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Abstract— In this paper, we closely scrutinize the spatial and
spectral properties of aperiodic halftoning schemes on hexagonal
sampling grids. Traditionally, hexagonal sampling grids have been
shunned due to their inability to preserve the high frequency com-
ponents of blue-noise dither patterns at gray-levels near one-half,
but as will be shown, only through the introduction of diagonal cor-
relations between dots can even rectangular sampling grids preserve
these frequencies. And by allowing the sampling grid to constrain
the placement of dots, a particular algorithm may introduce visual
artifacts just as disturbing as excess energy below the principal fre-
quency. If, instead, the algorithm maintains radial symmetry by
introducing a minimum degree of clustering, then that algorithm
can maintain its grid defiance illusion fundamental to the spirit of
the blue-noise model. As such, this paper shows that hexagonal
grids are preferrable because they can support gray-levels near one-
half with less required clustering of minority pixels and a higher
principal frequency. Furthermore, hexagonal grids allow for im-
proved radial symmetry in the size and shape of clusters. Finally,
the world’s first blue-noise dither array for hexagonal grids will be
demonstrated.
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I. I NTRODUCTION

Aperiodic, dispersed-dot halftoning is a technique for
producing the illusion of continuous tone in binary dis-
play devices through a random arrangement of isolated
dots. These dots are all of the same size, usually a single
pixel, with their spacing defined according to tone such
that dark shades of gray are produced by closely spaced
dots and light shades by dots placed far apart. Relative to
the human visual system, the optimal halftone patterns are
composed exclusively of high frequency spectral compo-
nents [1] and are commonly referred to as “blue-noise”,
the high frequency component of white-noise. The occur-
rence of low (red) frequency spectral components gives
binary dither patterns a noisy appearance [2].

Although the preferred technique in inkjet printers,
blue-noise is not considered a viable technique in laser
printers due to the failure of the electrophotographic print-

ing process to produce isolated minority pixels consis-
tently. Until recently, these printers have been limited to
ordered, clustered-dot halftoning algorithms, which pro-
duce a regular grid of round dots that vary in size accord-
ing to tone. Within the literature, this halftoning is gener-
ally considered an undesirable halftoning technique due
to its limitations in preserving spatial details and mini-
mizing halftone visibility (the appearance of artificial tex-
tures) [3].

A new halftoning approach, green-noise halftoning
produces random patterns of homogeneously distributed
minority pixel clusters. Studied by Lauet al [4], green-
noise halftone patterns are composed almost exclusively
of mid-frequency spectral components. The advantages
to using green-noise are well documented with respect
to printer reliability [5] where clustering reduces the
perimeter-to-area ratio of printed dots. In this paper, it
is theorized that green-noise could unlock a host of ad-
vantages commonly associated with hexagonal sampling
grids where hexagonal (a.k.a. quincuncial) grids differ
from rectangular in that every other row is offset one-
half pixel period. In particular, hexagonal sampling grids
are well recognized for allowing a more natural radially
symmetric sampling of 2-D space – preserving a circular
band-limited signal with only86% of the total number of
samples used by rectangular grids.

Additional advantages to hexagonal sampling grids
over rectangular are their robustness to changes in aspect
ratio as illustrated in Fig. 1, which shows an asymmet-
ric 4 × 4 grid with a 3.5 aspect ratio arranged rectangu-
larly and hexagonally. The aspect ratio is the horizontal
period divided by the vertical period, and here, the pixel
shapes shown are defined by the perpendicular bi-sectors
between neighboring pixels. From Fig. 1, Ulichney de-
fines the covering efficiency [2] as the ratio of pixel area
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Fig. 1. Pixel shapes for a (left)4 × 4 rectangular and a (right)4 × 4
hexagonal grid, both with a 3.5 aspect ratio.

divided by the circumscribing circle area, which can be
quantified and plotted for both types of grids as shown
in Fig. 2 where the pixel shapes are indicated for selec-
tive aspect ratios. The best case for rectangular grids oc-
curs for square grids, but what is particularly interesting,
in this figure, is the wide range of aspect ratios where
hexagonal grids outperform this best case: over an order
of magnitude. This is important because it allows for res-
olution to be increased asymmetrically yet still enjoy su-
perior radial symmetry of pixel coverage. It is very often
easier to increase resolution in only one dimension, and
using hexagonal grids would allow us to take advantage
of that.

Given the super-high dot addressability of modern digi-
tal printers, the implementation of hexagonal grid halfton-
ing is certainly reasonable for aperiodic screening tech-
niques, and given the general advantages to using hexago-
nal sampling grids, one may wonder why hexagonal grids
have not received more attention by the research com-
munity with respect to stochastic halftoning. As such,
we hypothesize that much of the detraction of hexago-
nal grids derives from the analysis of blue-noise dithering
performed by Ulichney who showed that only on a rectan-
gular sampling grid is it possible to isolate minority pixels
at all gray-levels. In contrast, minority pixels must begin
to cluster as the gray-level approaches 1/2 on a hexagonal
grid, which lead Ulichney to write that hexagonal sam-
pling grids do not support blue-noise. Specifically being
forced to cluster pixels, blue-noise isolates dots at some
locations only to cluster at others, creating a wider range
of frequencies in the spectral content of the dither pat-
tern. This widening of the spectral content is referred to
as “whitening,” and as a pattern becomes more and more
white, it appears more and more noisy.

In this paper, we study the application of blue and
green-noise to images sampled along hexagonal grids,
showing that at a critical coarseness, hexagonal sampling
grids are the preferred sampling technique for stochastic
dithering. In particular, this paper introduces a new model
for blue-noise that emphasizes radial symmetry even in
cases where radial symmetry requires the clustering of
minority pixels. As will be shown, the traditional blue-
noise model, by isolating minority pixels, is constrained
by the sampling geometry near gray-levelg = 1

2 where
rectangular grids force patterns into a periodic checker-
board pattern that may, in some cases, create visually dis-
turbing artifacts. By allowing a minimum degree of clus-

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 1.0 10.0

Aspect Ratio

E
ff

ic
ie

n
c
y Hexagonal

Rectangular

Fig. 2. The covering efficiency of printed dots for rectangular and
hexagonal sampling grids versus the aspect ratio.

tering, it will be argued that the new blue-noise model
makes an optimal trade-off to acquire a sufficient degree
of flexibility in where the algorithm chooses to place dots.
In order to demonstrate these concepts, this paper will
rely on error-diffusion halftoning as well as an iterative
technique commonly associated with blue-noise dither ar-
rays. In concluding this paper, we will demonstrate the
world’s first blue-noise dither array for hexagonal sam-
pling grids to illustrate the achievable image fidelity for
halftones on these grids.

II. RECTANGULAR SAMPLING GRIDS

As Ulichney [2] has shown, the optimal aperiodic,
dispersed-dot halftoning schemes are the ones that dis-
tribute the minority pixels of a binary dither pattern as
homogeneously as possible, trying to spread the minor-
ity pixels as far apart as they can in an isotropic manner.
The resulting patterns are then composed of isolated dots
separated by an average distance ofλb such that:

λb =
{

1/
√

g , for 0 < g ≤ 1/2
1/
√

1− g , for 1/2 < g ≤ 1 (1)

where units are in terms of the pixel period of the display
andg is the average gray-level of the dither pattern. Be-
ing a stochastic arrangement of dots, the actual distances
between nearest neighbors are not exactly equal toλb but
have some variation with variation being too large causing
the pattern to look noisy while being too small resulting
in patterns appearing periodic.

To reduce the two dimensions of a halftone pattern
power spectrum to one dimension, the metric of radially
averaged power spectrum (RAPS)Pρ(fρ) is used where
the energy within thin concentric annuli is averaged for
this purpose [2]. The original theory of blue noise argued
that the energy of a well formed dither pattern would be of
the form of Fig. 3 (left) where spectral energy is concen-
trated at the principal frequency,fb, defined as a function
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Fig. 3. The RAPS measure for (top) an ideal blue-noise dither pattern
and (bottom) an ideal green-noise dither pattern.

of gray level,g, as:

fb =
{ √

g , for 0 < g ≤ 1/2√
1− g , for 1/2 < g ≤ 1 . (2)

It is due to this shape that these patterns are referred to as
“blue-noise,” where “blue” refers to the high frequency
or blue component to white light and “noise” refers to the
randomness of the pattern. Looking at eqn. (2), one may
note our use of the subscriptb as opposed to Ulichney’s
use of the subscriptg as an indication of the frequency’s
dependence on the gray-level of the dither pattern. The
subscriptb was later introduced by Lauet al [4] to differ-
entiatefb from the equivalent parameter for green-noise,
which they indicated asfg. We will use the later nota-
tion but caution readers to note thatfb is unique to each
gray-level as just prescribed.

The parameterfb is referred to as the principle wave-
length of blue-noise and is the source of controversy with
respect to hexagonal sampling. The issue at hand is alias-
ing and the unwanted visual artifacts that aliasing creates.
An explanation begins with Fig. 4 (left) where a small
area near DC of the infinite spectral plane of a rectangu-
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Fig. 4. The spectral planes of (left) a rectangular sampled image shown
divided into annular rings of radial width∆ and center radiusfρ,
and (right) a hexagonally sampled image shown divided into annular
rings with center radiusfρ.

Fig. 5. The spectral rings of blue-noise dither patterns with added
diagonal correlation between minority pixels for gray-levels (left)
g = 10%, (left-center)g = 26%, (right-center),g = 42%, and
(right) g = 50%.

lar sampled image is shown. Here, the spectral plane is
in units of inverse pixel period and is divided into spec-
tral annuli of radial width∆. Taking the average power
within each annulus and then plotting the average power
versus the center radiusfρ creates Ulichney’s RAPS mea-
sure. Note that the maximum spectral radius within each
square tile is 1√

2
. Shown in Fig. 5 is a diagram of the

spectral domain for four blue-noise dither patterns with
the black segments marking the principle wavelength.

As originally proposed, Ulichney envisioned the prin-
cipal frequency as a circular wavefront eminating from
the spectral DC origin and progressing outward asg ap-
proached1

2 . At gray-levelg = 1
4 when the wavefront

first makes contact with sides of the baseband entering
the partial annuli region of Fig. 4, the wave becomes seg-
mented into the four corners while still progressing to
fb = 1/

√
2, the maximum radial frequency within the

baseband of a rectangular sampling grid. In the spatial
domain, this packing of energy into the corners of the
baseband, as depicted in Fig. 5, is achieved by adding
correlation between minority pixels along the diagonal,
creating a pattern where neighboring minority pixels are
more likely to occur along the diagonal instead of side-
by-side or above-and-below one another. If a particular
halftoning scheme is especially successful at adding this
diagonal correlation, then it is possible to create dither
patterns at all gray-levels such that no two minority pix-
els occur adjacent to one another. Such a scheme would
produce the familiarg = 1

2 checkerboard pattern.
Floyd’s and Steinberg’s [6] error-diffusion is a classic

example of a blue-noise generating halftoning algorithm
that adds such correlation. In error-diffusion, the output
pixel y[n] is determined by adjusting and thresholding the
input pixelx[n] such that

y[n] =
{

1 , if (x[n] + xe[n]) ≥ 0
0 , else

(3)

wherexe[n] is the diffused quantization error accumu-
lated during previous iterations as

xe[n] =
M∑
i=1

bi · ye[n− i] (4)

with ye[n] = y[n] − (x[n] + xe[n]). The diffusion coef-
ficients bi, which regulate the proportions to which the
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Fig. 6. The blue-noise dither patterns created by error-diffusion using
the Floyd-Steinberg error filter for gray-levels (left)g = 10%, (left-
center)g = 26%, (right-center),g = 42%, and (right)g = 50%.

10% 50%42%26%

Fig. 7. The power spectra for dither patterns of Fig. 6 for gray-levels
(left) g = 10%, (left-center)g = 26%, (right-center),g = 42%,
and (right)g = 50%. The superimposed black circles mark the
location of the principle frequency (lines have been ommitted for
g = 50%).

quantization error at pixeln transfers or diffuses into
neighboring pixels, are such that

∑M
i=1 bi = 1. Floyd

and Steinberg specifically chose their 4-filter weights be-
cause of their behavior near gray-levelg = 1

2 . Shown
in Figs. 6 and 7 are the spatial dither patterns and their
corresponding power spectra asg progresses from0 to 1

2 .
Now while Ulichney originally believed packing en-

ergy into the corners of the power spectrum to be the ideal
behavior for blue-noise, we ultimately see that adding di-
agonal correlation, especially to the degree of Floyd and
Steinberg’s error-diffusion, violates the two basic charac-
teristics of blue-noise: radial symmetry combined with
aperiodicity. Maintaining an average distance between
minority pixels of λb, nearg = 1

2 , forces the minor-
ity pixels to lock into a fixed and periodic pattern whose
only saving grace, in terms of visual pleasantness, is that
its high spatial frequency makes it less visible than sim-
ilar patterns at lesser gray-levels. As will be discussed
in Sec. III, maintaining a cut-off frequency offb, by
adding directional correlation, also creates a significant
dilemma for hexagonal grids where the maximum spatial
frequency occurs atg = 1

3 .
Looking back at Ulichney’s original definition of blue-

noise dither patterns as being radially symmetric while
also having some variation in the distance between minor-
ity pixels, we begin to wonder if there are alternative be-

Fig. 8. The spectral rings of blue-noise dither patterns for gray-levels
(left) g < 25%, (left-center)g = 25%, (right-center),g = 40%,
and (right)g = 50%.
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6% 10% 18% 26%

Fig. 9. The spatial blue-noise dither patterns, before and after down-
sampling by 2, representing gray-levels (left)g = 6%, (center)g =
26%, and (right)g = 50%.

6% 26%10% 18%

Fig. 10. The power spectra corresponding to the blue-noise dither
patterns of Fig. 9 before (top-left) and after (bottom-right) down-
sampling with the principle frequency marked in black. The im-
ages corresponding to after down-sampling were enhanced to better
illustrate the distribution of energy.

haviors for blue-noise, in this gray-level range1
4 < g ≤ 3

4
where the baseband constrains the placement of dots, such
that dither patterns can maintain their grid-defiance illu-
sion and not adopt a periodic or textured appearance. As
a first attempt at such a blue-noise model, we can try to
enforce both the principal frequencyfb, defined accord-
ing to eqn. (2), as well as radial symmetry – creating the
spectral behavior depicted in Fig. 8 where, asg exceeds
1
4 , the principal frequency ring extends beyond the sides
of the baseband. Spectral energy from neighboring rings
will then extend into the baseband and, hence, introduce
alias artifacts into the dither pattern. To see the effects of
this aliasing, we can down-sample blue-noise dither pat-
terns by a factor of two to double the radius of the spectral
ring.

The intensity or gray-level of the spatial dither patterns
should not be affected by the down-sampling operation,
and what we see in Figs. 9-10 is that at gray-levels be-
yond6.25% ink coverage, where the corresponding prin-
cipal frequencies overlap neighboring rings (after down-
sampling), the resulting dither patterns will exhibit light
(g = 10%) to moderate (g = 26%) and then severe
(g = 50%, not shown) clustering of minority pixels, caus-
ing the pattern to take on an unpleasant appearance. For
g < 6.25%, aliasing will occur due to the high frequency
spectral content (fρ > fb) characteristic of blue-noise, re-
sulting in a noisy appearance of its own, but this particu-
lar aliasing leads only to the high variation in the distance
between minority pixels that is not so high as to cause mi-
nority pixels to touch. Clustering of minority pixels only
seems to occur when the spectral rings intersect.

So under the premise that aliasing of the principal fre-
quency leads to unwanted clustering of minority pixels
in the spatial domain, we can now look at specific error-
diffusion techniques known to exhibit clustering at gray-
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Fig. 11. The spatial dither patterns created by error-diffusion using the
Jarviset alerror filter for10%, 42%, and50% ink coverage.

10% 42% 50%26%

Fig. 12. The power spectra for dither patterns of Fig. 11 for gray-levels
(left) g = 10%, (left-center)g = 26%, (right-center),g = 42%,
and (right)g = 50%. The superimposed black circles mark the
location of the principle frequency.

levels betweeng = 1
4 and 3

4 to see if the clustering that
these algorithms introduce are, in fact, the product of
aliasing. We saw a little bit of this behavior in Fig. 7
at gray-levelg = 42% using Floyd and Steinberg’s error
filter where there is a clear correlation between the dis-
tribution of energy in the power spectrum and the spec-
tral ring atfb. Looking at the spatial dither patterns and
power spectra produced by error-diffusion using Jarvis,
Judice, and Ninke’s [7] 12-weight filter in Figs. 11 and
12, we clearly see this clustering/aliasing behavior as ev-
idenced by the strong spectral components forg = 1

2
shown in perfect alignment with the spetral rings at radial
frequencyfb from neighboring replications of the base-
band frequency.

A. Perturbed Filter Weights

If we now look at the clustering found in Ulichney’s
perturbed filter weight scheme [2] in Figs. 13 and 14,
where the spatial dither patterns and corresponding spec-
tra forg transitioning from6% to 50% coverage is shown,
we see some differences with both Floyd and Steinberg’s
error filter and with Jarviset al’s. From visual inspec-
tion, one can see that, by perturbing filter weights, the re-
sulting dither patterns better maintain radial symmetry by
moving some of the spectral energy inside the principal
frequency ring through a small, controlled degree of clus-
tering. That is, by allowing a small degree of clustering,
Ulichney’s perturbed filter scheme is able to reduce the
principal frequency of the pattern, breaking up some of
the periodic textures that would otherwise form due to the
added diagonal correlation. But given that the observed
clustering is only slight, we would describe the the per-
turbed filter weight scheme as generally behaving in the
manner first prescribed by Ulichney in that it adds diago-
nal correlation and packs spectral energy into the corners
of the baseband asg approaches12 . If there is a disturb-
ing artifact to be found in the patterns of Fig. 13, it is the

6% 10% 14% 18%

22% 26% 30% 34%

38% 42% 46% 50%

Fig. 13. The binary dither patterns for Ulichney’s perturbed filter weight
scheme on a rectangular sampling grid asg transitions from6% to
50% coverage.

6% 10% 14% 18%

22% 26% 30% 34%

38% 42% 46% 50%

Fig. 14. The power spectra for Ulichney’s perturbed filter weight
scheme on a rectangular sampling grid asg transitions from6%
to 50% coverage.

discontuities in texture created by clusters within an oth-
erwise periodic texture – leading us to wonder if it is the
clustering or the periodic textures that are most to blame
for the noisy appearance.

B. Void-And-Cluster

Given the disturbing artifacts created by discontuities
in texture, we can look at alternatives to error-diffusion
where we note that while, in theory, error-diffusion should
diffuse error in a homogeneous fashion and hence mini-
mize low-frequency graininess at all gray-levels, Figs. 7-
12 show that not all filters are created equal. Further-
more, we note that it was a trail and error technique used
by Ulichney to discover a perturbed error filter scheme
that maintained radial symmetry without aliasing artifacts
nearg = 1

2 . So for a scheme that generates halftones in
a more intuitive fashion, we can use Ulichney’s iterative
Void-and-Cluster initial pattern technique (VACip) where,
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6% 10% 14% 18%

22% 26% 30% 34%

38% 42% 46% 50%

Fig. 15. The binary dither patterns for Void-and-Cluster initial patterns
on a rectangular sampling grid asg transitions from6% to 50%
coverage.

6% 10% 14% 18%

22% 26% 30% 34%

38% 42% 46% 50%

Fig. 16. The power spectra for Void-and-Cluster initial patterns on a
rectangular sampling grid asg transitions from6% to 50% cover-
age.

in this iterative algorithm, a white-noise dither pattern of
appropriate gray-level is filtered using a low-pass FIR fil-
ter to obtain a measure of minority pixel density. The
minority pixel with the highest corresponding density is
replaced with a majority pixel, and the dither pattern is
then filtered again by the same low-pass filter to obtain
an updated measure of minority pixel density. The ma-
jority pixel with the lowest corresponding density is then
replaced with a minority pixel, returning the dither pat-
tern to the proper ratio of minority to majority pixels as
defined by the gray-levelg. The process is then repeated
until, during a particular iteration, the majority pixel with
the lowest density is the same pixel as the previous minor-
ity pixel with the highest density. If this is the case, the
algorithm has converged, and the process is complete.

Because VACip iteratively swaps pixels according to
an analysis of the entire local neighborhood around a sub-
ject pixel, and not just from half of the local neigborhood
as in error-diffusion, VACip can more readily guarantee
spatial homogeniety. And using appropriate low-pass fil-

ters, we expect VACip to maintain radial symmetry while
minimizing low-frequency graininess for any gray-level.
In this regard using a Gaussian low-pass filter with vari-
anceσ2 = 0.32, Figs. 15 and 16 show the spatial dither
patterns and corresponding spectra asg transitions from
6% to 50% coverage where, from visual inspection, it is
confirmed that VACip behaves very similar to the per-
turbed filter weight scheme of Figs. 13 and 14 in that
it allows some spectral energy to exist inside the princi-
pal frequency ring for gray-levels beyondg = 1

4 . What
VACip does, beyond perturbed filter weights, is achieve
much better radial symmetry given the lack of a deter-
ministic raster path.

Now even though the amount of clustering is only
slight, the resulting patterns from VACip and from Ulich-
ney’s perturbed filter scheme offer some evidence that,
perhaps, clustering of minority pixels will have desirable
properties for halftoning if not done to too much of an
extreme. In particular, these algorithms move spectral
energy inside the radial frequencyfb creating what Lau
et al [4, 8] referred to as green-noise where the optimal
halftoning schemes distribute minority pixelclustersas
homogeneously as possible. Doing so creates a pattern
where clusters of average sizēM pixels are separated
(centroid-to-centroid) by an average distance ofλg where:

λg =
{

1/
√

(g/M̄), for 0 < g ≤ 1/2
1/

√
((1− g)/M̄), for 1/2 < g ≤ 1

. (5)

The name “green-noise” derives from the predominantly
mid-frequency content of the corresponding RAPS metric
as illustrated in Fig. 3 (right) where increased clustering
leads to a transition from the limiting case of blue-noise
(M̄ = 1) to the mid-frequency only band of coarse pat-
terns (black line). Here the primary spectral component is
centered around the green-noise principle frequency,fg,
where:

fg =
{ √

(g/M̄), for 0 < g ≤ 1/2√
((1− g)/M̄), for 1/2 < g ≤ 1

. (6)

Unlike blue-noise where the randomness in the pattern
is derived from variations in the separation between mi-
nority pixels, green-noise also exhibits variation in the
size/shape of clusters. Too much variation in either pa-
rameter leads to spectral whitening with excessively large
clusters leading to low-frequency artifacts and exces-
sively small clusters leading to high.

Now while perturbed filter weights and VACip only
introduced a small degree of clustering, the green-noise
model tells us that it is possible to eliminate diagonal cor-
relation without introducing unwanted aliasing artifacts
and, hence, maintain radial symmetry at all gray-levels.
Specifically, aliasing can be eliminated if the amount of
clustering, at gray-levels14 < g ≤ 3

4 , is sufficiently high
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6% 10% 14% 18%

22% 26% 30% 34%

38% 42% 46% 50%

Fig. 17. The binary dither patterns for Void-and-Cluster initial patterns
with σ2 optimized to maintain radial symmetry on a rectangular
sampling grid asg transitions from6% to 50% coverage.

6% 10% 14% 18%

22% 26% 30% 34%

38% 42% 46% 50%

Fig. 18. The power spectra for Void-and-Cluster initial patterns withσ2

optimized to maintain radial symmetry on a rectangular sampling
grid asg transitions from6% to 50% coverage. The black lines
indicate the principal frequencies progress according to eqn. (2) up
to 22% and then remain constant up to50%.

as to reduce the principal frequency to that for gray-level
g = 1

4 , where the principal frequency ring is the largest
complete ring that can fit inside the baseband. So in an
attempt to see the effects of adding this clustering, we can
repeat the experiment of Figs. 15 and 16 using VACip but
where the variance of the low-pass Gaussian filter is de-
fined asσ2 = 0.6. In this manner, we expect to see a
cut-off frequency that increases withg, as prescribed by
eqn. (2) for0 ≤ g ≤ 1

4 , but that levels off to a constant
for 1

4 < g ≤ 3
4 . Shown in Figs. 17 and 18 are the cor-

responding spatial and spectral dither patterns that clearly
show this behaviour with power spectra almost identical
for 1

4 < g ≤ 1
2 . Visual inspection will show that while

patterns are coarser than before, the lack of periodic tex-
ture components nearg = 1

2 eliminates the disturbing
artifacts created by discontinuities in texture found in pre-
vious figures.

In light of the results demonstrated in Figs. 13-18, we

propose a new model for blue-noise that places an in-
creased emphasis on the need for maintaining radial sym-
metry and avoiding periodic textures by modifying the
notion of the blue-noise principal frequency from being
a wavefront progressing into the corners of the baseband
to, instead, a wave progressing outward until gray-level
g = 1

4 . Beyondg = 1
4 , the wavefront stops its progres-

sion as a complete, unbroken ring. This new model char-
acterizes the ideal blue-noise dither patterns as having a
principal frequency defined as:

fb =


√

g, for 0 < g ≤ 1
4

1/2, for 1
4 < g ≤ 3

4√
1− g, for 3

4 < g ≤ 1

. (7)

Given the above property, we note that the patterns of
Fig. 17 succeed at modeling ideal blue-noise, and while
one may note that these patterns are not visually optimal,
we respond by saying that the blue-noise model was never
meant to define thevisually optimaldistribution of dots.
Instead, blue-noise was meant only to characterize the sta-
tistical properties of error-diffusion patterns that, in 1988,
made these patterns visually more appealing than those
produced by periodic techniques. To characterize true vi-
sual supremacy, one needs to take into account properties
of the human visual system such as its reduced sensitiv-
ity to diagonal correlation. Results of such studies have
since lead us to model-based halftoning techniques such
as direct binary search [9].

III. H EXAGONAL SAMPLING GRIDS

As depicted in Fig. 1, a regular hexagonal sampling lat-
tice is characterized by samples placed a horizontal dis-
tance apart equal to some sample periodDx and a vertical
distance apart of

√
3

2 Dx. By shifting every second row of
the lattice by half a pixel (Dx

2 ), a sample point is separated
from its six neighboring samples by an equal distanceDx.
In order to sample an image using hexagonal grids with
the same number of samples per unit area as a rectangular
grid, the spacingDx should be equal to( 2√

3
)

1
2 Dr where

Dr is the sample period for the rectangular grid. For dis-
play purposes, an ideal printing device would print each
pixel as a regular hexagon, but because this paper will be
printed on a traditional rectangular grid device, we will
up-sample our hexagonal grid halftones by a factor of two
using nearest-neighbor interpolation and print these dither
patterns on a rectangular grid, shifting each other pair of
rows by a single pixel. The images will then be further
scaled along the vertical axis by a factor of

√
3

2 to create a
symmetric sampling grid.

Now as described by Ulichney [2], a well formed blue-
noise dither pattern will be such that minority pixels will
be separated by an average distanceλb as defined in
eqn. (1). For reasons relating to the derivation of the
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Fig. 19. The principal frequency,fb, versus gray-level,g, for (top) rectangular and (bottom) hexagonal for both the (gray) old and (black) new
models.

Fourier transform of a regular hexagonal sampling lattice,
the principal frequency,fb, of a blue-noise pattern will be
defined according to:

fb =

{
2√
3

√
g, for 0 < g ≤ 1/2

2√
3

√
1− g, for 1/2 < g ≤ 1 . (8)

Noting from Fig. 4 (right) that the maximum radial fre-
quency that fits within the bounds of the baseband occurs
at fb = 2

3 when the gray-level reachesg = 1
3 , it is not

possible to have a dither pattern adhering to the blue-noise
RAPS of Fig. 3 (left) on a hexagonal sampling gird in the
range of13 < g ≤ 2

3 . This is, perhaps, better illustrated
in Fig. 19 where the principal frequency is shown plot-
ted versus gray-level for both rectangular and hexagonal
sampling grids.

For both grid geometries, Fig. 19 shows the relation-
ship betweenfb and g where the gray lines indicate
the original relationship proposed by Ulichney in 1988.
Looking specifically at hexagonal grids shows that, for
gray levels between13 and 2

3 , fb exceeds the maximum
radial frequency that fits inside the baseband and was,
hence, undefined by Ulichney is this so-called, “unsup-
ported region.” Based upon trial-and-error experiments
with error-diffusion, Ulichney further theorized that be-
cause stochastic dither patterns would always have sig-
nificant energy belowfb in this region, patterns would al-
ways have excessively large variations in the spacing be-
tween dots, and under no circumstances, would patterns
not look noisy and uncorrelated.

We now see that Ulichney’s theory was wrong, and that
if we apply the notion of an expanding spectral ring that
stalls its growth at the point where the ring first contacts
the limits of the baseband, our new model says that be-
yond the point of first contact, the sampling grid restricts
the placement of dots and can, therefore, introduce arti-
facts just as disturbing as any excess energy belowfb. In
response, we are definingfb according to eqn. (7) as the
optimal trade-off between pattern coarseness and sample
grid dot placement where we allow the pattern to exhibit a
minimum degree of clustering in order to maintain radial

symmetry at all gray-levels. This new definition is illus-
trated by the black line relationship betweenfb andg in
Fig. 19, which levels off at the maximum complete annuli
that fits inside the baseband.

A particularly elegant property of our new blue-noise
model is that if we setfb equal to 1√

3
and solve forg,

we see that the spectral ring first contacts the limits of the
hexagonal baseband at gray-levelg = 1

4 , exactly where
it occured for rectangular sampling grids!!! The impli-
cations of this fact are enormous. First, it implies that
our new blue-noise model of eqn. (7) applies to hexago-
nal grids without modification except for the previously
mentioned

√
3

2 factor such that:

fb =


2√
3

√
g, for 0 < g ≤ 1

4

2√
3
(1/2), for 1

4 < g ≤ 3
4

2√
3

√
1− g, for 3

4 < g ≤ 1

. (9)

Second and more importantly, it implies that, in the range
fromg = 0 to 1

4 , blue-noise dither patterns on a hexagonal
grid have a15.47% higher cut-off frequency than those
corresponding to rectangular grids with the same number
of samples per unit area. As such, blue-noise dither pat-
terns, on hexagonal grids, are less visible than those on
rectangular grids for these gray-levels and, if we use the
new blue-noise model, at all gray-levels. Finally in sit-
uations where clustering does occur, either purposely for
minimizing the effects of printer distortions or forcibly
near gray-levelg = 1

2 , hexagonal sampling grids can
form pixel pairs in three directions as opposed to two,
allowing for improved radial symmetry in the size and
distribution of minority pixel clusters. Coarse halftone
patterns should, therefore, form smoother visual textures
on hexagonal grids than rectangular.

So assuming that hexagonal is the preferred sampling
geometry, we are in the familiar position of trying to find a
means by which to generate optimal dot distributions and
to do so in a computationally efficient manner. Looking
at the first published study of error-diffusion on hexago-
nal sampling grids, Figs. 20 and 21 show the spatial dither
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6% 10% 14% 18%

22% 26% 30% 34%

38% 42% 46% 50%

Fig. 20. The binary dither patterns for error-diffusion using the Steven-
son and Arce filter on a hexagonal sampling grid asg transitions
from 6% to 50% coverage.

6% 10% 14% 18%

22% 26% 30% 34%

38% 42% 46% 50%

Fig. 21. The power spectra for error-diffusion using the Stevenson and
Arce filter on a hexagonal sampling grid asg transitions from6%
to 50% coverage.

patterns and power spectral densities corresponding to the
Stevenson and Arce [10] error filter. From visual inspec-
tion, one sees a consistent blue-noise appearance for gray-
levels belowg = 1

3 , but strong vertical artifacts, deriving
from the raster scan, seem to dominate nearg = 1

2 . Look-
ing specifically at the power spectra, one sees the spec-
tral lines running vertically that intersect the limits of the
baseband at the same points where the spectral rings make
first contact atg = 1

4 . Furthermore, these lines of energy
do not seem to become prominant components until af-
ter gray-levelg = 1

4 , adding credence to our claim that it
is these gray-levels where the sampling lattice begins to
constrain the distribution of dots.

A. Perturbed Filter Weights

Noting the relatively poor performance of the Steven-
son and Arce filter, Ulichney proposed using the same
perturbed filter weight scheme demonstrated in Figs. 13

6% 10% 14% 18%

22% 26% 30% 34%

38% 42% 46% 50%

Fig. 22. The binary dither patterns for Ulichney’s perturbed filter weight
scheme on a hexagonal sampling grid asg transitions from6% to
50% coverage.

6% 10% 14% 18%

22% 26% 30% 34%

38% 42% 46% 50%

Fig. 23. The power spectra for Ulichney’s perturbed filter weight
scheme on a hexagonal sampling grid asg transitions from6% to
50% coverage.

and 14. Shown in Fig. 22 and 23 are the binary dither pat-
terns and corresponding power spectra for this technique
on hexagonal sampling grids. Like the Stevenson and
Arce filter, the perturbed filter scheme produces visually
pleasing patterns below gray-levelg = 1

4 but is forced to
cluster pixels asg approaches12 . While it clearly does a
better job in this range, the deterministic raster leads to
strong vertical artifacts very similar to those produced by
the Stevenson and Arce filter.

B. Void-And-Cluster

Given the poor performance of error-diffusion, we can
attempt to create dither patterns using VACip where we
expect to achieve the preferred behavoir of only introduc-
ing clustering when necessary as to avoid aliasing. Like
the discrete Fourier transform, convolution of a binary
dither pattern with a linear, FIR filter can be achieved
using techniques for matrices from rectangular sampling
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6% 10% 14% 18%

22% 26% 30% 34%

38% 42% 46% 50%

Fig. 24. The binary dither patterns for Void-and-Cluster initial patterns
on a hexagonal sampling grid asg transitions from6% to 50%
coverage.

6% 10% 14% 18%

22% 26% 30% 34%

38% 42% 46% 50%

Fig. 25. The power spectra for Void-and-Cluster initial patterns on a
hexagonal sampling grid asg transitions from6% to50% coverage.

grids if the subject matrices store the skewed versions of
the hexagonal sampled data [2]. Shown in Figs. 24 and
25 are the binary dither patterns and corresponding power
spectra generated by VACip using Gaussian low-pass fil-
ters whereσ2 = 0.32 asg transitions from6% to 50%.
In the case of Figs. 15 and 16, this same filter variance
resulted in dither patterns with significant energy packed
into the corners of the baseband on a rectangular sam-
pling grid. But here, results show identical spectral dis-
tributions beyondg = 1

4 where there is no room in the
corners of the baseband as there was for rectangular grids.
From visual inspectrion, it is clear that these spectral dis-
tributions are achieved through the clustering of minority
pixels in the spatial domain that, near gray-levelg = 1

2 ,
create worm patterns.

While worm textures/patterns are traditionally thought
of as disturbing artifacts, we note that the radial sym-
metry of these particular patterns creates a twisting and
turning path from pixel to pixel. This constant spiraling

creates a smooth, almost invisible texture. We would fur-
ther note that the worm patterns found here are far less
objectionable than the strong directional patterns created
by error-diffusion in either Fig. 20 or 22. In fact, see-
ing Fig. 24 finally offers some insight into what thevi-
suallyoptimal stochastic dither pattern may look like for
gray-levelg = 1

2 on a hexagonal sampling grid – some-
thing that has yet to be determined. In seeing Fig. 24, it is
hoped that deriving optimal halftoning schemes for these
grids will be easier to do.

C. Dither Arrays

Noting the succesful conversion of the VACip algo-
rithm to hexagonal grids in this paper, we have taken
the added time to generate the hexagonal dither array
shown in Fig. 26 and demonstrated versus a similar ar-
ray on a rectangular grid in Fig. 27. Dither arrays re-
fer to a halftoning technique where a continuous-tone im-
age is converted to binary by a pixelwise comparison with
thresholds stored in a dither array matrix or screen. Input
pixels with intensity values greater than the corresponding
threshold value are set to one while pixels below are set to
zero. For large images, dither arrays are tiled end-to-end
until all input pixels have a corresponding pair within the
screen. In order to avoid discontinuities in the halftone
texture near boundaries of the screen, dither arrays are
designed to satisfy a wrap-around property. For a thor-
ough description of the construction algorithms used for
building these screens, we refer the reader to the original
works by Mitsa and Parker [11] and Ulichney [3].

In Fig. 26, we show just a128×128 cropped section of
a256×256 mask along with the magnitude of the its cor-
responding Fourier transform, showing the uniquely high
frequency components of the dither array. In Fig. 27, both
screens were generated using VAC with identical low-
pass filter variances ofσ2 = 0.32, and the gray-scale im-
ages used were the same as that used by Ulichney [2] to
demonstrate the effects of high-pass filtering an original
gray-scale image prior to dithering. To present a fair com-
parison, both images in this figure have the same number
of pixels per unit area. As we are using a regular (square)
rectangular grid and a regular hexagonal grid, the number
of rows and columns will not be the same. The rectangu-
lar grid has an aspect ratio of 1, and the hexagonal grid
has an aspect ratio of2/

√
3. To maintain our constant

pixel density constraint, the horizontal period used for the
hexagonal case is(2/

√
3)

1
2 that of the rectangular case.

From visual inspection, we would argue that the hexag-
onal grid dither array is far superior to any hexagonal grid
halftoning scheme that we are aware in terms of maintain-
ing radial symmetry while simultaneously spreading mi-
nority pixels as homogenuously as possible. Seeing both
the rectangular and hexagonal grid dither arrays side-by-
side, it should also be clear from visual inspection that
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Fig. 26. The (left) blue-noise dither array for hexagonal sampling grids
along with (right) the corresponding magnitude of its Fourier trans-
form.

the hexagonal mask clearly creates the all important grid-
defiance illusion as one cannot, without very close inspec-
tion, determine which of the images is printed on a hexag-
onal sampling grid.

IV. CONCLUSIONS

By introducing a means by which dither patterns could
be quantitatively evaluated, Ulichney’s blue-noise model
has played a fundamental role in halftoning research, and
it is, perhaps, one of the most often cited works in halfton-
ing as the term, “blue-noise,” has become synonomous
with visually pleasing. But the model is not without its
short-comings. In particular, Ulichney argued that hexag-
onal sampling grids were inferior to rectangular for dis-
playing visually pleasing stochastic dither patterns inspite
of the fact that there are numerous advantages to us-
ing hexagonal grids for other image processing purposes.
Specifically, Ulichney determined that it was not possible
to generate dither patterns at all gray-levels as a pattern of
isolated dots on hexagonal grids and that, at1

3 < g ≤ 2
3 ,

minority pixels would be forced to occur in clusters. This
clustering, Ulichney thought, would always lead to a large
variation in the spacing between dots, resulting in a noisy,
uncorrelated appearance.

Under the green-noise model, it is possible to create
visually pleasing dither patterns when the halftoning al-
gorithm intentionally clusters pixels, and in fact, a small
degree of clustering can be beneficial to producing visu-
ally pleasing halftones by maintaining radial symmetry
whenever the sampling grid would otherwise constrain
the placement of dots. As such, this paper has introduced
a new blue-noise model that incorporates clustering in the
gray-level range14 < g ≤ 3

4 regardless of the sampling
grid geometry. By doing so, an optimal halftoning scheme
will maintain its grid-defiance illusion at all gray-levels
producing a radially symmetric distribution of stochasti-
cally arranged dots. Such a dither pattern will be void of
the patches of periodic textures found in previously ideal
techniques, of the traditional blue-noise model, that pack
spectral energy into the corners of the rectangular power
spectrum through the introduction of directional correla-
tion.

Based on observations made in previous papers [5,12],
many printing devices are unable to produce blue-noise
dither patterns without introducing severe tonal distortion
and without introducing strong spatial variations in DC
regions. These devices are, therefore, incapable of attain-
ing the high spatial frequencies found only in rectangular
sampling grids, not hexagonal. So the argument, under
the previous model, that rectangular sampling grids are
preferable to hexagonal because only they support blue-
noise, is invalid for many printing devices. The overall
conclusion of this paper is, therefore, that since clustering
algorithms may, in many cases, be the only way to pro-
duce reliably printed, stochastic dither patterns, there is
no conclusive reason for using rectangular sampling grids
instead of hexagonal.

Going into the future, one would hope that the results
presented here will reinvigorate members of the research
community into looking again at the problem of halfton-
ing on hexagonal sampling grids as there are significant
challenges to overcome. In particular, we are now back
in a state faced for rectangular sampling grids in the early
1990s where the challenge was to derive the optimal dis-
tribution of dots in a computationally efficient manner.
One such result of that work was the creation of blue-
noise dither arrays. As is the case for dither arrays [3,11],
we expect that the solutions to the various problems will
be the same as those proposed for rectangular sampling
grids and that the bulk of the work will focus on tuning
various halftoning parameters. In particular, Pappas and
Neuhoff’s model-based error-diffusion [13] will require
modified printer models that take into account the new
geometry, and Allebach’s direct binary search [9] will,
of course, require a new low-pass filter to model the hu-
man visual system. The list can, of course, go on, but it
is our desire, in presenting this work, to see these many
problems solved sooner rather than later as it has been
19 years since Stevenson and Arce published their paper
on the subject and 16 years since Ulichney presented his
analysis. Yet little has transpired otherwise.
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