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Abstract
This paper considers compiler management of fast, local memories for

loop nests that contain affine array references. We show how to reduce the
local memory footprint of such arrays by doing an affine reindexing of the
array elements. We approximate the best reindexing by a two-step algorithm.
The first step uses a generalized Hermite factorization, and the second uses
a one-norm lattice basis reduction technique. We improve on earlier work in
which a local memory array stores the smallest rectangular subarray of the
elements referenced in the loop nest. Our techniques apply directly to nests
with families of uniformly generated affine references, and we propose ways
to extend them to more general situations.

1 Introduction

In any modern high-performance computer, the bandwidth of the processor-memory
channel is generally much less than what would be usable by the processor. This
“memory wall” has for quite some time been understood to be a central problem
in fast computation [8, 7]. Designers of general-purpose machines craft a cache
hierarchy and parallel load/store units in order to overcome it. Cache is a purely
hardware mechanism that presents the standard programmer’s model of a single
logical memory holding all data.

In designing a computer system for a particular purpose, as is often the case
with computers embedded in some other device, the architect may choose to use a
special memory hierarchy, designed for the specific purpose, in order to maximize
performance without unduly increasing cost. He may introduce small, fast, logi-
cally separate local memories. These extra memories, controlled by software (un-
like cache), allow data structures to be placed so as to avoid conflicts for cache, to
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minimize latency for loads in a critical path, and for increasing the number of paths
to memory and hence the memory bandwidth. Digital signal processors (DSP’s)
and application-specific processors owe some of their performance advantages to
the use of local memory. Their use, however, is a challenge for programmers and
compiler writers.

In this paper, we consider some problems that arise when a compiler, presented
with an architecture having a limited amount of fast local memory, must decide
what data structures to move into this memory, and at what times to move them, and
where to place them. These same problems come up when a design tool synthesizes
an architecture for a specific application. Such tools should include the capability
to craft and optimally exploit local memories, and the problems and solutions we
provide can be useful in doing this.

Specifically, we consider the compilation of a loop nest in which there are one
or more uniformly generated affine references to an array. Such loop nests are
common in embedded applications. We consider these questions:

1. How much storage in the local memory is required to hold these elements?
In other words, what subset of the elements of the array should be moved
into the local memory?

2. Where should these elements be placed in local memory, and how should the
code be modified in order to address them?

3. What is the best form for the code needed to move the data between the local
and global memory?

An example will be useful at this point.

int A[200, 200], B[300], C[100, 100];
for(i = 0; i < 100; i++)

for(j = 0; j < 100; j++)
A[i+j, i-j+100] = B[i+j+100] + C[i, i]

We would like to identify the sets of elements referenced by the 10,000 itera-
tions of the loop nest. Each of the three arrays exhibits an interesting possibility.
We shall denote by T (X) the subset of the elements of X accessed in the loop nest.

• T (B) is shifted into the interior of B.

• T (C) is one-dimensional, even though C is two-dimensional. Even though
only 100 elements of C are touched, the smallest rectangle containing T (C)
is all of C.
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• T (A) has holes. A checkerboard pattern of elements is touched. The shape
of T (A) is a rhombus.

We would like to allocate the smallest possible amount of local memory to
each of the touched arrays, but subject to the following constraint: access to the
local-memory array should still be affine. For example, for C, we would allocate
a local-memory array Cloc of size 100, move C[i, i] into Cloc[i], and replace the
reference in the loop body to C with Cloc[i]. Similarly, B[k] should be moved to
Bloc[k-100] for 100 ≤ k ≤ 298, and the reference replaced by Bloc[i+j]. These
two optimizations are obvious. Of the 40,000 elements of A, some 10,000 are
in T (A). Our algorithm would allocate an array Aloc[100, 100] and would store
A[i+j, i-j+100] in Aloc[i, j]. Clearly, in simple cases like these, simple and ad hoc
methods may suffice. However, we present a general technique that handles all
these sorts of issues in a unified and, as we shall show, a near-optimal way. For
an example of a more complicated problem, consider the reference A[i+j, i+3j+4k]
in a three-deep nest with loop extents [10, 100, 40]. While T (A) has only 9424
elements, it spreads over a rectangular subarray of size 109 by 463; we compress
it into a local-memory array B of size 178 by 88, in which B[j+2k, -i+2k+9] holds
A[i+j, i+3j+4k].

2 Prior work

Earlier work of Gallivan, Jalby, and Gannon [3], Eisenbeis et al. [2], and Anan-
tharaman and Pande [1] addressed some of these questions.

The Gallivan paper posits the same memory hierarchy as we, and the same
problems associated with it. It is concerned mainly with optimizing the process
of transferring data from global to local memory. Its primary contribution is a
data-transfer method that runs in time proportional to the size of T (A). It uses
the Hermite factorization of the iteration-index to array-index map to accomplish
this. We begin with this same factorization; we then extend the Gallivan work in
several ways. Most notable is that we also optimize the size of the local-memory
array that is used to hold T (A). Furthermore, we use a second step, a unimodular
change of lattice basis, to make a further reduction beyond that provided by the
Hermite factorization.

The paper of Eisenbeis and her colleagues looks, as we do, at ways to reduce
the local memory requirement by changing the affine access function. But where
we take the whole loop nest as the atomic grain of computation from the viewpoint
of deciding what to move into local memory, they take the individual iteration.
Hence, their concern is to characterize the window of elements that are live (have
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been touched, but not for the last time) at a given iteration and to bound the size of
the window with an upper bound independent of iteration.

The Eisenbeis paper also includes an interesting application of the knapsack
problem for deciding, when local memory size is fixed, which arrays to promote to
the local memory.

Anantharaman and Pande try to optimize the size of the local-memory array
used to hold T (A), but only by enclosing T (A) in a bounding rectangle.

3 Notation and Theoretical Background

We denote the real numbers by R, the integers by Z , and the positive integers by
Z+. For a set S , its cardinality is written |S|. For a set S ⊆ R, we write glb S for
its greatest lower bound.

We use upper case Roman for matrices, lower case Roman for vectors, except
that the lower case letters i, j, k,m, n, p, q are used for integer indices. We write
At for the transpose of A. For a matrix A, its kth row is written Ak. For a vector x,
its kth element is xk. Inequalities and absolute value apply to matrices and vectors
elementwise; so for example, for n-vectors x and y, the notation x ≤ y means
xi ≤ yi for all i = 1, . . . , n. The vector whose elements are all one is written 1.
The diagonal matrix whose diagonal elements are the elements of the vector x is
denoted D(x). The identity matrix of order n is In ≡ D(1).

We use n for the depth of the loop nest and consider perfectly nested rectan-
gular loops. The loop indices are represented by the vector z = [z1, . . . , zn] and
the loop trip counts by the vector ẑ ∈ Zn

+. We assume the loop nest is normalized
such that 0 ≤ z ≤ ẑ, and we define the iteration space of the loop nest to be

I ≡ {z | 0 ≤ z ≤ ẑ} . (1)
We use m for the dimensionality of the array and consider affine array ref-

erences. We denote elements of m-dimensional arrays using multi-indices (e.g.
A[a] where a ∈ Zm). An affine reference to array A is written A[Fz + f ] where
F ∈ Zm×n and f ∈ Zm.

In the style of Matlab, we denote by [X, Y] the horizontal concatenation of
two matrices with the same number of rows, by [X;Y] the vertical concatenation
of matrices with the same number of columns, and by X(p : q, :) the submatrix of
X consisting of rows p through q.

For S ⊆ Rn, we denote by FS the image of S under F , and by FS + f the
set {Fz + f | z ∈ S}.

For a matrix X with n (not necessarily linearly independent) columns, the set
{Xv | v ∈ Zn} is a lattice that we denote L(X).

We define T (A) to be the set of elements touched by a reference A[Fz + f ].
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Given an iteration space I , T (A) = FI + f . T (A) is also the intersection of the
shifted lattice L(F ) + f with the polytope {Fx + f | x ∈ Rn, 0 ≤ x ≤ ẑ}.

Any integer matrix F has a generalized Hermite normal form
F = H̃U

where H̃ is an m × n lower triangular matrix of rank r, and U is n × n and
unimodular. In particular, F has a generalized Hermite factorization,

F = [H, 0]U = HV,
where H is m × r and has full column rank, 0 represents the m × (n − r) zero
matrix, and V = U(1 : r, :) consists of the first r rows of U . Note that L(F ) =
L(H̃) = L(H).

For any real number p ≥ 1, the p-norm of the n-vector x is defined by

‖x‖p ≡
(

n∑
k=1

|xk| p
)(1/p)

.

In particular, the 1-norm, which is sometimes called the “Manhattan” norm, is

‖x‖1 ≡
n∑

k=1

|xk| .

4 Local memory size minimization via array reindexing

We are given a loop nest with one or more affine references to an array A. The goal
is to find the smallest array B that stores the elements of T (A) and has an affine
reindex mapping – all manner of important compiler analyses and the dependent
optimizations, not the least of which is parallelism, depend on the affinity of array
references. We also need to generate the code to move the elements of T (A) into
B prior to the loop nest and the modified elements back to A afterwards.

4.1 The size of the local-memory array with one affine reference

We first consider how to determine the size of the array required to hold the el-
ements of a conceptually infinite array X referenced as X[Ez + e] where E ∈
Zm×n. Following Pande, we assume that the part of X moved to local memory
will be the smallest rectangular subarray of X that contains T (X). Let us de-
note by box(S) the smallest rectangular subset of Zn that contains the bounded
set S ⊆ Zn. The set of elements of X whose array indices are in box(T (X)) =
box(EI + e) are stored in local memory.

We can calculate the size of the bounding rectangle exactly. The result is stated
in Corollary 4.1. To begin with, the box is a Cartesian product of intervals:

box(EI + e) =
m⊗

k=1

[amin(k), amax(k)]
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where [x, y] denotes the integer interval {x, x + 1, . . . , y},
⊗

denotes Cartesian
product of sets, and

amin(k) = min
0≤z≤ẑ

(Ez)k + ek

and similarly for amax(k).

Lemma 4.1 The length of the k-th side of box(EI + e) is
|[amin(k), amax(k)]| = amax(k) − amin(k) + 1 = |Ek|ẑ + 1. (2)

Proof: Obvious.
We make an approximation and drop the added one. While this is not strictly

necessary, it simplifies notation considerably. Ẽ = ED(ẑ) is the matrix whose jth

column is the corresponding column of E scaled by the jth loop bound ẑj . Note
that for any matrix X and any diagonal matrix D, |X||D| = |XD|.

Corollary 4.1 If I satisfies (1), then

|box(EI + e)| ≈
m∏

k=1

(|Ek|ẑ)

=
m∏

k=1

|Ek|D(ẑ)1

=
m∏

k=1

|EkD(ẑ)|1

=
m∏

k=1

‖(ED(ẑ))k‖1

4.2 The mathematical framework for reindexing

We develop reindexing as a two step process. The first is algebraic and the sec-
ond is geometric. This section and Section 4.3 address the algebraic step, while
Section 4.5 discusses the geometric step.

The purpose of the algebraic step is to deal with the fact that L(F ) + f may
leave out a lot of the elements of A which do not have to be stored. The dimension
of the shifted lattice is r = rank(F ), which may be less than m, and we can use
an array B of dimensionality r to hold the elements needed. The basic idea is
to represent the element of A whose index is a = Fz + f by the coordinates of
Fz = a − f with respect to the basis given by the columns of H , where F = HV
(from the generalized Hermite factorization). So we make the first reindexing, in
which

C[V z] stores A[Fz + f ] .
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Note that the dimensionality of C is indeed r, which may be less than and cannot
be more than m.

To establish the map from indices of C to those of A we observe that
C[c] stores A[Hc + f ].

To go from index a in A to the corresponding index in C we require that a−f be
in L(F ), otherwise this entry of A does not exist in C . For any vector w ∈ L(F ),
w = HH−1w where H−1 is any left inverse of H (see Section A for how one can
test x ∈ L(X)).

Thus:

A[a]

{
is stored in C[H−1(a − f)] if (a − f) ∈ L(H)
is not stored in C otherwise.

The local-memory array C corresponds to a bounding rectangle around the set
of elements V I . Not all elements of C are members of V I . For any element
c �∈ V I , the corresponding a = Hc + f is not in FI + f , and moreover it may
not be within the bounds of A. Determining whether c ∈ V I is more difficult
than checking whether a = Hc + f is within the constant bounds of A. Thus, to
load entries into C we would first determine the bounds on C then iterate over its
entries c and move A[Hc + f ] into C[c] when this element of A is within the array
bounds. If there is a left-hand side occurrence in the nest, we must write back at
least the set of “dirty” elements on completion. One can keep track of whether or
not an entry is modified, or simply write back all entries for which the A index in
is bounds.

4.3 Several uniformly generated affine references

We now discuss local memory allocation for several uniformly generated affine
(UGA) references to A. UGA references have the same linear part F but can have
different constant offsets. Following Anantharaman and Pande [1], we classify
references according to whether or not they can alias, and allocate a local-memory
array to each group of potentially aliasing references.

Given two such references, with constant parts f1 and f2, we say that the two
references are alias equivalent if f1 − f2 ∈ L(F ). This is indeed an equivalence
relation on the set of integer m-vectors.

Lemma 4.2 Two UGA references can access the same array element only if they
are alias equivalent.

Proof: If there are two iterations with loop index vectors z1 and z2 such that Fz1+
f1 = Fz2 + f2, then F (z1 − z2) = f2 − f1, whence f2 − f1 ∈ L(F ) and the two
references are alias equivalent.
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We create a separate local-memory array for each equivalence class that oc-
curs in the loop body. If the offsets f are constant, the mapping of references to
equivalence classes can be determined at compile time.

For each equivalence class, we choose one of the references in the class to be
the dominant reference, and call all the others subservient references. The reindex
map becomes

C[V z] stores A[HV z + f ]
where f is the constant vector of the dominant reference. For a subservient refer-
ence A[Fz + f1] in the same equivalence class, we want to find the r-vector u1

such that C[V z + u1] = A[Fz + f1]. We call u1 the projected offset. To see how
to obtain u1 from f1, note that f1 − f ∈ L(F ), so f1 − f = Fz1 = HV z1 = Hu1

where u1 = H−1(f1 − f). We therefore replace the reference A[HV z + f1] with
the reference C[V z + H−1(f1 − f)] ≡ C[V z + u1].

The local-memory array grows when there are several affine references. For
each of these, there is an offset (fk − f) from the offset of the dominant reference,
and a projected offset uk for the reindexed reference. Let O be the set of these
projected offset vectors. Then the extents of box(O) must be added to the extents
of box(V I) to determine the size of the smallest rectangular subarray of C that
contains the union of the sets of elements touched by this equivalence class of
references.

4.4 Examples

Example 1. A[2i] in a one-deep loop nest. F = [2] = [2][1] = H̃U . C[i] holds
A[H̃i] = A[2i]. Replace the reference in the code by C[i].
Example 2. A[2z1 + 4z3, z1 + 2z2] in a nest indexed by (z1, z2, z3).

F =

(
2 0 4
1 2 0

)
= H̃U =

(
2 0 0
1 2 0

) 1 0 2
0 1 −1
0 1 0




So that

V =

(
1 0 2
0 1 −1

)
.

We replace the reference to A[Fz + f ] with a reference to C[V z] = C[z1 +
2z3, z2 − z3]. Note that the sparse set of entries of A that are referenced is com-
pacted into C . Note also that |box(T (A))| = (2ẑ1 + 4ẑ3)(ẑ1 + 2ẑ2), while
|box(T (C))| = (ẑ1 + 2ẑ3)(ẑ2 + ẑ3); usually the latter is smaller, but not always!
However, the second phase of reindexing, which is described in Section 4.5, takes
loop extents into account and will produce a better result.
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Example 3. We have a reference A[z1 + 2z2, 2z1 + 4z2]. Thus,

F =

(
1 2
2 4

)

= H̃U

=

(
1 0
2 0

)(
1 2
0 1

)
.

Here r = rank(F ) = 1, H = [1; 2], and V = [1, 2]. We store the accessed
elements of A in the one-dimensional array C; if f = [f1; f2] then C[k] holds
A[k + f1, 2k + f2] = A[Hk + f ]. The reference to A[Fz + f ] in the code is
replaced by the reference C[V z] = C[z1 + 2z2]. If in addition the code contains
the subservient reference A[z1 + 2z2 + 3, 2z1 + 4z2 + 6], then we first find the
projected offset u1 (the coordinates of (f1 − f) = f1 = [3; 6] in the basis H),
u1 = H−1(f1 − f), which in this case is(

1 0
)( 3

6

)
= 3.

We replace the subservient reference with C[z1 + 2z2 + 3].

4.5 Unimodular reindexing for reducing the bounding rectangle

This section describes the geometric step of the reindexing process. We have so
far replaced references to A with references to C , where the correspondence is
between C[V z] and A[HV z + f ]. The size of C is determined by the size of the
smallest rectangular region containing the image of the iteration space I under V ,
box(V I). It will often be the case that V I lies in a parallelepiped that is smaller
than this smallest rectangle. This is because the parallelepiped is skewed with
respect to the axes of C . A change of lattice basis from V can take advantage of
this and reduce storage requirements.

Revisiting Example 2, let ẑ = [5; 10; 15]. The bounding rectangle of T (A)
contains 1846 elements, even though only 456 are referenced (Figure 1a). The
Hermite reindexing yields a local-memory array C having 936 entries (Figure 1b).
T (A) is a subset of a sparse sublattice while T (C) is compact but skewed rather
badly. To reduce this skew, we make another change of variables and introduce a
new local-memory array B, with the relation

B[Gc] = C[c] and C[G−1b] = B[b].
where G is a unimodular matrix of order r. Then we have

B[Gc] = C[c] = A[Hc + f ]
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Figure 1: Four Reindexing Cases
(a) The box of the original reference is 71× 26 = 1846. (b) The box after Hermite
reindexing is 36×36 = 936. (c) The box after unimodular reindexing is 26×26 =
676. (d) The box after applying both Hermite and unimodular reindexing on an
unrolled loop is 26 × 19 = 494.
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and
B[b] = C[G−1b] = A[HG−1b + f ]

and
A[Fz + f ] = A[HV z + f ] = C[V z] = B[GV z].

The idea is to choose G such that the image of I under GV is a subset of the small-
est rectangular region possible, so that T (B) can be contained in the smallest array
possible, i.e.we want G to minimize |box(GV I)|. Hence, the objective function
that we seek to minimize is

r∏
k=1

‖(GV D(ẑ))k‖1 .

We now give another interpretation of the problem in terms familiar in the
theory of lattices and combinatorial optimization. The rows of V D(ẑ) are linearly
independent and generate an r-dimensional lattice L ≡ L((V D(ẑ))t) in Zn. The
rows of GV D(ẑ) as G varies over the unimodular matrices comprise all of the
possible lattice bases for L. We seek a lattice basis for which the product of the
lengths of the basis vectors, measured by the 1-norm, is minimized. Thus, our
problem is the 1-norm version of the lattice basis reduction problem whose 2-norm
version has been studied extensively [5, 6, 4]. We study this optimization problem
carefully in Section 5.

4.6 Generalizations

We can extend our techniques to references that are not UGA. For example, if some
indices of an array are nonaffine, then we can consider only the affine indices and
view the array as a lower-rank affine array of nonaffine arrays. Alternatively, if
the references occur only on the right-hand side and if some references have more
affine indices than others, then we can create an optimized local memory surrogate
for the set of maximally affine references and leave untouched any insufficiently
affine references.

When there are affine references that are not UGA, we can use several alterna-
tive techniques, each of which might be best in a given situation.

1. If one affine reference generates a sublattice of another, then you may use
the reindexing of the other reference. Example: for references A[2zi] and
A[6zi], you can apply our reindexing technique to A[2zi] and then derive the
reindexing for A[6zi]. The downside is that every other location between
A[2ẑi] and A[6ẑi] is stored when only every sixth location is actually re-
quired. A more practical example is when two references generate the same
lattice but are not UGA, such as A[i, j] and A[j, i].

The way you do this in general is to take two affine references with different
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linear parts but the same shape (m × n), say A[F1 + f1] and A[F2 + f2].
The second reference generates a sublattice of the shifted lattice of the first
reference if ∀x2∃x1 | F1x1 + f1 = F2x2 + f2. This is true if and only if
f2 − f1 ∈ L(F1) and the equation F2 = F1E has an n × n integer solution
matrix E: for then F1x1 = F1Ex2+(f2−f1) has the solution x1 = Ex2−e
where F1e = f2 − f1.

If these conditions are satisfied, then you make a reindexing using F1 and
allocate the local-memory array. If B[Gi] holds A[F1i + f1] then B[GEi +
Ge] holds A[F1(Ei + e) + f1] = A[F2i + f2].

2. When several affine references are not UGA and the sublattice requirement
of point 1 does not apply, we can use the lattice generated by their greatest
common divisor. Example: for references A[4i] and A[6i], we find 2 =
gcd(4, 6), make a reindexing with this linear form, and proceed as in the
previous case.

Extending this to multidimensions, we are given F1, F2 ∈ Zm×n, we form
the matrix [F1, F2] ∈ Zm×2n, and we then find its generalized Hermite fac-
torization HU . Assuming the rank is r, we take the first r rows of U , forming
an r×2n matrix. This is split into two r×n matrices [V1, V2]. References to
A[F1i] are then replaced with references to B[V1i], and similarly for F2, V2.
The size of the local-memory array is determined by bounding the set of
elements of the form Hi as i varies over the iteration space.

3. Finally, in a case like A[2i] and A[3i], the gcd technique yields H = I , but
there is still a potential for savings by using an lcm (least common multiple)
technique. The key idea is that while the sparsest lattice that includes the
lattices L(2) and L(3) is all of the integers, if we instead consider the lattice
L(6) and its translations, then four out of the six of these translations cover
L(2) ∪ L(3), which contains the set of elements we need.

Suppose A is of size N . Unroll the loop by a factor of lcm(2, 3) = 6.
Allocate local-memory arrays LM0, LM2, LM3, and LM4. Each has size
N/6. LMk[i] holds A[6i + k] for k ∈ {0, 2, 3, 4}. Thus, we have used
(2/3)N space in the local memory to hold the part of A that we need.

The loop before this transformation is:

for (i = 0; i < N/3; i++) {
S1: ... A[2i]
S2: ... A[3i]

}
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After it is changed to:

for (i = 0; i < N/18; i++) {
S1_0: ... LM0[2i]
S2_0: ... LM0[3i]
S1_1: ... LM2[2i]
S2_1: ... LM3[3i]
S1_2: ... LM4[2i]
S2_2: ... LM0[3i+1]
S1_3: ... LM0[2i+1]
S2_3: ... LM3[3i+1]
S1_4: ... LM2[2i+1]
S2_4: ... LM0[3i+2]
S1_5: ... LM4[2i+1]
S2_5: ... LM3[3i+2]

}

5 Practical approaches to the best unimodular reindexing

The lattice basis reduction algorithm of Lenstra, Lenstra, and Lovász (LLL) [4],
which runs in (low degree) polynomial time, provides a basis of bounded nonopti-
mality w.r.t. the 2-norm. Using the equivalence of all norms on a finite dimensional
space, and in particular the bounds

‖x‖2 ≤ ‖x‖1 ≤
√

n‖x‖2

we can show that the LLL basis has bounded nonoptimality w.r.t. the 1-norm. This
said, we have also looked into other algorithms, which seem to be more 1-norm
friendly.

5.1 Lattice basis reduction in the 1-norm

We build G as a product of elementary unimodular transformations of the form
E(i, v) which is the identity except for the i-th row, in which the off-diagonal
entries are the elements of the vector v.

We have found that a hill-climbing heuristic, which uses elementary unimodu-
lar transformations E(i, v), is of practical value; in practice it yields better results
than the LLL algorithm. It is less prone to getting stuck at a local minimum than
algorithms that work with only two rows at a time. The method is organized as a
sequence of sweeps; a sweep visits each of the rows in turn. When visiting a row,
we consider subtracting an integer linear combination of the other rows so as to

13



reduce the one-norm, if possible. We examine a test set of linear combinations and
pick the best one.

How do we generate the test set? If x is the given row of the matrix and X is
the matrix consisting of the other rows, then we are seeking the integer row vector
c that solves

min
c

‖x − cX‖1 . (3)

This linear program can be solved exactly over the real vectors c in polynomial
time by linear programming, or solved over the integers in exponential time. Since
in our applications the dimensionality is quite small (at most the dimensionality of
the program’s arrays) we don’t feel that exponential is necessarily a dirty word.

Clearly, we can find an integer solution with an ILP solver, and use this locally
best integer linear combination of the other rows. Or we may get a test set faster by
using an LP solver to get a real solution creal ∈ Rn to (3), generating two bounding
integer vectors clo = 
creal� and chi = �creal�, and generating the 2n integer vectors
whose entries come from either clo or chi. These 2n vectors are the test set.

The best unimodular reindexing for Example 2 (Section 4.4) is

G =

(
1 2
0 1

)
.

and was found by both algorithms above. This leads to a local-memory array B
having 676 elements (Figure 1c). While T (B) is still skewed with respect to the
axes of B, it is much less so than T (C), and a substantial storage reduction follows.

If we iterate the ILP-based procedure, then it converges to a matrix for which
no row can have its 1-norm reduced by subtracting a linear combination of other
rows. If we are at such a situation, then we have locally minimized the objective
function. Thus we have the algorithm in Figure 2.

while (changes happen)
for each row

minimize the row’s one norm by
subtracting an integer linear combination
of the other rows, using ILP to find
the minimizing integer coefficients.

rof
elihw

Figure 2: Algorithm to Find Locally Optimal Basis
The cost of this algorithm is an exponential ILP solve, a polynomial number of

times.
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5.2 G does not have to be unimodular

Thus far we have required that G be unimodular. In some cases we can obtain
better results by allowing G to be a matrix of determinant one over the rationals.

Revisiting Example 2 (Section 4.4), let ẑ = [5; 10; 15]. The matrix V that we
obtained by the Hermite reindexing algorithm is

V =

(
1 0 2
0 1 −1

)

The extents of box(V I) are [36; 26]. If we take the best unimodular reindexing,
we get

G =

(
1 2
0 1

)

so that the new point set is the image under

GV =

(
1 2 0
0 1 −1

)

which has extents [26; 26], but T (GV ) is still not rectangular.
If we solve the linear program for the best real transform with determinant one,

we obtain

M =

(
1 0

−.5 1

)
;

this takes us to

MGV =

(
1 −2 0

−0.5 0 −1

)

which maps I to a rectangle with extents [26, 19], having space for 494 elements
(Figure 1d). This is very close to |T (A)|, which in this case is 456. We can
implement this non-integral transform by unrolling the first loop by a factor of
two. The solution then becomes an affine map onto integers.

5.3 How good are locally optimal bases?

A natural question is whether the locally optimal unimodular reindexing generated
in Section 5.1 is always best possible. For the case r = 2, there is a simple geomet-
ric proof that a local optimum is a global optimum. Suppose X has two rows, a and
b. If X is not globally optimum, then there is some linear combination of its rows
that is smaller than one of the rows that participates in this linear combination. If
ma + nb is smaller than the larger of a and b, then so is a + b, because a + b is
a barycentric combination of {a, b,ma + nb}. Thus, X was not locally optimum.
Sadly, this proof (which is due to Alain Darte) does not generalize to more than
two vectors.

For r ≥ 6 we have a negative result: a locally optimal basis is not necessarily
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globally optimal; in fact, there is in general no constant factor, even one that grows
with n, bounding the extent to which a locally optimal basis can have cost that
exceeds the cost of the best basis for the same lattice. We show this here for the
1-norm with a counterexample in 6 dimensions. In Section C, we generalize the
construction so that it works for any p-norm with integer p, and the counterexam-
ples in general are in 5p + 1 dimensions.

Consider the following change of bases B′ = U × B:


5 0 0 0 0 1
0 5 0 0 0 1
0 0 5 0 0 1
0 0 0 5 0 1
−1 −1 −1 −1 −1 2
0 0 0 0 0 5




=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 1 1 1 1 −3
2 2 2 2 2 −5




×




5 0 0 0 0 1
0 5 0 0 0 1
0 0 5 0 0 1
0 0 0 5 0 1
0 0 0 0 5 1
2 2 2 2 2 1




.

B is locally optimal w.r.t. the 1-norm (see Section C for a proof),
∏6

k=1 ‖Bk‖1 =
85536, and U is unimodular. However,

∏6
k=1 ‖B′

k‖1 = 45360.
For three, four, and five dimensions, we don’t know which of the following

possibilities is true: locally optimal implies globally optimal, locally optimal can
be worse than globally optimal by an arbitrarily large factor, or something in be-
tween. Nevertheless, we have not found any practical example of nonoptimality.

6 Conclusion

We have shown how to generate a nearly optimal reindexing of array elements to be
used in generating code that explicitly loads the relevant sections of global-memory
resident arrays into local memories.

This paper has not addressed other significant issues in managing local mem-
ory. Its context has been a single loop nest. It has not considered the issue of shar-
ing a limited size local memory among contending uses when there is not enough
space for all of uses to coexist at the same time. It has not addressed the problem
of when to move data between local and global memory. It has not addressed the
problem of moving data from one part of local memory to another when overlap-
ping sections of an array are referenced on repeated executions of a loop nest.

16



7 Acknowledgments

We are very grateful to Alain Darte and Hendrik Lenstra for their contributions to
this research. Hendrik gave us the blueprint for the proof of nonoptimality of our
heuristic for lattice basis reduction. Alain has been a steady source of ideas and
mathematical knowledge.

References

[1] S. Anantharaman and S. Pande. Compiler optimization for real time execution
of loops on limited memory embedded systems. In Proceddings of the 19th
IEEE Real-Time Systems Symposium, pages 154–164, 1998.

[2] C. Eisenbeis, W. Jalby, D. Windheiser, and c. B. Fran˙ A strategy for array
management in local memory. Technical Report 1262, INRIA, Domaine de
Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France, July
1990.

[3] K. Gallivan, W. Jalby, and D. Gannon. On the problem of optimizing data
transfers for complex memory systems. In Proceedings of the 1988 ACM In-
ternational Conference on Supercomputing, pages 238–253, 1988.

[4] A. Lenstra, H. L. Jr., and L. Lovász. Factoring polynomials with rational coef-
ficients. Mathematische Annalen, 261:515–534, 1982.

[5] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley, New York, 1988.

[6] A. Schrijver. Linear and Integer Programming. Wiley, New York, 1986.

[7] M. V. Wilkes. The memory gap and the future of high performance memories.
Computer Architecture News, 29(1):2–7, Mar. 2001.

[8] W. A. Wulf and S. A. McKee. Hitting the memory wall: Implications of the ob-
vious. Technical Report CS-94-48, Computer Science Department, University
of Virginia, 1, 1994.

A Left inverses and integer solutions for integer matrices

We show here how to construct left inverses and how to use one to test whether a
given vector is in a given lattice. In this section, m and n denote arbitrary integers.
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Let X ∈ Zm,n have full column rank (like H in Section 4.2). Then it has left
inverses X−1 that satisfy X−1X = In, where In is the identity matrix of order
n. If m > n then it will have infinitely many of them. Any of them will do
for our purposes, because if u ∈ L(X) then for some vector v ∈ Zn, u = Xv
and v = (X−1X)v = X−1u for any left inverse X−1. Note that a left inverse
is in general a rational matrix. (There are integer left inverses only if X has a
unimodular extension.)

To test whether a given vector u is in L(X) we rely on the following

Lemma A.1 Let X be integer with full column rank and let X−1 be any left in-
verse of X. The vector u is in L(X) if and only if

(i) X−1u is integer, and

(ii) XX−1u = u.

Proof: For the =⇒ part, let u = Xv with v integer. Then X−1u = X−1Xv = v
is integer so that (i) holds. Moreover, XX−1u = XX−1Xv = Xv = u so that
(ii) holds as well. For the ⇐= part, (ii) yields u = Xv where by (i) v = X−1u is
integer, so that u ∈ L(X).

To see that (i) alone is insufficient, consider X = [1; 2] with left inverse X−1 =
[1, 0] and u = [1; 1]. To see that (ii) alone is also insufficient, let X = [2; 2] with
X−1 = [.5, 0] and u = [1; 1].

Given software for computing the Hermite normal form, finding a suitable left
inverse is straightforward. The method we propose here yields an integer inverse
if one exists. To begin, we compute a left-sided Hermite factorization X = UH̃
where U is unimodular and H̃ has rank n and is zero below row n. (To do so
one may present the transpose of X to software for the conventional right-sided
Hermite factorization.) Denote by H the nonsingular matrix of order n consisting
of the first n rows of H̃ . Since H̃ = U−1X, we have that H = WX where W is
the n × m integer matrix consisting of the first n rows of U−1. Then H−1WX =
H−1H = In and the left inverse we seek is H−1W . When X has a unimodular
extension [X,Y ] then U = [X,Y ] and H = In, whence our left inverse is integer.

A.1 Code for Finding an Integer Left Inverse

We now provide Matlab code for finding an integer left inverse.

function Ainv = intleftinv(A)
% Left inverse of the integer matrix A; returns an
% integer result if and only if A has a unimodular
% extension. A must have full column rank
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%
% METHOD
% Factor: A = U(:, 1:n) * H
% where U is unimodular and H is square
% Form: Ainv = inv(H) * W
% where W consists of the first n rows of inv(U)
%
[m, n] = size(A); assert(rank(A) == n);
[H, U] = economy_left_hermite(A);
Uinv = inv(U);
W = Uinv(1:n,:);
Ainv = inv(H) * W;

B Code for Test Vector Generation

These Matlab functions implement the algorithm described in Section 5.1.

[r, n] = size(f);
g = eye(r);
changes = 1;

while (changes)
changes = 0;
for row = 1:r
x = f(row,:);
others = f(find( 1:r ˜= row ), :);
coeffs = (least_onenorm(others’, x’))’;
testvectors = (tensor([floor(coeffs);
ceil(coeffs)]))’;
nt = size(testvectors, 1);
testrows = x(ones(nt,1),:) - testvectors * others;
mintest = min(sum(abs(testrows), 2));
if (sum(abs(x)) > min(sum(abs(testrows), 2)))
ff = find(sum(abs(testrows), 2) == mintest);
ff = ff(1);
f(row, :) = testrows(ff,:);
g = g * elemrow(r, row, testvectors(ff,:));
changes = 1;

end
end % loop over row

end
}

function e = elemrow(n, r1, mpy)
e = eye(n);
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offdiag = find(1:n ˜= r1);
e(r1, offdiag) = mpy;

C A locally optimal basis in 6 or more dimensions may be
arbitrarily bad

The aim of this section is to prove that a locally optimal basis is not necessarily globally optimal.
The structure of the argument is as follows. We show that if a basis is not too bad (looking at the
ratio of its cost to the optimum basis cost) then its shortest vector cannot be too much bigger than
the shortest vector in the lattice. This is true in any finite number of dimensions and with any norm.
We then construct a 6-dimensional basis, locally optimal in the 1-norm, for which the basis vectors
are all O(1) in size, but for which the shortest vector in the lattice is arbitrarily small. Together with
the lemma just described, this does the trick. We generalize the construction so that it works for any
p-norm with integer p. The counterexamples in general are in 5p + 1 dimensions.

C.1 Definitions
In the following, let ‖ ‖ be a norm over Rn, and let cost(X) ≡∏r

k=1
‖Xk‖.

Definition C.1 A basis B is locally optimal, or LOPT(B), if and only if none of its rows can be
made smaller with respect to some norm by adding a linear combination of the other rows. That is,
B is locally optimal if and only if ‖x tB‖ ≥ ‖Bk‖ for all integer vectors x whose k-th element is 1.

Definition C.2 The length of a shortest element of a basis B is

shortest(B) ≡ min
i

‖Bi‖ .

Definition C.3 The length of a shortest element of a lattice L is

shortest(L) ≡ min
x∈L:x �=0

‖x‖ .

Definition C.4 The determinant of a lattice L is

det(L) ≡
√

det(BBt) ,

where B is any basis that generates L.

Lemma C.1 The determinant of a lattice is well defined, i.e. it does not depend on the basis chosen.
The determinant is equal to the volume of the r-dimensional parallelepiped subtended by the r rows
of B.

C.2 Any good basis contains a short basis vector
Lemma C.2 (Hadamard) For any basis B, and all p ≤ 2,

det(L(B)) ≤ costp(B). (4)

Proof: See Schrijver, Section 6.2.
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Corollary C.1 Let a norm be given for Rn for all n. There exist constants H(n) such that, for any
lattice basis B,

det(L(B)) ≤ H(n)cost(B). (5)

Proof: From the Hadamard inequality and the equivalence of all norms in Rn.

Lemma C.3 (Hermite; Minkowski) There exist constants M(n) = O((2n/πe)n/2) depending
only on n such that for any lattice L ⊂ Zn there is a basis B satisfying

cost(B) ≤ M(n)det(L) . (6)

Proof: See Schrijver, Section 6.2.

Corollary C.2
cost(L(B)) ≤ M(n)det(L) . (7)

This next lemma exposes a critical property of bases – a basis that is nearly globally optimal is
also near optimal as measured by shortest element.

Lemma C.4 If B is such that
cost(B) ≤ K cost(L(B)) (8)

for some K > 0, then

shortest(B) ≤ M(n)H(n)K shortest(L(B)) . (9)

where the constants M(n) and H(n) are those appearing in the generalized Hadamard and Minkowski
inequalities.

Proof :
From (7) and (8) we conclude that

cost(B) ≤ M(n)Kdet(L(B)) . (10)

Let L = L(B), and let x be a shortest vector in L. Since B is a basis for L, there exists w ∈ Zr

such that x =
∑r

i=1
wiBi. Let wh be a non-zero element of w. Define a new basis E in which

Ei = Bi for i �= h and Eh = whBh. Clearly, det(L(E)) = |wh|det(L(B)). Define a new basis
F in which Fi = Bi for i �= h and Fh = x. Then, L(F ) = L(E) since Eh = Fh −∑

i�=h
wiFi.

Hence, det(L(F )) = det(L(E)) = |wh|det(L(B)). From this result and (10) it follows that

cost(B) ≤ M(n)Kdet(L(F )), (11)

and from (5) it follows that
cost(B) ≤ M(n)H(n)Kcost(F ). (12)

Since F differs from B only in row h, we may cancel common factors to obtain

‖bh‖ ≤ M(n)H(n)K‖x‖, (13)

and since shortest(B) ≤ ‖bh‖ it follows that

shortest(B) ≤ M(n)H(n)K shortest(L(B)). (14)
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C.3 There are p-norm locally optimal bases for Z5p+1 with no short
basis vector

The following definition describes a family of bases parameterized by a positive integer p. The
subsequent lemma states that each family is locally optimal in the p-norm. These families of bases
will be used to prove that a locally optimal basis is not necessarily globally optimal.

Definition C.5 F(p) = {B | B ∈ Rd×d : d = 5p + 1, ε ∈ R : 0 < ε ≤ .2, i, j ∈ N : 1 ≤ i ≤
d − 1, 1 ≤ j ≤ d − 1, Bij = Iij , Bdj = .4, Bid = ε, Bdd = ε}.

For example, F(1) consists of the bases

B =




1 ε
1 ε

1 ε
1 ε

1 ε
.4 .4 .4 .4 .4 ε




for all ε ≤ .2.

Lemma C.5 Every basis in F(p) is locally optimal with respect to the p-norm.

Proof (by contradiction): Assume that for some p there is a basis B ∈ F(p) which is not locally
optimal. Then, for some k and some integer vector x with xk=1,

‖x tB‖p < ‖Bk‖p. (15)

Case 1: k = d: Substituting xd = 1 into (15) yields(
d−1∑
i=1

|xi + .4|p +

∣∣∣∣∣ε
d∑

i=1

xi

∣∣∣∣∣
p)1/p

< (2p + εp)1/p.

In addition to xd, at least one xi must be non-zero or else the basis doesn’t change. The term |xi+.4|p
has a lower bound of .6p for a non-zero xi and .4p otherwise. Since 0 < ε ≤ .2, it follows that

.6p + .4p(5p − 1) < 2p + .2p,

which reduces to
3p − 2p < 1,

which is clearly false since p > 0.
Case 2: 1 ≤ k < d: Since k �= d, (15) becomes(

d−1∑
i=1

|xi + .4xd|p +

∣∣∣∣∣ε
d∑

i=1

xi

∣∣∣∣∣
p)1/p

< (1 + εp)1/p (16)

First consider xd = 0. Then 2 ≤ ∑d−1

i=1
|xi + .4xd|p since at least two of the xi’s must be

non-zero. Since 0 < ε ≤ .2, (16) reduces to 2 < 1 + .2p, a contradiction.
Next consider xd = 5n where n is a non-zero integer. The term |xk + .4xd| reduces to |1+2n|,

and (16) is clearly false for all n �= −1. Let S = {1 . . . d − 1} − {k}. If n = −1, (16) is false if
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∃i ∈ S xi �= 2. Finally, if ∀i ∈ S xi = 2, then (
∑d

i=1
xi) = 1 + 2(5p − 1) − 5 �= 0, and hence

εp ≤ |ε∑d

i=1
xi|p. From (16), it follows that 1 + εp < 1 + εp, a contradiction.

Finally, consider xd = 5n + q where n ∈ Z and q ∈ {1, 2, 3, 4}. If q = 1 or q = 4, then
.4 ≤ |xi + .4xd| and hence (16) reduces to 2 < 1 + .2p which is false. If q = 2 or q = 3 then
the term |xi + .4xd| is bounded below by .4 when xi �= −2n − 1 and .2 otherwise. Hence, if
xi �= −2n − 1 for at least one i �= d, then (16) becomes

.2p(5p − 1) + .4p < 1 + .2p,

which reduces to
2p < 2,

which is clearly false for p > 0. On the other hand, if all xi = −2n − 1 where i �= d, then n = −1
(since xk = 1) and (

∑d

i=1
xi) = 5p − 5 + q �= 0, and once again we get εp ≤ |ε∑d

i=1
xi|p which

leads to the contradiction 1 + εp < 1 + εp.

We can now conclude the main result of this section, which is unfortunately, but not surprisingly,
negative. The optimization algorithms of the previous section can all get stuck at poor local optima.
(The good news is that we only know of contrived examples in 6 or more dimensions for which this
happens.)

Theorem C.1 For any positive integer p, for any K > 0, there exists a p-norm locally optimal basis
B for Z5p+1 such that

costp(B) > K costp(L(B)) .

Proof : The family F(p) contains such a basis. By inspection, the shortest basis vector satisfies

shortestp(B) > 1 .

Let n be the dimensionality of F , n = 5p + 1. The shortest vector in the lattice is not longer than
the lattice vector equal to twice the sum of the first n − 1 rows minus five times the last row, which
is (0, . . . , 0, (25p − 5)ε), so that

shortestp(L(B)) ≤ (25p − 5)ε .

Thus, by taking ε small enough, the ratio

shortestp(B)/shortestp(L(B))

can be made arbitrary large, in fact larger than M(n)H(n)K. Taking ε to be rational and then
multiplying by the denominator, we obtain an integer basis with the same properties. The result then
follows by Lemma C.4.
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