice, a service provider may use a conservative estimate for a file
buffer cache size, while still obtaining a significant performance gain.
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Figure 9: Normalized throughput improvements under ac-MediaGuard compared to the disk-based admission control strategy:

a) W1 and b) W2. wi

w2
1

0.9 0.9
0.8 0.8
kel kel -
g o7} B i g o7 i
= X = Jotae
I - I =
0.6 | Hit Ratio —+— 1 06 | - Hit Ratio —+— 1
Byte Hit Ratio ---x--- . Byte Hit Ratio =--x---
05 B 0.5 & B
0.4 L L L L L L 0.4 L L L L L L
0.5 1 1.5 2 25 3 3.5 4 0.5 1 1.5 2 25 3 3.5 4
a) Memory Size (GBytes) b) Memory Size (GBytes)
Figure 10: Hit and byte hit ratios under ac-MediaGuard: a) W1 and b) W2.

Memory = 1 GB

Accepted Requests

380 |
360 |

W1: Accepted Requests
W2: Accepted Requests -------

I I I I I I I
150 200 250 300 350
Time (min)

a)

Memory = 1 GB
110 T T

T
W1: Served Mb/s
105 - W2: Served Mb/s ------- 1
100

95

Served Mbits/s

90

85

80

100 150 200

Time (min)

250 300 350

b)

Figure 11: Media server throughput for W1 and W2 under ac-MediaGuard strategy over time: a) the number of accepted
sessions over time; b) the number of Mbits/s transferred over time.

server.

Figure 11 a) demonstrates the number of processed clients
sessions for both workloads W1 and W2 over time. While both
workloads are utilizing the same server capacity, we can see that
the number of accepted and processed sessions over time is far
from being fixed: it varies within 25% for each of the considered
workload. It can be explained by two reasons: ) first, the differ-
ent requests may have a different cost in terms of required media
server resources (just compare the bandwidth requirements of
56 Kb/s stream and 256 Kb/s stream); ii) second, most of the
accesses to popular media files can be served from memory, even
when a media server relies on traditional file system and memory
support and does not have additional application level caching.
Thus, the locality available in typical media workload has a sig-
nificant impact on the behavior of the system because serving
content from memory incurs much lower overhead than serving
the same content from disk. Figure 11 b) demonstrates the max-
imum bandwidth delivered by the media server (in Mbits/s) over
time for both workloads W1 and W2 correspondingly. Similarly,
it is variable for each workload, because of the varying number
of accepted clients requests as well as a broad variety of encoding
bit rates for corresponding media content.

Now, we present some statistics related to the ac-MediaGuard
algorithm performance. The designed ac-MediaGuard algorithm
performs two main procedures when evaluating whether a new
request can be accepted. At a first stage, it estimates the cost
of a new request via computing an updated memory state that
corresponds to a current time. The computation of an updated

memory state involves recalculating the file segments in memory
for all the currently active requests. We showed that the com-
plexity of the algorithm is linear with respect to the number of
active requests. The constant in the algorithm depends on the
number of files that have their segments stored in memory: let
us call these files as a memory file set. Tables 2 and 3 show the
memory file set profile (averaged over time) for both workloads
W1 and W2 correspondingly.

Number of files in memory

Memory| Overall| Termi- | Single 2-5ac- | 6-10 ac- | > 10 ac-
Size nated access | cesses cesses cesses
0.5 GB 93 4 50 21 6 10

1 GB 101 8 50 23 6 13

2 GB 117 18 50 27 6 16

4 GB 153 38 45 41 9 21
Table 2: Workload W1: a profile of a memory file set.

Number of files in memory

Memory| Overall| Termi- | Single 2-5ac- | 6-10 ac- | > 10 ac-
Size nated access cesses cesses cesses
0.5GB | 105 5 60 24 6 10

1 GB 112 9 60 25 7 12

2 GB 130 19 58 30 7 16

4 GB 165 38 54 44 9 20

Table 3: Workload W2: a profile of a memory file set.

The analysis shows that while each workload has overall 800
files, only 12%-20% of them (93 to 165 files) are in memory at
the same time. Clearly, a larger size memory holds a higher
number of files. The further profile of those files is interesting.
Typically, a small size memory has a very few files with seg-
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Figure 12: A modified ac-MediaGuard without the QoS validation procedure: a server load over time for a) W1 workload,

MemSize =1 GBj; b) W2 workload, MemSize =1 GB.

ments which correspond to the terminated requests: these files
are evicted from memory very fast. However, larger size mem-
ory has a higher number of files corresponding to terminated
requests: number of these files doubles with the corresponding
memory size increase. Additionally, there is a steady percent-
age of files with a single access: these files are represented in
memory by a single continuous segment. Finally, only a small
number of files (4% to 9%) has multiple outstanding requests.
The computation of the current memory state involves recalcu-
lating the file segments of exactly those files: they account for
only 37 to 71 files (on average) in our workloads. While the
computation of the current memory state is linear with respect
to the number of active requests in the system, the number of
files in the memory file set determines the constant of propor-
tionality in the computation time. For typical media workloads
and current media servers, this constant is small, and hence the
ac-MediaGuard implementation can be very efficient.

The second procedure, performed by ac-MediaGuard algo-
rithm, computes the level of available system resources as a
function of time to provide QoS guarantees for accepted client
requests. First of all, how important is this step? To answer
this question, we have performed the simulations with a modi-
fied version of ac-MediaGuard that admits client requests based
on the resource availability at the time of request arrival (i.e.
it does not perform the QoS validation procedure over future
time). Figure 12 a), b) shows the server load over time when the
media server is running a modified admission controller without
the QoS validation procedure.

The simulation results confirm that when the admission de-
cision is based only on the resource availability at the time of
request arrival, it may lead to a server overload in the future. In
our simulations, we can observe a server overload of 4%-6% over
almost one hour time period. The explanation of why the server
overload is more pronounced in the beginning of our simulations
is due to the fact that in the beginning, memory has not yet
reached a “steady” state and a few high bit rate disk requests
accepted on a basis of current resource availability may cause a
downgrade of a significant number of already accepted memory
requests. Thus, the QoS validation procedure may be especially
important for shared media service design, where different me-
dia services might have different workload characteristics, which
might severe interfere with each other (especially over time) in
resource consumptions of a shared file buffer cache and main
memory.

Finally, Figure 13 shows the CDF of the number of steps (the
number of iterations over the future time points) in the QoS
validation procedure for W1 workload (results for W2 workload
are very similar). For 90% of all the requests (both accepted
and rejected), the QoS validation procedure will terminate after
the 2 steps, implying a very efficient computation time. Since
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Figure 13: W1: CDF of number of steps in QoS procedure.

for long-lasting media requests, it is important to guarantee the
allocation of sufficient server resources over time, we view the
QoS validation procedure as an important integral component
in MediaGuard framework.

7. CONCLUSIONSAND FUTURE WORK

In this paper, we present MediaGuard — a model-based in-
frastructure for building QoS-aware streaming media services.
Using the following techniques, MediaGuardcan efficiently de-
termine the fraction of server resources required to support a
particular client request over its expected lifetime:

e A unified approach for measuring media server capacity
via a set of basic benchmarks to accurately interpolate
media server capacity for processing realistic workloads.
Using a set of basic benchmark measurements, we derive
the cost function that uses a single value to reflect the
combined resource requirements (e.g., CPU, disk, memory,
and bandwidth) necessary to support a particular media
stream.

e A novel, segment-based memory model of the media server
that provides a close approximation of the operating sys-
tem’s memory occupancy at any point in time based on
dynamically changing workload characteristics and an un-
derstanding of the operating system’s LRU-based page re-
placement policy. We show that this can be done with
no assumptions about the operating system’s scheduling
policy.

Using the MediaGuard framework, we designed an admission
control infrastructure for a streaming media service that ac-
counts for the impact of the server’s main memory file buffer
cache, and as a corrolary is managing a server resources in a
more efficient way. A performance comparison of the proposed
new strategy relative to a disk-based policy reveals a factor of
two improvement in throughput.

While our design and evaluation is limited to a particular set of
workloads for a streaming media service, we believe that our ap-



proach is general to a variety of infrastructures, including shared
hosting environments. In general, it is difficult to determine the
level of available system resources as a function of time. For
long-lasting real-time requests, it is insufficient to simply con-
sider the current level of, for instance, available memory or idle
CPU. Rather, complex interactions with memory caching and
with the resource requirements of the requests that are currently
processed by a server must be considered in evaluating whether
a particular request can be satisfied with particular QoS char-
acteristics for the request duration. Beyond real-time services,
consider a request to a complex multi-stage Internet service that
must consult a web application server, a database system, and
secondary storage before it returns its results to the end user.
Once again, the current state of main memory caches, among
other considerations, can greatly impact the performance of the
request.

Delivering performance isolation to competing media services
while at the same time leveraging available multiplexing via a
shared system memory is an interesting problem that can be
addressed by the type of memory and media server models that
we have developed in this work.

MediaGuard can be used to improve resource planning for dy-
namically changing application workloads in the Utility Data
Center [29] environment. For example, a service provider may
set two thresholds for server capacity: low - 70% and high - 95%.
MediaGuard can then perform the double task of: i) admitting
new requests only when the server capacity is below 95%, and
i1) collecting a set of alarms when the server capacity crosses the
70% threshold. These alarms may be used by a service admin-
istrator to determine when to deploy additional server resources
to accommodate growing user demand or changing access char-
acteristics.

Another interesting direction for future work is the design of
statistical models of media server capacity where workload prop-
erties such as file frequency, sharing patterns, burstiness, etc.,
can be accounted for estimating disk and memory usage for a
given workload. The Media Guard model can be used in design of
the efficient workload-aware load balancing and request routing
policies in a media server cluster.
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