A

invent

Architecture and Design of an XML Application Platform

Russell Perry, Peter Rodgers, Royston Sellman
Digita Media Systems L aboratory

HP Laboratories Bristol
HPL-2004-23
February 19, 2004*

XML, XSL-T,
workflow

A host of standards are emerging for the processing of XML. Examples
of these are XSL-T, Xlinclude, XQuery and XML Encrypt. Whilst
individually useful, there is not yet a framework to assist developers in
the composition of such operations into more complex processes. In this
report, we introduce the XML Application Platform (XAP), which aims
to address this need. The XAP is shown to have wide application to any
domain where XML processing is encountered. We aso describe a
research prototype we have built caled Dexter. Dexter provides
execution of XML workflows to achieve complex XML transformations
whilst providing many low-level support features such as caching and
resource pooling. Several examples are shown to introduce readers to
typical usages and to illustrate the workflow language that was devel oped
for creating applications within Dexter.

* Internal Accession Date Only Approved for External Publication
a Copyright Hewlett-Packard Company 2004

Contents

1 L gLug0e (8 oi Lo o OSSPSR 4
2 XML Processing, Web-Services and Beyond...........cccocviiieiiecieesen e 6
21 TheEvolution of Web Sitesand WED SErVEIS........ccooeeiieieieeneeeseeseee e 6
211 ThE MOVE 0 XML ..ot 7
21.2 Adding client-side functionality to Web pages........cccccveveeve v, 8

2.2 EmMergence Of WED SEIVICEScoiiiiiiieiieeie sttt sttt e sae e s s 8
2.3 Towardsan XML Application Platform.........ccoceieiirininineneneeeese e 9

3 Design Principles for an XML Application Platform..........cccoceveveiceveece e 11
3.1 Everythingisan XML dOCUMENL........cccuiiiiiriinieseeie et 11
3.2 Processing in the XML DOMEINcccoiiiireriiieieesiesiesie s 11
I B QY | @0 < = {0 = TSP PP PR PR 11
34 EXEENSIDHITY oo e a e nree s 11
3.5 Support for XML SEBNUAITS........cccooiiiririerieee e 12
3.6 Document Lifecycle Management.........ccccoveereeeereereseesieeseeseese e sreesseeae e sseeneesns 12
37 SCAADIITY. ..ttt nes 12
TS I N[Y01 Qi =0 o0 T PSR 12
G T =S @ 0 1= 12

4 (= YA N 1= = o o T 13
O R QT SR 13
4.2 A Container fFor XIMLBEANS.......cccccueiieiiiieseee ettt sre e 13
4.3 Execution Languages and the |Executable Interface..........ccoovveeveeiveceseese e, 13
44 Document Accessors and ACHIVE URIS.......ooooiiiiieeeeeeee e 15

5 Dexter Internals and EXECULION FIOW.........ccviiiiiiiieienie e s 17
o300 R I = o g = 1= 17
52 XMLBEAN ENLLIES ...oviieiiieiieieiee ettt st 17
521 CONEEXIBEAN.......eeeieee et 18
522 RunnerBean (class implementing the | Executable Interface)..........ccocvevvvreenenne. 19
523 RESPONSE DOCUMBNT ...ttt nre e 20
5.24 Parameter DOCUMENL.........ccouiiieeiieeiee et siee et e e b e s e e s n e e neesnneenneeas 20
525 V=== o 20
5.2.6 EXCEPLIONBEAN......c.oe ettt ae e r e e nnn 21

5.3 DOCUMENT ACCESSOIS.eeeuteeaieeeieesieeeteeaseeasseesseesseesseeaseesseesseesseeaseesseesnseessessnseesseens 21
54 FUNCHONA OVEINVIBW.....cueieieieeieeesee ettt sreesse et e s e nbeeneenes 22
54.1 UNIVEISATO ...ttt naesneenne e eeneenaenneenns 23
54.2 UNIVEISEl SEIVEN ..ottt st s enes 24
5.4.3 DOCUMENLIO ...ttt st s e e b e e san e e ne e enneennee s 24
54.4 The Instruction Pump and the Instruction Decodercccvverveveveeereeieesieennens 25
545 Returning the Response DOCUMENE.........c.ccveieeieieece et 25
5.4.6 LS (= o (0] 1L o SR 26
54.7 The Internal TranSPOITccooiiireiere e 26
54.8 Support for Asynchronous EXECULION...........c.ecveieeiieiiere e seesie e 26

55 The Dexter CONSOIEcccoiiiiiiiiiiesee ettt st sb e sb e aeenes 26

6 EXBIMPIES.... e et e 28
6.1 Displaying the DeXter SOUICE TrEE.......uuirieieieerie ettt 28

P © 0~
= o

6.1.1 1S o 1 o) o VPSS 28

6.1.2 LI = (oo USSR 28
6.1.3 THE SCrEEN SNOL.......eeceeee ettt e sreesseeeeeneennens 29
6.2 Application of XSL-T and a Forked idoCccceevviieieeiieciesecse e 30
6.2.1 DS ot T o1 o o PSR 30
6.2.2 I 1= (oo USSR 30
6.2.3 THE SCrEEN SNOL......eviieceee et et 31
6.3 Processing aform to view an idoc and usSiNg Parameters........cccceeveevcveeseeccieesieesneenn 32
6.3.1 DS o] o 1 o] o FO ST USRS 32
6.3.2 The first idoc (to display the fOrm)cccoveeeeeceeee e 32
6.3.3 THE SCrEEN SNOL......eceieceee ettt 36
6.4 EXCEPtioNn HANAIING......coiiiiiiiieiee ettt s 37
6.4.1 DS o] o 1 o o FO ST 37
6.4.2 TRE IOOC. ...ttt e et bbbt ne s 38
6.4.3 THE SCrEEN SNOL......c..eiiee et s ne s 38
6.5 Displaying the Universal Server Statistics (INtroSpection 1).........cccevvverenenenenieenns 38
6.5.1 D15t 101 o o VS 39
6.5.2 TRE IOOC. ...ttt st e e et see s besreeneenenneas 39
6.5.3 THE SCrEEN SNOL.....c..eieeeeee e et neenne s 39
X SIS VA = 0 101 o= (o] 40
6.6.1 1= (o o 1P 40
6.6.2 LI = (oo USRS 40
6.6.3 THE SCrEEN SNOL......c.eiceeee ettt e sreesseeeeeneennens 41
6.7 ShoOWING USE Of XQUENY ...cueiieeeeeeieeieeee sttt te e sttt sreenne e e sneenseeneenns 42
6.7.1 DS ot 1 o1 o o R PUSTR 42
6.7.2 I 1= (oo USSR 42
6.7.3 THE SCrEEN SNOL......oeeieeee et 43
6.8 Viewing all the idoC demOS..........cccveiii i e 44
6.8.1 DS o] o 1o] o FO ST PP PRRS 44
6.8.2 TREIOOC. ..ottt ettt b b ne s 44
6.8.3 THE SCrEEN SNOL......e et 45
6.9 CoNditioNal EXEQCULTON......c..eieirieeiieie et eee st sre e sbe st sre et e e s nre e nes 46
FFULUNES. ..ttt st s e e s b e e st e e e sabe e e sabe e e snbe e e nnreeennes 47
(@0 0! 1015 Ko o PP 50
ACKNOWIBAGEIMENLS ...ttt b et sae e e e e aesneenee s 51
ApPPendiX A: DEXIEN SOUICE TIEE.......couiiieriirierieeieee ettt b et enes 52
Appendix B: The XMLBean and IDOCACCESSOr INterfaces.........ccoovveereeivseeseeseseennens 57
O 1= o = o ST PRSRS 57
11,2 IWIHBDIE oottt ettt st be s e et e tesrenteeneenenneeneas 57
11,3 IEXECULBDIE.......eeeeeeee ettt bbbttt bbb be e 58
114 TLOCKBDIE ...ttt sttt ettt enrenneeneeneas 59
115 1CACHEADIE. ...t b et st e e nae s 60
LG 1 o o USSR 60
117 IPESSIVABIDIE. ... bbb 61
11.8 IDOCUMEINTACCESSOeeeeeueeeteeaueeasseesseeaseesseeaaseessseaseesseeasesssessaseesseeaseessesssesssessnnes 61
= 1 1S 62

1 Introduction

In this paper we discuss the design of an XML application run-time or platform. Our interest in
this topic was sparked by the observation that flexible and efficient manipulation of XML
documents is of critical importance, not just to the bulk transport, but also the end point
processing of data for many types of distributed application. The work began in the summer of
2000 when we produced a report on Electronic Business XML (ebXML) [1], and developed an
implementation of IFX P], an XML-based protocol for the exchange of financia data and
instructions over the Internet. The IFX prototype allowed user to view utility bills on both a PC
and mobile phone usng XSL-T files to transform user data (stored in IFX) to either XHTML or
WML. These activities demonstrated to us that whatever the application - web-services, an
eCommerce protocol, or a d/namic web-site — there was frequently a need to create and
manipulate XML documents, and that this creation/manipulation layer could be abstracted out
into a common platform. The syntactic and semantic mechanisms used to request these XML
documents and to indicate whether they are intended for human or machine consumption is not
significant at this level; these can be considered application level issues. For example, a machine
producing XHTML or IFX need have no semantic understanding of the structure or
interpretation of the XML.

This observation led us to contemplate the design of a common platform on which a range of
XML applications could be developed. We envisaged an XML Application Platform (XAP)
which, under control of an application, would be capable of ingesting XML from external web
services, internal enterprise applications or loca storage and which would manipulate the data
and return new processed XML documents to the calling application. As such, the XAP would
represent a sound foundation upon which to implement high-level XML applications such as
ebXML, RosettaNet [13] BPEL4WS (which supersedes earlier process language efforts XLang
and WSFL) [14], or even function as a web server.

We saw that this vision of an XAP was being made more feasible by the growing number of
conventional applications and web services that deliver XML either natively or through adaptors.
However, we also observed that although many open standards for the manipulation of XML
exist or are planned (see Table 1), there is a lack of similar technology for easily orchestrating
such operations and thus producing XML applications. Without such a technology the devel oper
is left to manage an application strewn over both code and XML documents. Worse till, if the
developer uses many of the programming-like constructs available in languages like XSL-T, the
application logic rapidly becomes unmanageable. Thus a hoped-for consequence of developing
an XAP will be to provide the developer with a framework for creating applications using X SL-
T and other transforms in a manageable and productive way whilst alowing them to be
integrated with additional code. Ultimately XML transforms can be reused in the same way as
software modules or packages.

From the outset it was clear that the XAP would need to be extensible, so that existing and future
point solutions could be integrated as pluggable modules. We also made it agoal that developers
should be able to create applications using a smple-to-author workflow language, which would
be executed by the platform. A workflow would specify sequences of document-centric

operations, which when executed would result in the construction of a XML response document
to return to the caling application. Ultimately, we decided that the language should aso be
pluggable, rather than fixed on a single proprietary dialect, which would risk alienating potential
developers.

Table 1. Examples of point solutions for XML manipulation

Type Examples

Access XPath [3], XPointer, XLink [4]
Query XMLQuery [5]
Transformation XSL-T [6], XSL-FO [§]
Signature, Encryption XML-Sig [9]

Validation Xschema [10], RelaxNG [11]
Editing XUpdate [12]

Whilst meeting the requirements described above, we envisaged that the XAP could also be used
to tackle many typica lower-level performance issues. For example, enabling the paralléel
execution and caching of pre-computed XML transformations could reduce high latencies in web
service calls. In addition optimised in-memory representations of the transforms could be cached
by the XAP to increase speed of subsequent transformations.

The outcome of the work was the development of an XAP prototype called Dexter. Initially a
first XAP prototype was completed in autumn 2001, which helped refine and make concrete,
some of the early thinking, and was the predecessor to the Dexter prototype described in this
report. This report presents an overview of Dexter, describing the core principles of its design
and the high level functiona units developed as part of the implementation. The next section
describes the historical context of web applications within which we believe the XAP to be the
next step. Section 3 elaborates on the key design principles that underpin the architecture.
Sections 4 and 5 contain more detailed description of Dexter’s architecture, its main functional
units and entity classes. Section 6 contains several examples, which have been developed to test
Dexter and illustrate its usage and which serve as an introduction to the idoc workflow language.
Section 7 is concerned with the future possibilities for XAPs in the context of other leading edge
web developments. Finally, section 8 wraps the report up with a short conclusion.

2 XML Processing, Web-Services and Beyond

XML is everywhere. The quaifier “XML-enabled” is now attached to al kinds of IT product,
from relational databases to web browsers, office application suites and smart phones. This, and
the fact that XML is such a smple idea — structure a text document with (potentially) unique
text-based tags - make it tempting to imagine XML is a done deal and that there is little or no
research left to be done. We intend to show that this is not the case. To do this, we offer both
historical and future-looking perspectives on Internet technologies and on relatively newer web-
services initiatives. Our aim is to show that an XML Application Platform is a natural next step
in the aiite of Internet technologies required to support the development of web services and
eCommerce.

2.1 The Evolution of Web Sites and Web Servers

Historically, Information Technology has evolved by adding functionality to core systems and
then building applications to exploit the new functions. In turn, many of the applications are
tools that accelerate the addition of new capabilities. Eventually a point is often reached where
the additional functionality is found to be so useful that it is implemented across all platforms. It
then becomes part of a new layer, which application designers can take for granted while they
concentrate on higher-level abstractions. The key observation is that a symbiosis exists between
layers and the application tools that are built on them (and with which they are built). An
improvement in one benefits the other. In Figure 1, we have attempted to capture this
evolutionary path for the set of Web-related Internet technologies. This has been separated out
along several dimensions.

The lower part of Figure 1 shows the gradual separation of the three kinds of data that
characterise web applications: presentation specific (i.e. layout, style etc.), content specific, and
business specific. Many commentators have noted that this separation makes good engineering
sense but it has taken several years to come about. It is wise to keep this time scale in mind when
considering the development of the web; not everything happens at breakneck speed. With the
arrival of the first web browsers in late 1993 and 1994 a step change in the use of the Internet
was triggered. Principally this took the form of an explosion of web sites, which were browsed
by users running freely downloaded client software. Initially, web sites served static HTML
pages with the only technical twist being simple page caching at both server and client ends.
Very quickly though, the introduction of server side programming resulted in developers adding
dynamic content to web pages. Generaly this took the form of small snippets of program code
embedded into static page templates. The code usually held specific application logic but also
acted as a gateway to common external systems, such as databases.

Over time the support for this type of programming led to the so-called 3-tier architecture which
consisted of relatively sophisticated web servers serving dynamic web pages generated by
“middleware’ logic drawing on resources stored in databases. Initially the middleware logic was
usually connected to the web-server via the standard Common Gateway Interface or CGI [15],
and implemented in a host of different languages. C, C++, Tcl, Perl and others were popular
choices.

Application evolution
pre-1992 1992-95 1995-99 1999-2001 2001-

. . Commercial

) Information Linked .
Driver e Inf i eCommerce Mobile Systems
sharing nformation Integration

Application

Properties

Content separation

Presentation

Presentation
Presentation

. Presentation .)
Information - Information Information
Information
Rusess Information
Data Busi
Data Business
Data

time

Figure 1: The Evolution of Internet technology layers

Later on, two other important technologies for middleware's web server interface were
introduced: Java Servlets/Server Pages and Microsoft’s Active Server Pages, and these are now
the dominant players. In a refinement of this architecture the all important (and expensive)
database connections are often pooled so that they can be shared among processes as and when
required.. In addition, many companies now offer consolidated solutions to the complex problem
of building and maintaining dynamic web sites. Such solutions (for example Vignette
StoryServer) support the production of static and dynamic HTML pages and contain libraries of
reusable components that handle common tasks such as content management, layout design, and
centralized control of look and feel. Also, a number of companies sell web portal systems, which
provide a common web interface to new and legacy enterprise applications. Some of these
consolidated solutions are built on generic 3-tier systems, others are self-contained, but the end
result is ssimilar from the user and operator perspective. Web applications have developed a
distinct look and feel compared to desktop applications, reflecting the nature of the medium.

211 Themoveto XML

As noted above a long-standing difficulty in the web-publishing process has been the mixing of
logic, presentation and content data within a single dynamic document. An early response to this
issue was the introduction of Cascading Style Sheets (CSS) in 1996, which made possible the

7

independent control of layout and style for documents in Web browsers. However, CSS is a
point solution and does not help in the common scenario where content data is being
dynamically generated from a database or another program. Nor does CSS help with the issue of
supplying markup to the multiplicity of devices (not only PCs but also mobile phones, PDAS,
kiosks, consoles, Set-top-boxes etc) connected to the networks. Finaly, CSS does not enable
clean engineering of the return channel —i.e. the method (usually an HTML form) by which data
is passed back from user to application. An increasingly popular solution to these problemsis the
storage of content datain one set of XML documents and presertation data in another. These can
then be worked on independently and combined to produce target markup when needed. XML
Stylesheet Language (XSL) is one globa standard for this representation, and XSL
Transformations (XSL-T) together with XSL Formatting Objects (XSL-FO) have become the
standard technologies for doing the combination work.

2.1.2 Adding client-side functionality to web pages

One way of making pages dynamic involves embedding server side objects into aweb page. The
server detects these embedded objects at request time, executes them and inserts the resultant
fragment in place of the object. An alternative model is to embed an object in the returned web
page that is then executed by a browser. This model, typified by JavaScript, Java applets, and
browser plugins such as Macromedia s Flash, allows dynamic behaviour to be offloaded to the
users browser.

Recently, a new attempt to support client side behaviour has been started, which builds on the
principles of XML. The XForms [18] standard attempts to support the creation of dynamic
forms using pure XML. XForms adopts a model- view-controller design pattern where the data
model, rules and binding to GUI components are all declared in XML. The aim is to enable a
client to process an XForm document and construct an appropriate GUI to input and validate
data. Recently, a project with similar ambitions been initiated by Microsoft called XDocs [16].

We believe this type of approach is significant because it represents logic, content data and
visua information in XML. This alows different parts of an application to exist on and be
processed by different machines, and alows us to imagine applications that operate
(conceptually at least) entirely in the XML domain.

2.2 Emergence of Web Services

The most recent step in IT deployment is the Web Service paradigm, which relies on XML for
the transport of data and invocation of functionality. XML has been widely adopted beyond its
early use as a device independent language. Viewed as a new incarnation of distributed
computing the web service approach is less principled than previous efforts, but is a pragmatic
response to the risks and benefits of Internet based communication. Whereas previous examples
of distributed computing have tried to provide interoperability through globaly standard
interfaces and exchange protocols, web services (behind the hype) have a goa of achieving
interoperability through the discovery, negotiation and establishment of data exchange formats
and protocols on the fly. The idea is that providers can publish content or services in an XML

dialect (consisting of vocabularies and protocols) that service-consumers can discover, read, and
convert to a form that is suitable for further processing in their systems. Much consideration has
been given to the publishing and discovery of schemas, which attach type information and aform
of meaning to datain XML documents. However even when all the XML dialects involved are
standard, and are understood by all parties, core services will rely upon XML transformation. For
example, content will be built by fragment integration from disparate data-sources, structural
information will need to take account of the status of the parties in a transaction (whether they
are machines or human, how they have been authorised, how much state they can hold and so
on) and presentation data will need to be generated for a range of different fixed and mobile
client devices. There will have to be facilities for encrypting any or all of this data, and for
distributing the authorisations and keys.

23 Towardsan XML Application Platform

We believe the widespread adoption of XML will drive the requirement for networked clients to
support at least some basic level of XML processing. We believe that the adoption of XML in
web services and other domains has not yet been matched by the development of technologies to
support XML domain processing. In keeping with our comments in section 2.1, we envisage that
XML processing capability will, over time, become an integral part of the Internet/Intranet
infrastructure.

As listed in table 1, there are many types of operations that can be performed on an XML
document. Composing severa of these operations to complete a task is an obvious future need,
which is not currently well supported. We envisage that there is significant value in developing
a common runtime to support this composition process, which we have called an XML
Application Platform (XAP).

Because adopting XML across the board means that content, logic and presentation components
are all authored in a common format, this brings within reach a higher level of abstraction that
can be exploited to construct such a common runtime. Furthermore, it ensures a large range of
application domains for an XAP to be deployed.

A highlevel layered view illustrating the positioning of an XAP within the existing
infrastructure is shown in Figure 2. In this view, the XAP supports a range of transport protocols
and XML macro operations such as XML Query. Above these layers, an XML workflow
language allows a developer to define arbitrarily complex compositions of operations, which the
XAP can execute. Applications thus interact with the XAP by requesting the XAP to execute a
workflow and waiting for the response document. An obvious example of this could be a web
server requesting execution of aworkflow that generates a web page.

In the model shown in Figure 2, the XML workflow layer is not a conventional workflow engine,
but is a lightweight engine focussed on sequencing and composition of XML operations such as
XQuery and XSL-T. Just as general workflow engines are “programmed” with workflow
documents, a XML workflow language is similarly required for execution by the XAP.
However, because al operands are formatted in XML, it is appropriate to define a new workflow
language, appropriate for XML domain processing. This is very digtinctive from typical

9

programming paradigms such as JSP/ASP, which embed snippets of code inside markup. The
intent isto

Simplify development of XML rich applications, whilst avoiding embedded code inside
mark-up.

Enable paralel execution of XML operations where possible to tackle latency e.g.
external web service calls when aggregated can introduce significant latency.

Provide a framework where XSL-T, XQuery and other macro operations can be reused
between applications i.e. encourage modularity of XML rich applications.

Applications e.g. Web Server
requests returns
wor kflow response
execution document
XML workflows e.g. idoc

Scope of

the XML :
Application -< XML & XML Operations ; e.g XQuery, XSL-T
Platform

Transports e.g. HTTP

o

Figure 2: Conceptual model for the XML Application Platform

Furthermore by authoring the workflow language in XML it is possible to

Simplify workflow development by building GUI tools to edit the workflow document
Execute a workflow to dynamicaly generate a new workflow, which is then itself
executed.

Manage all workflows, content and presentation data in a similar manner i.e. all entities
in the XAP are homogeneous.

With these benefits in mind we now move on to a discussion of some principles for the design of

an XAP which we have arrived at through both practical experience and more theoretical
considerations.

10

3 Design Principlesfor an XML Application Platform

This section introduces a set of design principles for the XML application platform. These
principles were derived both from analysis of the evolving technological substrate of XML and
from our experiences in building two prototype systems. The first prototype system was
demonstrated in April 2000), and at that time supported the construction of web pages from a set
of workflow documents defining page composition. The second prototype was constructed
during 2001 and included a pair of tools for authoring workflows and managing document links
in an XML-based web site application.

3.1 Everythingisan XML document

Under an XAP, al information, meaning all instructions, data and node state, is held in XML
documents. Facing outwards from the XAP, seriadized XML documents are used to carry
information across network connections and to persist information in long-term storage. The
XAP is thus responsible for managing the lifecycle of XML documents.

3.2 Processingin the XML Domain

A key influence has been the recognition that whilst the use of XML for data interoperability has
grown rapidly, the mechanisms for processing that data frequently demand that the developer
drop out of the XML domain to use APIs such as JAXP, MSXML, JDOM and DOM4J. The
manipulation of XML in the programmatic domain is independent of the web-infrastructure,
leading to the unhealthy mixing of transport, message, presentational, and business logic code.
Minimizing the requirement to move out of the XML domain makes it easier to provide a
declarative framework that can adapt to schema changes and simplifies the work of developers
who have to extend code in response to changes in schemas.

3.3 XML Operators

We should explain here what an operator is in the XAP context. In current XML terminology,
document transformation has become synonymous with XSL-T [6]. From the XAP point of
view XSL-T represents a useful set of operators for expressing certain kinds of XML transforms.
In an XAP an operator controls the conversion of one XML document data structure into
another. This definition embraces XSL-T, but allows for other transform sets such as XUpdate,
XEncrypt or XACML [21], and null transforms such as schema validation, or even the custom
conversion of one XML dialect into another.

34 Extensbility
However, not all processes map comfortably into the declarative style and an XAP should not

seek to implement all middleware business logic in the XML domain. An XAP should support
extensibility by allowing developers to create new operator plug-ins, which encapsulate lower

11

level logic. These operators can be called upon by the XAP workflow engine to perform macro
level operations.

35 Support for XML Standards

To ensure the XAP has a sound conceptual basis we have drawn on a range of important XML
standardisation efforts. Primarily we have looked to the work of the W3C, which has formulated
(or is reformulating) severa canonical operation types (such as XUpdate and XEncrypt
mentioned above and, even more crucially, XPath) in terms of basic operations on a strictly
defined XML document called the XML Infoset [22].

3.6 Document Lifecycle Management

It should be possible to exert fine-grained control over the lifecycle of the XML documents
managed by the XAP. Examples of policies to control are caching, persistence and access
control.

3.7 Scalability

The wide range of possible applications for an XAP requires that it is scalable both in
performance and functionality. Functionality is supported by the extensibility principle, but also
by alowing the workflow language itself to be modified. To enable high performance, paralel
workflow execution to reduce latencies and efficient caching of data and previously computed
operations should be possible.

3.8 Network Transports

It should be possible for clients and applications to communicate using the best transport
protocol for the job. Sometimes it is useful to receive a response on different transport than was
used for requesting execution of a workflow. The XAP supplies an abstraction layer for
transports to achieve these goals.

3.9 Ease Of Use

This is the last, but an important overarching principle. 1f the workflow language is not easy to
use then it will represent a barrier to adoption. By authoring workflows in terms of XML
domain operations and keeping the instruction set minimalist the development and debugging
process is simplified. GUI development tools are also more easily supported, but this is not to
say that such tools are required to hide complexity.

12

4 Key Abstractions

In this section we describe the key conceptua abstractions we have developed for our version of
an XAP architecture, which we call Dexter. The implementation and interfaces that realise these
abstractions are presented in section 5.

41 XMLBeans

Although XML document parsers and the W3C Document Object Model are widely established,
they are more concerned with bringing XML documents into the programmatic domain than
managing them as resources in their own right. In Dexter, recalling principle 3.1, XML
documents are the central resource and so the ability to apply resource locking (i.e. read/write
locking), caching and so forth requires additiona interfaces. To support this functionadlity, an
XMLBean class was developed which encapsulates an XML document and implements the
interfaces required to manage the document.

Also, many applications require that different documents can be combined in some sense.
However, this requires that we finesse the problematic merging of XML trees. XMLBeans,
therefore, provide this functionality and allow documents using different schemas to be logically
grouped and managed together without having to merge their internal Infosets [22]. XMLBeans
are a fundamental concept within Dexter, and in section 5.2 we will describe them (and some
important sub-classes) in much more detail.

4.2 A Container for XMLBeans

As is the case for Enterprise Java Beans, a container is defined to support and manage the
lifecycle of the XMLBeans. The container is responsible for instantiating, caching and persisting
XMLBeans as well as performing workflow execution. Rather then managing all XMLBeans
alike, the lifecycle of an XMLBean is managed according to a defined set of policies that can be
applied to a groyp or individual XMLBeans. Thisis a much finer level of granularity than can
be applied to Enterprise Java Beans.

4.3 Execution Languages and the | Executable I nterface

A workflow language refers to the language for specifying the sequence of operations to ke
performed on or by specified XML resources. All XML resources are identified by URIs. Early
on, it was decided that the choice of workflow language (and associated interpreter) should be
pluggable. To support this, the |Executable interface was defined. The IExecutable interface is
used by the Container to control the execution of the workflow, and any interpreter that
implements |Executable can be plugged into Dexter. To enable a developer to get started
quickly, a default workflow language referred to as the “idoc language” has been defined. The
idoc language is only summarised in this document, but several illustrative examples are given in
section 6, which should be more immediately helpful than adry schema document.

13

To make our discussion of idocs more concrete we introduce a simple example here. The
annotated idoc is shown in Figure 3 and the XHTML response document produced by Dexter is
shown later in Figure 4. The idoc simply requests that an XSL-T transformation is applied to a
static XML file and the result returned to the requestor.

) Lo Metieans. 3.1 kemp', develop' Dester 10 mmi'gdoc' test_usiLaml - Microsoft Internet Evplorer proveded by Hewfett-Packar

D= [t Wew Fgvontes ook el

ot Beck v b ﬂ Iﬂ iﬁ ﬁ_ﬁqm:h EJFW‘JSE- .@H!wv _T_.I)' ='*. ﬂ

aigdress .lﬂ i |Hetfeens 3,3, 1| g velop| Desber] lpmfyidociest_cell xmd Ll e

sl veran e Start of instruction

12 =".‘;Hll|‘ =files/content fpackageTeee? xmb/0persnd s de— URI of XML document
voe="wml"»file: frish fpackageTrea sl operalo- to operate on

S L'-'-, URI of document containing
operation specific detail

Locatl on (aso URI) to write result.
“responseis a reserved type”

Instructions are to be
performed as a sequence

Figure 3: A simpleidoc workflow illustrating an XSL-T transformation

The top-leve root element is labelled as idoc, but this has no special significance. The child
element seq instructs the workflow engine to execute each instruction sequentially, athough this
does not mean that an instruction must be completed before another is started. This idoc contains
a single instruction defined under the instr element. The type element specifies what type of
operator to apply, in this case an XSL-T transform. The operand element specifies the XML
source document that is to be transformed, and the operator element specifies the document that
defines how the operand is to be transformed. Both the operand and operator also contain the
attribute type set to ‘xml’, which somewhat confusingly indicates that the documents are stored
locally as files. Finaly the target element defines the location to write the result of the XSL-T
transformation. In this case the type attribute is set to response, which is a reserved keyword.
The response is the rame given to the document that the idoc constructs by its execution and
which is sent back to the requestor upon completion.

14

8 htkpe, BecalhestiBues, e idac, best_msi Ly - Micresoft Internet Enplover previded by Hewlett Packard

| Bl Bt Mew Faolles Tock Hep

e Bk = ﬂlﬂiﬁ Dlianch SFarwben fHsory _‘\’_!>]'=1'|_-d' :_J

Agdress 8] hitpfocs host: poan)fis fdocltest el ol x| #e
Iatroctonl oot
L
Oz
=l
1 Conaline Thoed
1T Gevngy
e
X
1arasl e
s Lok M aptior
&
m
MutpeE
et
=Ep
Comrimuat
« ke
Cootamell]
Faillogiiled
=
W ek kTR
X HpaFeuny
g -7
FauTPracarchglhih
Tmsprenlra
Contg g
cyria Garbag Crllarior
SyeLogor
Spasnhlraca
Ermctionls e

Figure 4. Part view of the java source tree generated by executing the idoc shown inFigure 3

4.4 Document Accessors and Active URIs

To support the “Everything is a Document” principle, it is necessary to abstract all resources as
XML. Inmany cases, such as aweb service cal, or an XML datafile this is natural, whereas for
arelational database conversion from a data set to an XML schemawill be required.

Document Accessors are Dexter’ s resource abstraction method. However, they do more than just
parse an XML source or convert a non-XML resource into XML. Accessors are also responsible
for persisting an XML document to its long term storage medium should it be declared to require
this behaviour. Many Document Accessors also provide implementations of workflow operators

such as XQuery and XSL-T.

The Document Accessors developed to date can be classified into two main types, Transport
Accessors and Active Accessors. Each type of accessor returns an XML document, which the
XAP uses to instantiate an XML Bean.

Transport accessors are required to provide support for 10 operations such as file or http
requests. Active accessors are somewhat more complex and are best explained with reference to
the example idoc in Figure 3. Essentially an active accessor performs an operation on an XML
source document. So in the example above an XMLBean encapsulating an XSL-T document

15

implements an additional interface, IDocAccessor, to support requests for transformation (see
Appendix B for details). Additionaly, it is necessary to be able to uniquely name the resulting
document. To provide for this, an Active URI scheme was created which comprises the URIs of
the operand and operator documents and the operator type. For this example the active URI (key
wordsin bold) is:

activexdt@file:/xdlt/packageTree.xsl+sr c@file:/content/packageTree2.xml

Thus a document with the active URI shown above represents the result of applying the XSL-T
transformation defined in packageTreexd to the source document packageTree2.xml.
Conversaly a request for a document with the active URI shown above is tantamount to
requesting the XSL-T transformation of packageTree2.xml using packageTreexsl. In many
cases accessors are also XMLBeans and thus inherit all the useful behaviours described in
section 5.2 below. Generally, however, we refer to XML Beans that expose functionality through
the IDocA ccessor interface as accessors.

16

5 Dexter Internals and Execution Flow

This section contains a description of Dexter's top-level entities. Although there is effectively
only one entity class (excluding the container), namely XMLBean, the set of Document
Accessors represents such an important and significant subclass that we discuss them separately.

51 The Container

As its name implies, the Container is used to manage the lifecycle of all the other system
components as well as XMLBeans. These components are introduced in section 5.4. When the
container is started, all the components are started and the container is then able to service
requests through the transport layer. The container also performs the function of routing internal
messages between system components.

5.2 XML Bean Entities

There are several technologies in existence which aim to make life easier for programmers
writing code which must process XML data. Examples in the Java world include JDOM
[http://www.jdom.org/], the Java API for XML Binding (JAXB) [http://java.sun.com/xml/[axb/],
and, recently, BEA’s XML Beans [http://www.bea.com/events/webinars/xmlbeans/index.shtml].
These technologies facilitate a useful binding between Java objects and XML data, and are
particularly useful for loading, validating and writing XML. They also assist in simple node-by-
node navigation through the associated DOM.

Dexter’'s XMLBean system goes much further. It is a fully fledged architecture which not only
facilitates the binding between XML and implementation language but also enables powerful
XPath-like navigation to nodes or sets of nodes inside the document. The XMLBean system also
provides a supporting environment to deal with life-cycle and resource management issues
typical of complex objects in distributed systems that may come under heavy loads. Appendix B
shows the Java documentation for the most important parts of the XMLBean system.

All Dexter entity classes use the IXMLBean interface XMLBean implements this interface and
is the base class of most entity classes in Dexter. There is one other class that directly
implements IXMLBean. This is caled JellyBean, and it was created to avoid representing all
data internally as documents. The IXMLBean interface is itself made up of five sub-interfaces
to support management of the entity beans:

ILockable
o0 Provides an interface for acquiring and releasing alock on an XMLBean. Thisinterface
returns classes implementing the |Readable and IWritable interfaces, which alow an
XMLBean document to be modified.
| Pod
0 Allows abean to logically group other beans (documents). An XMLBean can thus refer
to other beans. Each reference to an XMLBean is given a unique name.

17

| Cacheable
0 Supports managing a bean within a cache.
| Passivatable
o For beansthat can be passivated and activated from the passivation store.

| SafeXM L Bean
o A mechanism for ensuring a thread safe access to a bean by a document accessor.

Details of the interfaces can be found in Appendix B.

Within Dexter there are several document types that are used to exchange information between
system components. To handle some of these document types, sub-classes of XMLBean have
been created which provide specialised interfaces to allow more efficient interaction with the
underlying XML Document. Table 2 shows the mapping between each document type and the
XMLBean subclass that encapsulates it. Not all documents have specialised XMLBean sub-
classes.

Table 2. XML Document to Dexter XMLBean Entity mapping

Document Type Associated XM L Bean Subclass Purpose

M etaDocument MetaBean Groups together the policy documents
which specify how the related XML
document isto be managed

Idoc RunnerBean This is the interpreter for the idoc
workflow document

Execution Context Document ~ ContextBean Groups together several XMLbeans
relating to the execution of aworkflow

Response Document XMLBean A standard XMLBean, which contains

the response document to send to the
reguesting client.

Exception Document ExceptionBean Created to hold information about an
Exception
Parameter Document XMLBean An XMLBean holding parameters

associated with an idoc workflow

Expanded summaries describing each document type and the associated XML Bean sub-class are
given in the following sectiors. To orientate the reader, the relationships between the various
documents are shown in Figure 5. The ContextBean is the principal object that is passed
between system components during a workflow execution and is generdly the top level
document in the logical tree of related documents. The relationships between the principle
XMLBeans shown in table 2 is provided by the IPod interface. So for example in Figure 5, the
ContextBean maintains direct references to four other beans namely, the ContextM etaBean, the
RunnerBean, the Response Bean and the Param Bean.

5.2.1 ContextBean
The ContextBean is short for Execution Context Bean. A unique ContextBean is created for
every workflow execution request. Principally, the ContextBean provides a grouping (using the

IPod interface) of all the documents related to the execution of anidoc. It contains references to
the idoc (RunnerBean), the Response Document, the parameter document and an Exception

18

document (ExceptionBean) should an exception be raised during execution. It also provides the
means by which the response document is returned to the correct requesting client.

The name of the workflow interpreter
in the Dexter prototype. This can be
replaced with another language if preferred.

i meta
;
Context o meta
Meta -
Bean e
I 4
meta
executable |
Context Runner meta S/Lllentr;er
Bean [esponse | Bean .
Bean
param Response] meta R RSl
RPN~ Meta
ot Ecay Bean
-
. - — 4 Every XMLBean has
o el i
; associated metadata.
£ Param meta FELEL _J--"’
! Bean P Meta <+
Contains the result Bean
of the workflow _rV L7

execution

Y

Parameters to pass
to the workflow

Figure 5: Relationships between the document types used to perform execution of an idoc.

5.2.2 RunnerBean (class implementing the | Executable | nterface)

This is the class that encapsulates an idoc, instantiates the idoc language interpreter, and manages
the execution state for al clients that may be concurrently executing the same idoc. It is,
therefore, a relatively complex XMLBean subclass. The RunnerBean implements the
|Executable interface, which describes how the Container determines which instruction to
perform and what operands are required at each step of the program. The Container executes
ingtructions blindly, as it is not aware of the client or idoc for which it is performing an
instruction. Effectively the container sees a sequence of XML domain instructions to be
performed. At each iteration of the IP-ID cycle, the RunnerBean interprets the idoc and
determines the next instruction to perform. Thus the actual implementation of the |Executable
interface encapsulates the evaluation of conditional flow control or other familiar constructions
that might be used in a workflow language. Each method of the | Executable interface contains a
ContextBean parameter in order that the RunnerBean can associate a request with a particular
execution context. The IExecutable interface is shown in more detail in Appendix B.

19

In section 3.4, a stated principle was to allow developers to extend the XAP to provide additional
functionality or to provide alternative implementations of workflow @ntrol. To achieve the
latter, the developer must provide an interpreter for their new workflow language, which
implements the |Executable interface. So, for example, a workflow could be modelled as a state
transition machine. Going further, a specialised class could be created that does not require the
use of a workflow document. Also, because all executable classes implement the |Executable
interface, Dexter can support the execution of multiple different workflow languages at the same
time. So particular functionality can be provided using an authoring language most naturally
suited to the task in hand.

5.2.3 Response Document

Inside Dexter, XML domain operations are defined to accept an input XML document or
fragment and output a document or fragment. Viewed from outside, Dexter operates by
accepting a request for the execution of an idoc and returning a document called the response
document. For example, if Dexter, in executing an idoc, is acting as a web server, then the
response document would be a web page.

Thus response document is the general name given to the document that will ultimately be
returned to the client. Internally the response document is held as an XML Bean referenced from
within the ContextBean. The response bean is often referenced as the copy target for an XML
operation as would be required, for instance, when building a web page from a set of fragments.

5.2.4 Parameter Document

It is possible for parameters to be passed into an idoc by use of the parameter document. The
ParamBean, which is simply an XMLBean, encapsulates the parameter document. There is a
reserved keyword “param” used to reference a parameter document within an idoc workflow.
The parameter document only has local scope within a specific execution context. Exanples of
its use are provided in section 6. All parameter beans have the root element name param.

525 MetaBean

A MetaBean wraps an XML Infoset that describes the details of the XMLBean with which it is
associated. The various aspects of how an XMLBean should be managed are grouped together
in its related MetaBean. This allows XMLBeans to be given behaviours analogous to, but richer
than those of Enterprise Java Beans in J2EE. Some basic behaviours such as persistence,
statefulness, and session affinity policies are available as defaults in the system — for example the
RunnerBean always has a persistent behaviour described in its MetaDocument — but other
behaviours are easily added. It is a requirement in Dexter that all XMLBeans should contain a
reference to aMetaBean. A consequence of thisisthat all MetaBeans are assigned to a standard
MetaBean called the MetaMetaBean. To prevent infinite regress, the MetaMetaBean is its own
MetaBean.

20

The same MetaBean can be applied to al XMLBeans of a certain type, or can be assigned
individually. This assignment is performed by a rules engine, which is configured by a meta-
control document. In our current implementation, the MetaBean can optionaly contain
references to additional documents controlling different facets of the document lifecycle, e.g. a
cache policy document and an access control policy document or it can contain information
internally. Currently only a cache policy, which provides details of how an XMLBean should be
cached, has been implemented.

5.2.6 ExceptionBean

Whenever a system component encounters an exception during an operation, an ExceptionBean
is created and added to the ContextBean. The ExceptionBean contains information concerning
the error, and can be used by other Dexter components to handle the error condition gracefully.
Generally the ContextBean, containing the ExceptionBean is placed on the ExceptionUnit unit
(see section 5.4) for error handling. For example, an ExceptionBean document can be passed
directly back to the client or could be formatted using an XSL-T transformation.

5.3 Document Accessors

As stated in section 4.4, there are two main classes of document accessor, transport related and
active. An active accessor encapsulates functionality and is the class responsible for
implementing the different types of XML operator type. In many cases, the operator is defined
by an XML document (e.g. XSL-T), but this is not a requirement. As such, active accessors are
the mechanism by which developers can extend Dexter’s functionality. Tables 3 and 4 below
describe the accessors written to date, grouped according to whether they are transport or active.

Table 3. Listing of the Transport Accessors

Protocol Accessor Name Notes

HTTP HTTPAccessor The HTTP Accessor accesses documents stored on a remote
web server or simple Web services.

Fork / exec | Internal Accessor Requests execution of a nested workflow i.e. one workflow

(Dexter) requesting execution of another. The resulting response
document is returned by the accessor.

File FileAccessor The File Accessor is useful for Beans which represent data on

the filesystem local to Dexter. A typical usage is configuration
beans. The root of File URIs is not the root of the local
filesystem, but an offset configured per Dexter instance. It is
defined in the file dexter.properties in the jre/lib directory of
the VM running Dexter. This contains one line
basepath=<local path>

Null NullDocumentA ccessor The Null Accessor is useful for Beans which have no initial
state and are never persisted. Beans which fall into this
category are Document Accessors and transient stateful beans.

Literal Literal Accessor XML documents can be specified nside idocs (i.e. inline) by
specifying aliteral type. The LiteralAccessor is used to access
these XML Beans.

LDAP L DA PA ccessor Uses the LDAP to perform a query.

I ntrospection SystemComponentAccessor | Allowsany of the functional unitsto be serialised to XML .

21

Table 4. Listing of the Active Accessors

Standard / Project Accessor Name Notes
RelaxNG RelaxNGA ccessor This Document Accessor performs RelaxNG Schema

Validation. It uses the Jing RelaxNG package. It
returns a Boolean bean indicating success or failure.

Part of Dexter PackageTreeA ccessor Generates an XML representation of the Dexter source
tree.
Apache XM L-security XsignAccessor Performs XML Signing. It uses the Apache XML-

security package for crypto. Documents are signed with
the Dexter instance private key held in the [Dexter
root]/security/.keystore Java keystore.

Apache XML-security XverifyAccesor This Document Accessor performs XML Signature
verification. It uses the Apache XML-security package
for crypto.

XQuery XqueryA ccessor Performs an XQuery on the input XML document. Uses
XCool [29].

XSLT XSLTAccessor Accessor to wrap XSLT and apply transform to XML

input document. Assumes assumed will be used with
the same operator value each time around. So the
transform is cached. Uses Xalan[30].

XChange (part of Dexter) | XChangeAccessor This Document Accessor performs XChange operations
on an XML document (i.e. document edits)
XPath XPathEvaluator Evaluates an XPath expression on a document. This

returns a BooleanBean which is a simple XMLBean
containing either true or false. Thisis primarily used for
control loops.

54 Functional Overview

The Dexter architecture is based around a container which manages all other entities. For
prototype and first release Dexter has been implemented in Java but Dexter is principaly an
instance of an architecture for a platform to process XML applications and could be as easily
implemented in C# on .Net as Javaon a VM.

An overview of the main functiona components is shown in Figure 6. To describe the
components we follow the steps taken to execute an idoc (or any other workflow). The principal
steps are shown in Figure 6 using blue numbered squares. Each of the main components - the
UniversallO, Universal Server, Instruction Pump, Instruction Decoder and DocumentlO are all
based on a common super class which provides a message queue and a user defined number of
threads to process incoming messages. Each of the main components then implements logic
specific to its role. The superclasses for these components are not described in this report since
they are developed from relatively standard design patterns. Messages from one component to
another are sent via the container, which handles the routing.

22

— Universal Server g
m|

Begin Response Doc Request
Executlon or Exe Fa||ure Eor Exec
< Transport
A Instruction Pump & eg HTTP
i Request C Reﬁnse
Exception E] Do Next| =7 fooc [d | =
] . Instruction Instruction S
Unit o)
A | £
Instruction Decoder 5 — |l Transport
ocC
reatest or Fail O il
equest or .
B Copy Document Bean or Fail m
Key: A/
==PSync Dataflow DoclO i Cache i}
—>Sync Exception
\{ Async Dataflow pocor Fail [< Internal
VASync Exception]] Transport
Universal Client
o I ot
Doc Doc Doc fork

Accessor 1 |AccessorZ Accessor 1

Figure 6. Major functional units of Dexter and execution flow for aworkflow

541 UniversallO

This execution process begins with Dexter receiving a request for execution (RFE) for an idoc
(step 1). The RFE can specify either a URI referencing an idoc contained in the Dexter source
directory, or it may actually contain an idoc for execution (.e. pass by value). There is no
defined scheme for mapping an RFE on to a protocol or a transport layer, since it was felt that
this process should be left open to the developer. To provide flexibility, the UIO supports a
pluggable transport manager within which common transports such as SOAP, HTTP Servlet,
Java RMI, FTP and SMTP can be augmented with additional domain specific transports like
MQSeries and, Java Messaging Service. The developer may therefore choose the manner in
which client applications communicate with the Dexter XAP. Furthermore while requests and
responses generally will be handled via a single transport, it is possible for the UIO to support
asymmetric routing of responses. For example, a processing request might arrive on an HTTP
Servlet channel and the response could (after a satisfactory HTTP closing response) be issued as
aMIME attached email over SMTP. In the current implementation, only the HTTP and Internal
Transports have been devel oped.

Whilst the UniversallO (UIO) is a shown as a part of the Dexter container, ultimately, we
envisage that the container will support a single interface for receiving execution requests and
the transport specific plug-ins will be deployed as part of other infrastructure components that
wishto delegate XML processing to Dexter.

23

The UIO passes the idoc, any associated parameters and transport context information to the
Universal Server, which, as its name suggests, coordinates the generation of responses to the
incoming requests (step 2). In our current implementation, the parameters are encoded in a
simple XML document consisting of name value pairs. The mapping is very smple and,
therefore, also fairly generic. The root element is by convention named param. Each HTTP
parameter is mapped to a child element of the same name, and each child element so created
contains the parameter’ s value.

5.4.2 Universal Server

As described in section 4.1, all documents within the system are encapsulated by XML Beans.
The DocumentlO component (DoclO) is responsible for instantiating these XMLBeans and thus
the US must communicate with the DoclO to obtain the set of XMLBeans required to perform
the execution of the idoc. So in step 3, the US requests a new Execution Context Bean, the
RunnerBean (in the case of the idoc language), a Response Bean (just an XMLBean) and an
optional parameter bean, a'so an XMLBean, to hold the parameters sent in the RFE.

These document requests result in the DoclO returning a ContextBean, a RunnerBean and a
ResponseBean (Parameter Bean) to the US (step 4). Note that the execution context bean could
be indexed by an application specific session identifier, obtained indirectly or established in a
prior interaction with the processor. The session identifier can then be used to maintain
execution state across multiple sequences of request-responses in along running interaction.

Upon receipt of al three (or four) XMLBeans, the US logicaly groups them by adding the
RunnerBean and ResponseBeans (and Parameter Bean) as child beans of the ContextBean (as in
Figure 5) using the IPod interface. Note that the DoclO automatically adds MetaBeans to each
XMLBean.

5.4.3 DocumentlO

The DoclO module hides the details of accessing and parsing documents from the requesting
component. It provides access to resources that are remotely hosted on external file systems,
databases, web services, or on other Dexter systems. It achieves this by delegating request to an
appropriate Document Accessor (implementing the lower level transport protocols). The DoclO
contains multiple threads (a configurable number) to enable multiple requests to be made in
paralel. The DoclO contains a cache, which holds previously accessed documents (encapsul ated
as XMLBeans). This enhances performance by avoiding costly external requests repeatedly if
the results are aready available. The policies for managing the documents inside the cache are
determined by the attached MetaBeans. A controller thread, inside the cache, performs garbage
collection of XMLBeans that are stale and no longer referenced by any other component in the
system. The functioning of the cache is fairly complex and is not described in this document for
purposes of readability.

24

For reasons of efficiency, Dexter makes frequent use of references to XMLBeans. However,
without careful design, the Cache could remove XMLBeans that are still being referenced. To
guard against this, both short and long term memory fixing is implemerted. For example, the
UIO must place a long fix on the ContextBean to guarantee that it remains in memory until the
associated RunnerBean has completed execution. Memory fixing in the Cache is another
complex topic that is omitted here for reasons of readability.

5.4.4 Thelnstruction Pump and the Instruction Decoder

Continuing with the execution flow, the ContextBean is now passed from the US to the
instruction pump (step 5). This unit uses the IPod interface of the ContextBean to obtain the
references to the executable RunnerBean. The Instruction Pump (IP) drives execution by
requesting the RunnerBean to provide its next instruction. In fact, the RunnerBean maintains a
separate instruction pointer for each execution context it is operating in, which allows it to
service multiple sessions. If an instruction is available the IP passes a reference to the
ContextBean to the Instruction Decoder (step 6). If there are no more instructions, the
ContextBean is returned to the US (step 13).

The Instruction Decoder (ID) now interacts with the DoclO to perform execution of the current
instruction. This involves severa interactions with the DoclO, internally defined by a state
machine. Briefly, the ID first requests the operator, operand, parameter (if applicable) and target
documents (step 7). Note that each document is requested individualy. Internally the DoclO
checks to see if the document already exists in the cache and if not relays the document request
to the relevant DocumentAccessor (steps 8 & 9). The UniversaClient in Figure 6 provides
access to the appropriate DocumentA ccessor by examination of the requested URI.

When al the requested documents have been received (through notification step 11) the ID
places a write lock on the target bean. It also increments the fix count on each bean to indicate
that it has a reference to each bean. It then requests the Docl O to return the document with the
active document URI (step 7 again). This causes the DoclO unit o perform the actual XML
operation through an active document accessor. The resulting XMLBean is returned to the 1D
through step 11. Finally the ID requests that the DoclO copies the active document into the
target document (step 7). The DoclO then returns a notification to indicate completion of the
copy command (step 11). The ID removes the write lock from the target bean and then unfixes
all requested XMLBeans to indicate that it has finished.

Finally in step 12, the ID returns the ContextBean to the IP to begin execution of the next
instruction. This repeats until al instructions in the idoc have been completed.

5.4.5 Returning the Response Document

Once the IP determines that all operations have been completed, it passes the ContextBean to the
US (step 13). The US extracts the response document and returns it to the UIO for transmission
back to the requesting client (step 14). Note that the response transport and response delivery
address need not be the same as the requesting client and this information is specified as part of

25

the RFE. Finally the appropriate transport adapter is given the response document to return to
the client (step 15).

5.4.6 The Exception Unit

In the event of an exception occurring at any stage of this process, each of the units (US, IP, ID)
will generate an ExceptionBean which is added as a child of the ContextBean. The ContextBean
is then sent to the Exception Unit. The Exception Unit performs clean up functions and then
sends the ContextBean to the US. The US checks to see if there is an ExceptionBean assigned to
the ContextBean and will return that to the UIO in place of the response document. This feature
isagreat help in debugging an XML application — the raw XML in the ExceptionBean can be re-
processed by Dexter into whatever form is most convenient: a web page, an email, or perhaps a
WML message to a capable phone.

5.4.7 Thelnternal Transport

An important functiona unit shown in Figure 6 is the Internal Transport. This transport module
implements the same interface as any other transport adapter. However, its purpose is to support
the execution of workflows by other workflows. Any component in the system wishing to
execute an idoc smply requests the active URI with the workflow URI provided as the operand.
Thus nested execution is performed as just another document request.

5.4.8 Support for Asynchronous Execution

In the IExecutable interface, the method isAsynchronous alows the Instruction Decoder to
determine whether an instruction can be performed asynchronously. In the example above, the
instruction is performed entirely synchronoudly, i.e. the execution for a specific context blocks
while the relevant documents are accessed or computed. In asynchronous mode, the
ContextBean can be returned to the IP to begin execution of the next instruction as soon as the
target, operand and operator beans have been received, fixed and write locked if appropriate.
Completion of the instruction continues as before, but in parallel with the next instruction(s).
Because the target is write locked, any subsequent instructions requesting it will block until the
asynchronous instruction releases the lock.

55 The Dexter Console

For the purpose of managing the XAP Container, a GUI was developed called the Dexter
Console. A screen shot is shown in Figure 7. The console provides views of the container
logging information.

26

Euter L - -I-Iﬂl-il
File Legging Help
.--:-

B Dester Container Stant | Swp

Wizlkcome 1o =deser zml applicalion raresever
Detecled 1 profeesors

| Wemory = 3182497 ylas, Fras=1260724 byias
EagePath= DavaProjeclamevs cpvDesd e

13-Jare 2003 10:40:2E com hip.hpl dexler cor=ole DesderCore=ole og
| INFO: Ba=aPat sl bo.. LDavaProjecksidenelopTexiany

13-Jan-2003 10:48:36 com hip.hpl.dexlar corsole. DederCorsole g
IMF 2 Stamng Conlainer Moy ..

13422003 10:98:33 com hipchpl deder corbsdnar Condaker ing

| IMF: Slarted corn. hp.hpl.deser kanspot. TransporM arsper

| 190302007 10;48:25 com bp. hpl dezier corksiren Cordaier log

FiO Starbed com.hp.hpl.deser processord.instinchonDerodar

1 13-Jarr 2003 10:44:28 comhp hpl. desder corEsiner. Coramer 1og
IMFO Slaitect cor hp hpl dester poces<oncone ExceplionHandler

| 13.Jar- 2003 10:48:12 com hip.hpl destar corksirs:. Cordainer log
IMFC: Stamed cam. hp.npl.O0esder prcessorcacte. Cache

1303 1003 10:48:18 com ko hol destar cordsinsn Contaner log
IMFQ: Stared comn.hp.hpl.deser proces=or.docio. Docl0

1303 2003 10:d8:35 com b hpldester corksinan Container log
IMFO: Starbed comn. hp.hpl.deser piocessoruio Uk rsaSarear
13-J5- 2003 10:08:28 cor fp.npl.dexder cortsner. Cortainer log
|MFC: Started com ho hpl.oestar procassorconzinsrutionsLenp

! 13-Jare 2003 10:408:28 com hip.hpl dexler corkmirer. Cordsiner log
INFD Slaibect corm hp hpl.dester procesoncone Monilomhesd@moug
| 13.Jar- 2003 10:48:12 com hip.hpl destar corksirs:. Cordainer log
IMFC: Container componeris 3l sared Ok

O | Loneror | SyuStns | Caene

Figure 7: Screen shot of the Dexter Console

27

6 Examples

In this section we describe several simple examples that have been developed to test and
demonstrate the Dexter System. In order to be able to provide visual output, the examples all
generate XHTML web pages. For each example, a description is first provided followed by an
annotated view of the idoc and a screen shot of the output produced by Dexter from executing
the idoc.

It should be borne in mind when reading the examples that schema validation of all documents
used within the idocs can be performed using the appropriate accessors e.g. [11]. Document
validation has not been shown, in order to keep the examples clear of too much clutter; to
provide validation would only require the insertion of an extra instruction per validation. Also
some examples are made somewhat more complicated than necessary in order to demonstrate
different features of the idoc language or of Dexter itself.

All the file URIs as specified in the example idocs are relative paths from the Dexter root
directory which is specified in the dexter.propertiesfile.

6.1 Displaying the Dexter Source Tree

Thisis avery simple example to introduce the basics of the idoc language.

6.1.1 Description

This example illustrates one of the most common patterns in current XML practice: an XML
transformation applied to an XML document listing the Dexter source code packages and class
files. The idoc smply applies an XSL-T transform (packageTreexd) to an XML document
(packageTree.xml).

6.1.2 Theidoc

Thisidoc contains only a single instruction. The instruction type is specified to be XSL-T. Both
the operand and operator documents are available on the local file system. The output of the
transformation is written directly to the response document. The target element type attribute is
set to response which is a reserved word within the idoc language. Internally the RunnerBean
resolves the target to the URI of the unigue response document created as part of the execution
of thisidoc (see section 5.4.2).

Although this example is very simple, it alows us to say something about the way a developer
can extend Dexter with custom Accessors. For example, the operand document containing the
source code listing was generated from separate code using a tree walker pattern. This code
could itself be modularised as a Document Accessor and used as an operator. Similarly it is a
simple matter to modify the idoc instruction to use a Javadoc Accessor to create documentation

28

from the java source code. Furthermore it is possible even to compile the java code using an Ant
DocumentA ccessor.

T} CrvetBeansd L1 kemp, develop’ Dexter ITemldoc’ test_usiLamil - Microsoft Intemet Explorey proveded by Hewlett-Packsnd

| e e s e L .
| i - = - @D [Qe Gilfewis (S | 2 il S

|| dkbess (2] i petteens3. 3.1 mrglie slop Dester Uy doclmst_esll ol x| o=

<7uml varsion="1,0" 7>

- zidoc= /XSL-T Accessor to be used
- SRR

ctyparxsitotypes
=oparand bype="sml" =file:/content fpackageTres? smboperand =
opEratoe type="Hmlsiile: fHsh fpackageTres xsl 0 perato:

SRR ARRS: IR ¢ Internally resolves to a URI
efnski=

<50

cfidocs

indicates instruction sequence

Figure 8: idoc to display the Dexter source tree

6.1.3 Thescreen shot

Only a part of the source tree can be shown in a single screen shot (Figure 9). In fact only the
high level package names have been shown, excluding the leading com.hp.hpl.dexter package
name. The complete source code listing is shown in stages in Appendix A using dight variants
to the XSL-T style sheet to display different parts of the tree.

TN hitkpe) SocalhestiBUEE, e idoc, best_ms| Ly - Micresoft Internet Enplover previded by Hewlett-Packard

T . - ok
| bk = = - @) [Y Qs Giffmie (Bt | - Sl (5]

|| Ak |81 hitpitoes bostnoanf ks e acest sl =nl

Figure 9: View of thetop level packagesin Dexter sourcetree

N

9

6.2 Application of XSL-T and a Forked idoc

This is a more complex example, which shows how to nest the execution of idocs. This helps
devel opers to modularise applications as sets of idocs.

6.2.1 Description

In this example, Dexter is used to produce an XHTML page containing just the first act of
Shakespeare's King Lear. The page is created in two steps, i.e. with two instructions, for the
purposes of illustrating how to fork the execution of asubsidiary idoc during the execution of a
primary idoc. In step one, the first act is extracted from the complete play and in step two the
extract is formatted into XHMTL. The first instruction forks the execution of a second idoc,
which just extracts the first act. The output is stored in a variable which is used in the next
instruction. The second instruction applies an XSL-T transformation to the document contained
in the variable thus producing the XHTML. Obvioudy in practise this could all be easly
performed using a single XSL-T transformation.

6.2.2 Theidoc

The idoc used to produce the XHTML page is shown belowin Figure 8. The first instruction
contains a request to execute another idoc (idoc.xml) and the second instruction applies an XSL-
T transformation.

Note that the first instr element contains an attribute asynch. Thisoptional attribute can be set to
true or fase. If set to true, the RunnerBean will be able to continue executing the next
instruction before the first instruction is complete. This is helpful to alow concurrent access to
external resources which involve significant latencies. Concurrency prevents the cumulative
build-up of the latencies that can occur with purely sequential execution and which are
particularly acute when the XML resources are not local to the machine hosting the container. In
this example, because the second instruction is dependent on the availability of the variable actl,
from the first instruction, it will block until the first stage is complete. This is true whether or
not the first instruction is marked for asynchronous execution or not. Thus Dexter will ensure
that parallel execution is exploited where possible, but will otherwise enforce a data driven
execution flow i.e. operations are performed as soon as al the inputs are available.

30

A LrNetbeans2 L1 kemp' dewelop' Dester 10wl sdoc depno_lear,show_actLumi - Microsoft Intemnat Euplorer prowided by Hew ,3:"‘{:

| Bl Bt Mew Faolles Tock Hep

| Adress [2] o iNeteens 3,3, 1 terple velop Dester iy docdemo_nerjshos _sctl <l

zl @=

<tuml varsan="1.0" 7>

e Indicates that operator
- cinstr asyrch="false"> i i
i e type is an idoc

Zl-- <ppe -z

::u:-erau:;f t'.'pe-— sl file: A00c, GENvD_18arf At 1 Himil</00eral i dm— X ACES ACH |

wtargek type="war' s u%
a/n=kre)
Halze! Variable actl holds the extract Act |

- <inatr asynch="false"">
ctypesisit</types
coperand tppe="var'>ack1</op=rands
coparator type="wml®>file: fuch fact_to htmd sslc/operatars

- and written to the to variable actl ...
response document

Figure 10: Theidoc to extract and display Act | from the play “King Lear”.

6.2.3 Thescreen shot

<target type=respanse’ /x \
NSt
i \ _ Transformation applied

Figure 11 shows a screen shot of the output from executing the idoc. The URI shown in the

browser address bar indicates the idoc which has been used to generate this page.

TR httpe, Pacaibost:inEn fie idoc, dema_iear show_actl wmd - Micresoft Inbernet Enplover provided by Hewlets Packard

| E= £t Wew Favonies [ocks Hel

bk = mb - B (2] 0} Poech Gafewtes Ll | 2 S - (5]

| Aigkvess | hitp o bosk: BOR)il i) deno_lasrfchowy_set]

o o=

ACTI
SCENE 1. King Lear's palace.
Futer KENT, GLOUCESTEER, and FDRUNID

KENT

GLOUCESTER

It did always seem so to us: but now, in the
division of the kingdom, it appears not which of
the dukes he values most; for equalities are so
weighed, that curiosity in neither can make choice
of either's moiety.

KENT

Figure 11: Extract of Act | from the play “King Lear”

31

6.3 Processing aform to view an idocand using parameters

This illustrates how web form parameters can be used to send parameters to an idoc.

6.3.1 Description

This example consists of two interactions with the user through their browser. In the first
interaction, an XHTML form is returned which alows the user to specify an idoc to view. The
submitted form is then processed and sent to a second idoc for processing. This second idoc
returns an XHTML page with the user-specified idoc presented inside a text edit window.

The example shows how parameters can be used inside an idoc. It aso shows how the idoc can
be used to fill in a template page, a familiar design pattern for building web pages. Finaly it
also introduces the literal type i.e. XML embedded inside an idoc rather than an externally
referenced XML resource.

6.3.2 Thefirstidoc (to display the form)

The idoc used to display the user form is very simple. It consists of a single instruction of type
copy which allows the developer to smply copy (or more generaly insert) an XML document
into another document. In this case the target is the response document, but could equally well
be a node within a document. The example illustrates how an idoc can be used to smply serve
static web pages.

RETTRETY

Fl= Edt Wew FPaworites Took Help

doi Bk + b ﬂ Iﬂ iﬁ ﬂ‘iqmd-\- EJFW‘JSE- ._:jH!::rv _T_.I)' =_F- ﬂ

idess [2] Cilpistesns3 3, 1| g vl Dester] s docdeme oo sve e o am i

<turl varsian="1.0" encading="UTF-3" 7>

L0

coomment=Emtry point to the WebService Ldap Demo. This idoc generates a form to enter a parameter for the main
processform.sml idoc.-/commants
CEEOT - - - .
This idoc consists of a straight
= W ltypan €
= o tppe="sml =file: fddoc fdemo_idocviawear/form wmil oparand:s COpy Of the XHTML fOI’m tO the
b response document.
Zinstre

ERECIE
<AdOC

Figure 12: idoc used for generating an XHTML web form (allows user to specify which idoc to view)
To complete the second part of the example i.e. the processing of the user’s submitted form, an
artificially convoluted process is described in order to bring out several idoc featuresand usage

patterns. Principally these are nesting idocs and creating idocs on the fly and then executing
them. A simpler approach is shown later.

32

Figure 13 shows a top-level view of how the response document is produced upon receiving the
user’s submitted form from part 1. This figure shows the three idocs/templates which are used to
produce the response. ldoc_viewer.xml is the top level idoc to which the user submits the form
for processing. The URI of the idoc to view, as specified in the form, is passed as a parameter to
idoc_viewer.xml. Internally, Dexter converts all the HTTP request parameters into an XML
parameter document. The parameter document is encapsulated as a ParamBean (see 5.2.4)
previoudy. During its execution, idoc_viewer.xml creates another idoc dynamically, by filling
in an idoc template called dynamicinstr.xml (middle Figure 13), which it thenexecutes to create
the response document. The idoc dynamicinstr.xml simply inserts the requested idoc into a text
areawithin an XHTML template document, idoctemplate.xml (bottom right).

requested m=————— - idoc template
idoc ; }

aram T o .
(param) .

‘

————— e
T -

idoc_viewer.xml

Create dynamic idoc

(fill in idoc template) - — -
dynamicinstr.xml

l XHTML template
i

Copy idoc i

into static !

xml . v

Execute dynamic idoc
and copy result to
response document

-8 dynamicinstr.xml
(now executing))

idoctemplate.xfnl

Figure 13: Overview of the response document creation process for viewing an idoc

The three XML documents shown in Figure 13, are expanded in the following three figures.

Idoc_viewer.xml, in Figure 14 contains two instructions. The first instruction is of type xchange
and ssimply copies the idoc URI specified in the parameter bean into the dynamicinstr.xml idoc.

The operator in the first instruction is of type literal, so the actual operator document is
embedded as a fragment in the idoc. Internally Dexter creates a unique URI for the litera

fragment and places it in the cache. The first instruction also contains a parameter, which in this
case points to the parameter bean. Like the response reserved word, Dexter internally resolves
this reference to the unique parameter bean URI associated with this idoc execution. Note that
the parameter element inside an instruction can specify any URI-addressable XML document in
the same way as the operand and operator.

33

a CroMetBeansd 0 kemp', develop | Dester 11y mmi'y o’ depo_ideoviewer ' sdoc_ vieweramn| - mm.m mo-;, :_-_;- :_-,.E. e by

| B pdt uey Paenles Tock Hep

bk - = - @[] Y Qe Gfaeetes (Bt | il 5]

Akdress]ﬂ eI NstEesns 3 3, 1) terpide velo p Desber Nl docldeme_| dood s dor _visasr, ol ﬂ bl

q?:e-'nl yarsan="1.0" 7>

/ Edit document

by k}::l:hunlaar'fl Jel=n

=noperand oph— HIII| flle Judocfdemo_idocwiewer/dynamicinstreml=operar .
o Inline operator doc

hange="http:/ f vwe dester.orgf schange 10"

:l.h .fld-nn,"suq,’ln:-h[2]fnpﬂrund selci="f foperand"- \
Node from this

th="fparam" /=

XPath ptr to target document to

rype-"param’ to replace
et l:‘ﬁi:'ﬂ::‘?} m:amlnlduc ;.f'.&rl:lt't.'a p replace
: target

-
:L FfoTG: :u;r‘ d\maninldune.-' paratars Copy result Of

ik oleel \ edit into variable

Execute new idoc (stored as variable) and copy
result to the response document

Figure 14: Exampleidoc which dynamically creates another idoc and executes it (idoc-viewer.xml)

The dynamicinstr.xml templateidoc is shown in Figure 15. This contains three instructions. The
first Simply creates a separate copy of the idoctemplatexml document which is written to a
variable named output. The second instruction then inserts the document specified by the
operand into output. Note that the operand in the second instruction is intentionally blank and is
filled in by the idoc_viewer.xml. In this example the document is inserted at a node within
output specified by the XPath inside the fragment element in the target. Finally in the third
instruction, the document now held by output is copied into the response document.

T} ' MatBeansd AL bemnp, develop! Daster Il pdoc’, demo._idecvizser dy nanioinstr i - HIu'c-mlIrtethEllHﬂEMﬁ_'_': -

| bl gt Mew Fovonies Docks Hel

Bk = b G (2] Y | Qseeh EFmotes { oo | b coh il (S

--‘lﬁ‘-l'ﬁiﬂ CINstEeens 3,3, 1) tenpce velo p) Db mip docldemo_dood sy nanonsir,oml j ﬁ:"'-‘“

<tuml varsan="1.0" 7>
- it

" sems /Copy template document to a variable
- <instr

by pezCopy c /Ty peE
=oparand bype="sml" =file:/ dermo idoctamplate sml=operands
Zranget type="war > output:/ 2 s

il Copy dynamically substituted
s ,r,/ operand into the variable
el bt
wtput
:rragmentbnpnlntar{fhlmlfhu-d'.'ftahla.rl:l‘[z]ﬂ.llL]mrm[llfLaHl:arEa[1]!hl1].r)ﬂl'ragmem>
cftargets>
_ e '\ Target node inside
r_ |'t] - - -
:uﬁ?::ﬁ:;:fir":uutputn;."upurand:- Varlable In WhICh to
:t;trgm type="responsa” /> . COpy XML
=St \
e Copy variable to

<fdac response document

Figure 15: dynamicinstr.xml, an idoc which fillsin astatic XHTML template

The actual XHTML template is very simple. As shown in Figure 16, it contains a text area
where the idoc that the user has requested is inserted.

T} CrMetBean s L1 bemp, develop' Dexter ITyemi de o’ idectemplabesmnl - Microsoft Intermet Enplorer provided by Hemlett-Packand
| D it uey Fawoites Iock Help

| depock = = - G [5]) @oen Gffawre (e | 2 ol S

|tk (2] Coiustteens 3.3, 1| terppe velo | D ber] e oy doctempate 2l = e
<tuml vargan="1.0" enzading="UTF-3" 7>
Zl-- CreEmne ¥ pichp 1 18 Juns= 2 53R —=
- <htril=
- «bady=
- <tablkex
- &l
- Zhd®
- <h=
cixzbdocc i
Wiewkar
Erio
o b
i
- >
-]

- <farm method="P3ET" action="http:f flocalhost B008"-
- ctaxtarea ows="Z2" nama="uml" cols="00'>

=h /=
qtexlﬂ_
cdforms Insertion point for idoc

o e =
e
=/tablecs
- Pz
- «wfont face="Ardal"-
Powared by
- b
<zdaxterai=
= /b
ffant»
i
L hodys
bt

Figure 16: The static XHTML filled in by the idoc dynamicinstr.xml

35

6.3.3 The screen shot

Figure 17, shows the screen shot of the form to be filled in by the user. This screen shot relates
to theidoc in Figure 12. In this case the user has specified that test xd.xml idoc is displayed.

A htepe, Secalhestignen, e idoc, deme_idocviemer/demo.sing - Micresoft Internek Enplorer previded by Hewlett-Packard

| Gl gt Wew Fovontes ook pel

Lk
ik - 5 - @[2 Qe e Bty | b 2 (A -]
| dgdress B hitpifiocs host: oA B e i oc) dem _idoc imser] dersn ol
idae Viewer Selectar b
socu [fleldacpest_ah xml | Seaeh |
Powrered by dexter
Figure 17: idoc viewer request form (filled in)
The output from executing the idoc, idoc_viewer.xml is shown below in Figure 18.
arﬂ:p_ JiecalhestiB0ED) - Micresoft Internek Explorer proweded by Hewlett-Packard
| D= gt Wew Favontes Dok Help
ik - - @[2] Qe e By | 4 2l (=]
| adckess (8] hitpifioes hosts Boan) =] g
e Vieswer
4o _:I
LRE

<ilnscc=
CLRparEsload cypas
<operand type="xml":

flle:/concent/ peckageToee, Xml </ operandr

LSOQECALOC Typ=="yml"> file-f/xmlt/peckap=Tres, k=] <fop=Cmtor>
SLREJET CYpesraspandstys
<l-— wrices che resulc o che responss doounmsnc --or

=fin=tr=

of SEg
+f idoax

Figure 18: Display of the requested idoc (file:/idoc/test_xsl1.xml)

As mentioned earlier, the idoc for generating Figure 18 could be simplified. In fact a single idoc,
shown in Figure 19, can be used instead. It uses fragment identifiers in both the target and
operand. The parameter document contains the reference to the idoc for display under the
element named operand. The operand element name was assigned as part of the “natura”
mapping from the HTTP request parameters to the parameter document; i.e. natural in the sense

36

that the name of the XHTML form textbox was “operand”. Since the root element of the
parameter bean is named param by convention, the reference to the idoc is contained by the
element given by the XPath expression “/param/operand”.

A L Metieans L bemnp' develop Dester 10wl pdoc, demno_idecvicwer ' doc_viewer_shertost_rpumi - Micosof :_'l'="""__"' wuplo

.BE' Edt few Facilles - Tooks Help

T el 3 Iﬂ ﬁ ﬁ_ﬁqu’\d‘\- _E:JFwﬁsa .@H:wv _‘;l)' J- ﬂ

Akress [2] CiiNetmesns 3,3, 1) mrpide velop! Beaber Tl docldemo _idoo e ydos_viewer_shorta . cnl j P

<tuml varson="1.0" 7>

GT"I:;::;‘G:I' “fllesdemofidoctemplate sml= operands copy the temp|ate into
¥ -.T'I‘BE-[]III‘IE a" <
/st the response document
[=1 City e
o bype="param’
R i :,J:__ﬁ__u_Fragrr)ent from parameter doc
</ contains the URI of the idoc
k3 pE="rEsponsa‘:
<[= rpointen] S html S body Stable /e 2100 L Morml 1L textareal 11 /bELYS = fragments

citargets
/nstre
= foans
LAdOC

copies idoc into a text area in
the response document

Figure 19: Simpler idoc for displaying an idoc requested by a user through
the web form shown in Figure 17

For the specific case of writing idocs built up from fragments of XHTML, the authoring process
could be simplified by allowing the user to embed instructions directly inside an XHTML
template page, from which an idoc and empty template document could easily be generated
using idoc design tools.

6.4 Exception Handling

Exceptiors and exception handling are important aids to building robust code and can be used to
help debug code generaly. This is no less true of debugging idocs. This ‘example’ is used to
demonstrate how exceptions are caught and handled within Dexter.

6.4.1 Description

In this example, an idoc with a known error is executed; the error being an incorrectly specified
operand. An exception document is produced in plain XML displaying the reason for failure.
Thisisreturned in the place of the response document. Thus, athough Dexter allows exceptions
to be caught, it currently does not provide support for writing exception handlers; exceptions are
simply returned to the client.

37

6.4.2 Theidoc

The idoc is not shown as it is intentionally invalid. It is, in fact, example 1with the operand
incorrectly specified. Instead of “packageTree2.xml”, the file “wrong_packageTree.xml” was
specified that does not exist.

6.4.3 The screen shot

This screenshot is representative of the output from Dexter when an error occurs during

execution of an idoc.

6.5

So far the example idocs have referenced XML resources stored as files on the local file system
or as cached documents. This example illustrates how resources that are not natively stored in

5 http) teralhastiBDED, fle idoc, test_Bod_operand.amil - Microsadt Internet Enplorer provided by Hewlstt-Packad

| Bl Bt Mew Faolles Tock Hep

ot - - D[) @ Ggwenis Pt | 24 il (=]

| ddress 8] hiipflocs host; ponnjfks fdocltest_bad_operand cnl 7] o

- =franes

<ragquestdsfile: feonte ntfwromg_packageT ree sl requestid:

<callstacks javad o FileNotFoundException: \NetBeansd2.1%Dexter Iamy content\wrong_packageTree.smd {The system
canmot Tind the file specitied) at java.io.FilelnputStream.opendative Method) at java.io Fllelnputstream.<init >
{FileInputBtream. java: 103} at java.io FHeInputEtream.<init ={FlenputEtream. java-n6) st javas o FlleRoader. < nit=
(FileReaadar. jova) at com hp.hpl dexster uclient file Filedccessor.sourceDocument ByStream(FileAccessor jovai67) at
wom. hp.hpl.dexter.processor.cache _SimpleCachaController.oreaste SimpleCacheControllar. javazz 48} at
com.hp.hpldester.processor.cache.SimpleCacheController.get{SimpleCacheController.java: 1997 at
com. hp.hpl dexter.processor.cache Cache get{Cache, jawa:96) at com.hp hpl.dexter processor.docio Doclo.processitem
(Dol jawa: 123} at com. hp_hpl.dewter thresd QProcessorThread Croup process{QProcessorThmeadGroup_java:57) at
woim.hp.hpl dester.thread. QProcessorThread process{ QP rocessorThread. java: 37} at
com,hp.hpl dexter.thread ProcessorTheead. ron{ProcessorThraad, jovo:56) ot jova.lang, Theaad , rund Threod. jovaisis)
cicallskack

anginator=com. hpdipl.dexter.uclient. file.FileAcces sor/ongnatars

cdzFileMotFound<id=

cmassagexyetBeans3.3. yDrutar IDaombycontentywrong_packageTrea.sonl (The system cannot find the file s pecified)
<fassages

o SFrame s
s ———Trace produced by Dexter
<anqinator=com. hpdipl dester proces sordocio.DocT0 - ongnat oo
<requestidsfile:fconte nt/wrond_packageT ree sl requestids

SERDR IR /The actual java exception

<callstack /5 N Indicates the DoclO could

SO CUMENT_EXCEFTION./id> . g

sriessage-Document request falled=/meszages not find the requested resource
< Trama

wrmessage-prefetch Failed-meszeges
<anginator=com.hphpl.dexter.proces sor.id. Inst ructionDecoder< farionator-
<z LDGIG_PENDING_EXCEPTIONC id>
wrequestdsasit{file: fesht fpackageTree_ sl) acting on file:feontent ferong_packageTres ombc/requestid=.
ccallstack f»
={framaz
<fiamas
<messagexfailed exeoubionc/message =
carginator=com.hp hpl.dexter. proces soraic_Univers alEervar: forignators

Figure 20: Output from Dexter when executing ainvalid idoc

Displaying the Universal Server Statistics (I ntrospection 1)

XML can be accessed and used within Dexter.

38

6.5.1 Description

This example illustrates how a display of the current status of the Universal Server component
inside the Dexter XAP can be provided. To do this a new accessor type was created called the
systemcomponent. This simply provides a mechanism for serializing the status information of a
specified component to XML. All system componentswithin Dexter are uniquely identified by a
URI of the form dexter:<component-name>. In the case of the Universal Server, its URI is
dexter:US.

6.5.2 Theidoc

The usage statistics of the Universal Server are obtained in the first instruction and written to a
variable var1, which isthen transformed into XHTML and copied to the response document.

7H o Metieans, 1.1 kemp' develop' Dester 1 mmi'gdoc', repert_U5smi - Microsoft Intemet Enplorer provided by Hewlett-Packan

| D= it wew Faeoiles Tock Help

bk - = - G (2] 2| Doowh Gfewte (P | 2 ol 5]

Adress [2] i iNstteensa 3 1 texe eebop Cester] arfpdocl spert_u e x| @en
{Fome
bl L)

cturnl varsion="1,0° ¥
o

Bsa ol / SystemComponent type
"\ .:-.::'r:;_ﬁrstammrrmumnt-w LypEs

<nperaiie type="smi*=dexterus= nperzior- «—— | R| of the system component

<targelt type="var >varl:/targat:
Nk H
“——Copy to variable

shypesusits types
«oparand type="war>varl< aperands

E tor e="wml"=file: fmsh SUERe pork wxl < SJoperators \
i] e Transform variable

_stoe: \ by XSL-T

Copy transform result
to response document

Figure 21 idoc for displaying the Universal Server Statisticsin XHTML

6.5.3 Thescreen shot

The output is shown in Figure 22. Two sets of statistics are gathered by the Universal Server and
are presented as two separate tables. The top table contains alist of all idocs that have been
executed since booting, the numbers of times a given idoc has been executed, and the average
time taken to execute each idoc. The top table also indicates the number of idoc execution
failures that have occurred. The bottom table simply lists the last three idocs that have been
executed, the time taken to execute them and whether the execution completed successfully.
Since each idoc in the bottom table has only been executed once, the average time and the last
time taken are identical.

39

3 hitpe SecalhestiBOEY, fle: idoc, repork_USxmd - Micresoft Internet Enplorer previded by Hewsett-Packard

_E‘t Edt Wiew Feuoilles Took Hel

ek = omb - B[] Pt Gffmoie 8 | B SR - (S

| Ackbess [@] hitphoes bost: monniis deinclreport_m. e =] ¢

TUNIVERSAL SEEVER STATISTICS

Average Time (ms)] 0¥

Blafideitees_cops literal 2l B0 a
flefidocibest_xal1 .l 1 12050 i
Befidoctest sye_m shyle zml 1 43440 1]

UNIVERSAL SERVER MOST BECENT BEQUESTS

iR Resni

Hebdaciest_sys_mn_style.sonl A4 OFE
filefiddecibest_zl 1. 5mml 1203 OE

Blesidocitest_cops literal wml 428 OF

Figure 22: Most recent Universal Server Statistics displayedin XHTML

6.6 System Introspection2
This is another example of system introspection which, but which also includes user input.
6.6.1 Description

In this example a system view is provided which contains details of the cache status and the
number of threads currently used inside the container.

6.6.2 Theidoc

The structure of this idoc is very similar to the previous idoc. As before, the instruction type is
specified to be systemcomponent, but the component to view is specified in the parameter bean.
In this case, the whole parameter document is passed to the accessor rather than just a fragment
from within the parameter bean as in the example in section 6.3. The serialized system view
formatted in XML is stored in a temporary variable called sysxml which is then transformed to
produce the XHTML view.

40

L Netleansd, 1] bemp’ develop Dester 1D mmlidoc bast_sys_in_styiemml - Microsoft Internet Explorer provided by lzwiett
_tie EdE e Powonie: Tools Help
bk - w53 [Pierh Gfewies (8w | B Sl S

Aress [2] i iNetteens .3, 1) terpde velop Dester] Uamfpdoclest_sps_in_strle o j iEa

<tuml varsan="1.0" 7>
- =idacs

/ The SystemComponent is the Container

; ;sﬁtummmnumntv WP Ignored

P
ppe="wml' =flletest fad. wmld= fopsrands

: 1o ype="param-® /: *
e System component to display

ik specified by parameter
e sl (default is to display container)

e="wml* = fila: fusht S5y stamyiew Formatter, sl oparatoes

*'param‘;.—-
‘response” \

P T R e R ARAIRERE | b

=it

<fso> Transform by XSL-T and
T copy to response document

strs

Figure 23: idoc to display all the container components

6.6.3 The screen shot

This shot shows the status of the cache and the number of running threads inside the XAP. The
System Summary table shows the number of threads assigned to each component and the number
of jobs pending in each component queue (if applicable). The Cache status shows the URIs of
cached XMLbeans, the number of references to those beans (fix count) and a score (0..1), which
indicates whether the bean is a candidate for removal from the cache; a score of 0 means that the
bean can be removed safely, a score of 1 means that the bean may not be removed. In addition
the cache table includes the URI to the Metabean of each of the XMLBeans. The
MetaMetaBean is its own MetaBean (as described in 5.2.5) and has the greatest number of
references, as would be expected.

41

2l Srster View - - Hicmseit Inbereet Esplorer provaded by Heslert-Packand =131 x|

Bk ER Vew Fawedes Teds Hep -

| sk - - o | d il search [gFaveries £ MlHeior |_:-'_'\|~ =4 _j - J
dgicess S8 hetp: e F-Seoa08a The: bocibest s _in st vha, sTal ;I e || Lnks
|

& = T Cache Stats
Fefreah time: |5 T e Fogpe il Tizem 1000 Aorhrad 23
P

subt | Count ™"

T ——— e et st evan omg oo nbdatame ta s file frartaiinetam eta ol
' : B |fe et aernata vl |Iih> fenEtafms b etn yml 2 Lo
8 | fie A st e s sl e ineramsremera sl 1 L0
dexter THL 1 0 Heimets'syet erne o mp eoe nbcce s coeta zaml hle‘metaime bameta 1l i 005
deacter IF 1 L8] var. 2 e fmetafwarmeta. ool u .01
dexter L He:fbertial zm] JEle smetalesalmeta ol 1 1.0
dexter EX 1 0 BCCES O TySEmLE cmpomeTit I: {netalsysteme cmponemace e ssarmeta. sl 1 1.0
dezcter:ZACHE |1 e fimem b e conbe et et veml II Imetalimetarm et vanl 1 1.0
dezxcter TZLIENT) fle fme=t=lacalmeta :oml IEJI metalimetameta ranl 1 1.0
dexcter TOCTD |4 0 fefidocftest_sps_in styie sl IE]E metalirunneToneta »mi 1 1.0
dexter U3 ! 0 fle e ta'metameta xml IEJh'mHa.I’r:'-er.am:ta wml T Lo
dexter T 1 o contezt () [fle e taic corermets 1 LD

Figure 24: View of all the container components

6.7 Showing use of XQuery

This example demonstrates integration of another type of XML standard-based accessor other
than XSL-T.

6.7.1 Description
Dexter’'s XQuery active accessor is implemented using the XCool XQuery engine [29]. In this

example, an XML Query is performed over the Dexter source tree hierarchy. The query is
submitted by aform

6.7.2 Theidoc
In this example, only the idoc required to process the XML Query is shown. All queries are

performed on asingle file “ packageTreexml”, and the query submitted in the web form is passed
through to the idoc using the ParameterBean

42

A LrNetbeans L1 kemp' develop' Desber 10wl dor npwery' best_wquerysml - Microso it Inbernet Explorer provided by Hewlets-p ':
| bl gt Mew Fovonies Docks Hel

Bk = b G (2] Y | Qseeh EFmotes { oo | b coh il (S

| Adress [2] o iNetmeens .3, 1) terplde velop Dester] Uy docLeguery best_ gy i

zl @=

<tuml varsan="1.0" 7>
- it

/Perform XML Query operation
- SEEr

chyparawery= Type

=oparand bype="sml" =file:/content /packageTres . sml< opecands Q———Document on WhICh to
Zoperator type="param" ;

ctarget type="response” /= perform XML Query

oinstrs

e (typically would be a variable)
LAdOC=

The Parameter Document contains
the XML Query. Result is copied
to response document

Figure 25: idoc to process an XML Query over the package tree hierarchy.

6.7.3 The screen shot

Figure 26 shows the form through which the XQuery submission is made. Figure 27 displays the
XQuery result as XML.

T4 oL - Mecrosoft Inbesnet Explorer provided by Hewlett-Packard

| B pde wew rPownies Iodk pel

| bt - o - @[] 2 Qhsewdr Giffaies Py | e G & -]

| Az 8] it host: 00n ks eoc) sassr o nl

LPEGj@EC:
SpAckmge pame="deExter >
cpackage nans="appts
“plass
omme="Instcact 1onlocment *.0
class nene= "ol hacmsant®

HML </ praimper
<package nape="xzpl® >
cpackage nane="thosadTr

“rlass nene="IContadperThoead™ =

<clazs name="IThreadGroup™s >
o pEn kg :j

Ky [ipackega

Poweerad by dexter

Figure 26: XQuery Submission Interface

7R hrtpe) PacalhastiD0EY) - Micresoft Internat Euplorar proveded by Hewlatt-Pack ard

| o mit wee roonms ok pep |k
bk~ mb - 53 (25} B Gffowie Ly | B S S

| Akdress @] hitpfiocs host; oo x
<Hl-resuts

- =package name="dextar"s
<package name="app">
arlazs name="InstructienbDocument” />
<rlazs name="GUlDocument” >
</packages
<package name="sml" />
<package name="thread =
cclass name="1ContainarThrnad” /=
=clazs name="TThreadGroup® /=
e/packages
cpackage name="quewse’s
cclazs name="1Quoun’ /=
<olass name="10uauelistenart /o
</ packages
“package name="exception’s
crlazs name="NolockExcaption” />
< /packagex
<package o ame="trans por "=
cpackage name="Rp" /=
cpackage name="im" />
<package nama="hitp® /=
pEckage namas"smtpt s
/packagex
cpackage name="containar -
<class name="Gontalner”
“class name="Containerio® /=
=/package=
<P Ackags name="procas s>
<package name="xlw'>
=rlass name="KmiLogictnit’ /=
=rlass name="WriteDecisionUnit" /=
c/packagex
<pEckage nama="Kpu'>
<0iass faine="Kpuremory" /=

Figure 27: Result of the XQuery from Figure 26

6.8 Viewingall theidoc demos
6.8.1 Description

This last example is used to display al the idoc examples written for system testing and
demonstration.

6.8.2 Theidoc

The idoc is shown in Figure 28. It is very similar to that used for displaying the Dexter source
tree, but the accessor in this case dynamically creates the XML from the idoc source directory as
part of every idoc execution A specialised accessor called the demotree accessor has been
created to walk the idoc source tree. Of course, a more generalised tree walker Accessor could
easly be written to accept an arbitrary directory start point and various options such as file

filters.

TR L Natfasnel L1 kamp develsp, Deiter I el doc’ demios_rpamil - Miceoasedt Inteinet Enplorer provided by Hesdett-Packard

| B EdE Uew Fn.'.u'ltes]:unk Help
L - @[Qoo Gtforwis gham | l 5]

| Adess [2] o INetmeens 3,1 terpie relop D ber] Ul docl dermos_ep 7| @

<tuml varsan="1.0" 7>
- it
zrommant=Lists all knowm idocs in a simple table</comments

i Specialised accessor to generate
L an XML view of the idoc directory.

=ty pesdanobness Typas

T e e e e Result copied to variable demotree.

afn=kr
- instre
i SO (note no operand/operator required)
coperand tppe="var'>demotree</operands
coperator type="wml*sfile: fwsht fdemoView Formatber soslo/operators
ctargat type="responsa” /=
st
</ 500>
cAdocs

Transform variable to XHTML
and write to response document

Figure 28: idoc workflow to display all the idocsin the Dexter root directory

6.8.3 Thescreen shot

The idocs found in the source tree are listed below. The XSL-T transformation also creates a
URL link around each idoc name so that the user can easily click to execute any of the listed
idocs. This helps facilitate testing.

7§ haepe) Bocalbiest DO, Eie: idoc, demnas.mal - Micresoft Internet Enplover provided by Hewlett-Packard

| Bl CdE Wew Fogwntes Dok tel : |k
| bt - - @) [2} Qisewh Glfoories Ity | b A -]

|| Ak] hitpifiocs bost: 000 8] e e der s rd

dexter idocs

llatan_gii_siditar
Aty ol
Eogmuaiter vl

F“

Figure 29: An XHTML display of the idocs contained in the container root directory

45

6.9 Conditional Execution

The previous idoc examples in this section do not include the use of conditiona loops. Whilst
they are supported within the idoc language schema, they have not been fully implemented at the
time of writing. However to illustrate how they can be used, an example is shown below of a
while loop. A new accessor type is required called the Eval accessor which evaulates an XPath
expression against the operand. In the example below the XPath expression to evaluate, suitably
escaped, isincluded in the operator element as a literal.

<idoc>
<seg>
<while>
<cond>
<instr>
<type>eval </type>
<operand type="var” >var 1</operand>
<operator type="literal”" >
<eval>
root/number > 100
</eval>
</operator>
<target type="var” >var2</target>
<instr>
</cond>
<seqg>
whiletruedo instructions here
</seq>
</while>
<seg>
</idoc>

In this example, a test is made to see if the value of the element identified by the XPath
root/number in document varl is greater then 100. The result either true or false, iswritten to a
BooleanBean with the variable name var2. If true, the instructions contained in the sequence
element inside the while element are executed.

In order that the loop terminates, the idoc instructions within the while loop will need to change
the number encapsulated within the varl document to be less than 100.

It is stressed that idocs use conditional expressions sparingly as they can increase the complexity
of theidoc. If acomplex piece of functionality needs to be implemented then it is recommended
to encapsulate it within an Active Accessor. However, for smple cases it is useful to provide
conditional processing.

46

7 Futures

It is hoped that the examples from the previous section will demonstrate the scope and flexibility
of Dexter and the idoc language. Before finishing however, we wish to include some illustrations
of where Dexter could find application using slightly richer examples. In the first example we
consider a hotel booking service which illustrates the how results of querying web services might
be aggregated.

The operations performed in the Dexter container are shown flowing left to right in Figure 30.
The sequence of operations can be easily expressed as an idoc. Initially a user request for room
availability is made to two hypothetical services defined say using WSDL [7]. Using the WSDL
definitions requests are made to two fictional hotel chains (Holiday House and Euro Hols) to
check for room availability. The response (XML documents) are then transformed into a
suitable common syntax (for querying) and added to a shared temporary document (tmp doc).
This temporary document is then queried using the parameters supplied by the user. Finaly the
guery results are transformed using an XSL-T transformation to produce the XHTML response
document, which is returned to the user.

Euro Hols Co.

WSD EuroHol.xsl
HolHouse xsl
XHTML. xsl XQuery.xml
Holiday House Euro-Hols
Response esponse
| WSDLAccesso XSLTAccesso XQueryAccessor
—>
User
Request
(Queries User
Room N Response
Availability) —»D—» B—» . >
tmp doc Perform XQuery Transform XHTML
Transform (contains all ~ XQuery result To XHTML
Add to tmp doc hotel info
In common
format)
Dexter Container

Figure 30: Using Dexter to aggregate web services and display aweb page

The flow of operations shown in Figure 30 can all be supported using Dexter. Figure 30 shows
the required accessor classes and the documents required to perform the sequence of operations

47

as illustrated. Note that the two requests to the holiday booking services can be made
concurrently by setting the instruction attribute asynch to true. Furthermore the caching policies
applied to the response documents can provide for them to age them over say several minutes
thereby avoiding the high latency external service invocations for every query. This of course
assumes the hotel data changes relatively slowly. As aresult, the transformations of the WSDL
service responses are also cached, which makes subsequent queries much more rapid.

Our second example of a future use for Dexter is in the area of distributed graphica web
applications. So far we have discussed XML applications that either do without a conventional
graphical Ul, or which use HTML in browsers as the Ul medium. There are severa initiatives
underway at present that attempt to standardise declarative methods of describing graphical user
interfaces and the events they must propagate and handle to realise an application. UIML [25] is
one of these. XForms [18] and Web Services for Interactive Applications [17] share similar
objectives. We conceive of using Dexter as the system which hosts and operates a distributed
application whose GUI is described in, say UIML.

idoc
Initialise:
Structure
Styjle
Content
Behaviour

Widget set z b

Set up app:
DHTML or
UIML or

XForms etc

I 4

Figure 31: Dexter and a UIML driven Client application

Figure 31 above shows Dexter driving a distributed application with a GUI that is rendered by a
special purpose client. The application starts by sending an idoc that invokes an initialisation
stage (Step 1). The idoc references an application model document, which contains a canonical
representation of the Ul suitable for use with all envisaged client devices. Parameters in the
incoming idoc may used to key the widget set and modality appropriate for the requesting client.
The resulting markup is returned to the client (Step 2). User actions at the client cause events and

48

parameters to be sent back to Dexter (Step 3) where they are correlated with static and dynamic
updates that are again returned to the client (Step 4).

The final example shown here is the illustration of how an idoc could be used to define a
workflow for generating a pdf document from an XML source. Thisis an interesting application
since it produces non-XML output by using XSL Formatting Objects technology [7]. The
example shown in Figure 34, shows a simple bill conversion from XML into PDF.

bill.xsl
Formatting
: Objecs
bilxeri | NENEEY | i o | Processor
Transform -
Render
— ~ A N J
XMLBeans Non-XMLBean

Figure 32: Generating a PDF document using Dexter

The first stage of the pipeline takes the raw subscriber billing data (bill.xml), expressed in XML,
and applies a transform (bill.xgl) to convert it into a Formatting Objects XML document (bill.fo).
Next, a formatting objects processor (FOP) converts the “bill.fo” document into a pdf document
bill.pdf. To implement this functionality a FOPAccessor would be required, as well as a
PDFBean to encapsulate the PDF output. It would be straightforward to adapt the system to
handle non XML beans to support this kind of functionality. The bill.pdf document could be
returned as the response document, attaching it to an HTTP or SMTP response.

It is loped that the three examples illustrated in this section will serve as motivators for other
possible XML-rich applications. Whilst many of the examples contained in this document
suggest a server-side hias for the XAP, this should not be seen as the case. The XAP can be
deployed as a client side auxiliary component providing support XML processing. In fact
without an HTTP transport the XAP can be dropped in a servlet, which then passes requests
through to the XAP for processing.

49

8 Conclusion

We have described the architecture of an XML Application Platform, and Dexter — a research
prototype XAP we have built. The motivation for the work was the observation that global (or
Internet-wide) interoperability is an issue for many trends in IT: Web Services, B2B interactions,
large scale Enterprise Application Integration and so on. XML is consolidating into a practical
solution for data interoperability but less so for the description of data processing. Meanwhile,
legacy 3-tier systems (the ubiquitous Web server-Middleware-Relational Database systems that
underpin much current Web technology) are adapting to data portability in isolated proprietary
ways. Task specific workflow languages are also proliferating [28] while standardisation efforts
[1, 14, 26, 27] are moving painfully slowly towards a convergence.

We note that XML processing is now a de facto capability of all popular mainframe and PC
Operating Systems. The Dexter project is aresearch probe into the feasibility and the utility of an
XML Application Platform that alows much of the computation that is currently done in
proprietary or language and platform specific ways, to be performed in the XML domain. We
have found that using the XAP requires some re-orientation on the part of the developer to adjust
to this new computational model. However it encourages reuse of XML technologies and
supports building of complex applications in a modular way.

It is worth emphasising again that Dexter is not trying to replace conventional programming
languages and isn’t a procedural or object oriented language marked up in XML. All operands
are treated as XML documents and therefore all operations are performed in the XML domain.
This is a significantly different approach to application development and is attractive for web
service development and other applications which involve document exchange and manipulation
using languages like XSL-T or XQuery.

An interesting aspect of the popularity of XML is that it is a measure of the value the IT
community places on open and transferable data. XML is in some ways less efficient than
proprietary binary formats, and yet it has rapidly become the medium of choice for
externalisation of data. There has always been a tension for business organisations between
exposing the data they must to support transactions, and guarding their proprietary secrets. The
adoption of XML illustrates the push toward the former. Dexter is aimed at making it also
possible to externalise globally interoperable data processing.

We have refined a set of design principles (described in section 3) for XML Application
Platforms, which were certainly helpful when we were building our prototype. It is our hope that
we and others will be able to build on these principles and encourage the growth of XML
Applications.

50

9 Acknowledgements

This work has benefited from numerous conversations with colleagues at HP Labs Bristol.

The authors would particularly like to acknowledge Tony Buitterfield, a contractor who worked
on the design and coding of the prototype. Tony brought a fresh perspective and made

invaluable contributions.

The authors would also like to thank Dave Banks for a very careful reading of an earlier draft of
this document which resulted in many improvements.

51

10 Appendix A: Dexter Source Tree

This appendix contains the complete package hierarchy of Dexter. Because of the large number
of classes involved, a set of screen shots, all generated using Dexter, are used to display sub-
parts of the package hierarchy a bit at a time. The top-level package, namely
“com.hp.hpl.dexter” has been omitted to ssimplify the display, as have the test packages.

The console package contains classes related to the console application shown in Figure 7. The
container package contains the top-level XAP platform piece. All resources are managed from
within the container. The nbio package contains a separate transport module built upon the Java
JDK 1.4 support non-blocking I/0O API. Thiswas never integrated.

8 htkpe, BecalhestiBues, e idac, best_msi Ly - Micresoft Internet Enplover previded by Hewlett Packard
| B Bdt ew Fowordles Todk Help |k

dbeck = w23 (2] 9R Pherdh Sfews (e | B Sl (S

Aress @] hip Jfiocs bost; eonaiike g test_slL, el

Ahreiax
TumierCoreak

Doafplek,
(R

Figure 33: The console, container and nbio packages

Figure 34, contains the packages that make up the bulk of the high-level components inside the
container and which were highlighted in Figure 6. The cache package is salf-explanatory, the
core package contains classes related to monitoring and the InstructionPump, the id package
contains the Instruction Decoder and supporting classes. The security and system packages
provide for logging, path name resolution and access control. The uio package contains the code
relating to the Universal Server component.

52

TR hrepe) Pacalhasti D02 Fie idoc, best_msl Ly - Micresaft Internat Enplorer pravided by Hewlets-Packard

| Be Bt Yew Fovolles Tock beb [k
| bk = - @) [2} Qsewch Giffmtes (Frimo | - Sl (5]

e 8] hipifoce bostsoonn s idocest L =l

B
L IO Trigrat cher
IExtuts Wlog Tirke
AT Merastlatars
ICatuPabicr Illh.l:.l.i'lﬂﬁ
 Dwonlikh ¥ Tk
300 kT Copmoller _ U et Polky
ExprtHolkr Ex Tl
Doidar Sz
Ploadonakad
T, g
ndmus_n-
BN -
; R
DB Do
Blerdor Thrad (g
UilagicTisk
FPrding ot e Tk i T
CopyFapustFurkad ekt
Dol D Tarelan Tk
o R e VSR T
Srasbrames Fagania

Figure 34: The cache, core, docio, id, security, system and uio packages

Most of the high-level components are built up from severa basic subclasses. Figure 35 shows
two packages, the queue package and the statmach package, which contain several of these basic
aub-classes. Three types of queue are used interndly in the Dexter XAP. These area Smple
gueue, a Priority queue and a Correlating queue (supports asynchronous callbacks). The
statmach package contains the primitives for building state-machines. These are used in the
Instruction-Decoder, and the Universa-Server to implement the internal protocols that exist
between these components and the Docl O.

TR b, Pacalhosti B0 Fle idoc, best_msl Lund - Micresoft Internet Enplorer pravided by Hewlett-Packard

| Be Bt Uew Fovotes ook beb [k
| dabek = mb - B[] 9F Pseech SdFmote (B | e ol (5]

|} ak¥ess [T hitpiioca bost momniiie feincltest_elL el

Figure 35: The queue and statemach packages

53

Figure 36, shows the thread and transport packages which contain additional basic subclasses.
The thread package contains the basic thread types for implementing the DoclO, the Universal-
Server, the Instruction-Pump and the Instruction-Decoder. The transport package holds al the
supported transports managed by the Transport Manager and the Transport Manager class itself.

TR b, Pacalhosti B0 Fle idoc, best_msl Lund - Micresoft Internet Enplorer pravided by Hewlett-Packard

| B Bdt Mew Fouorles]:udi I:_I:h
| bk - o o @) [Y Qs Gffmries (Bt | 2 Sl (S

e 8] i ifoce bostsoonn e idociest el ol

Figure 36: Thethread and transport packages

The uclient package (Figure 37) contains all the Document Accessors and helper classes.

TN hikp, SocalhestiBUEE, e idoc, best_ms| L - Micresoft Internet Enplover previded by Hewlett-Packard

o | - 5 - Q[0 | D [peenm (Gomoy 23 W =) T

| dress W] hitpjfoca host:Bcsa s jdoc) et sl ol

sub-packages of uclient

i s

[T -
JEEEE «— red => code changed
i L T TS

Figure 37: The uclient package

The utils package (Figure 38) provides a variety of classes to handle resource locking, XML
manipulation, and URI creation etc....

TN hitkpe, BocalhestiBues, e idac, best_ms| Ly - Micresoft Internet Enplover previded by Hewlett Packard

| e cde e raentes fok teh - JL'*
| bk = - @) [2} Qsewch Giffmtes (Frimo | - Sl (5]

|| Acress @] hitpifioes ot aanlfl:fednctest_slL <l

Figure 38: The utils packages

55

Finally the XMLBean package (Figure 39) contains all the XMLBean interfaces as described in
section 5.2. It aso includes a set of sub-packages containing al the XML Bean subclasses.

7§ Lounad - Micrescft Internet Enplover provided by Hewlett-Packard

| atkiesz [B] bt fpccbosts it ffocliest_esl, el

[

Figure 39: The xmlbean package

56

11 Appendix B: The XML Bean and | DocAccessor | nterfaces

We give here abridged JavaDoc for selected interfaces in the Dexter XAP's XMLBean system
and IDocA ccessor.

11.1 |Readable

An interface to read the XML document encapsulated by the XML Bean without resorting to
DOM API cdls.

Method Summary

java.lang. String|get(java.lang. String aXPath, boolean aTrim
Returns the value from one node within the document.

org. w3c. dom Docunent |get Fragnent (j ava. | ang. Stri ng aXPat h)

java.util.Map|getMulti(java.lang. String aXPath, bool ean aTrim
Returns a Map of Simple XPath of node to value for al nodes
found.

| Readabl el t er at or |get Readabl el terator(java.lang. Stri ng aXPat h)
Similar to getMulti it evaluates an XPath to a possible set of
result nodes.

org. w3c. dom Docunent |t oDOMV)
Returns a DOM representation of the document contained in
this bean.

java.lang. String|toString(bool ean al ndent)
Returns a debug representation of the contained document.

java.lang. String|toString(java.lang. String aXPath, bool ean al ndent)

11.2 IWritable

An interface to write to an XML document encapsulated by the XML Bean.

Method Summary

voi d |addMul ti Pat h(j ava.l ang. String aContext, java.lang.String aNewPat h,
java.lang. String aVal ue)

Creates new elements, attributes, and text nodes by building from zero or more
context nodes down and then creating either an attribute or text nodes at the bottom.

voi d laddPat h(i ava. | ana. Stri na aContext. iava.lana. Strina aNewPat h.

57

java.l ang. String aVal ue)
Creates new elements, attributes, and text nodes by building from a context node
down and then creating either an attribute or text nodes at the bottom.

voi d |addPI (java.l ang. String aXPath, java.lang.String aTarget,
java.lang. String aVal ue)

Adds a processing instruction to the document below the location node given by
aXPeath.

voi d |copy(| Readabl e aSrc)
Copies the given IReadable to this Writable

voi d |copy(l Readabl e aSrc, java.lang. String aSrcPath,
java.l ang. String aDst Pat h)

Copies the given IReadable fragment to this Writable at the given location

voi d|del eteMul ti Pat h(java. |l ang. String aPat h)
Deletes zero or more elements or attribute defined by an XPath expression.

voi d |del et ePat h(j ava. |l ang. String aPat h)
Deletes a single element or attribute defined by an X Path expression.

void|insertPath(java.lang. String aContext, java.lang. String aNewPat h,
java.lang. String aVal ue)

Creates new elements, attributes, and text nodes by building from a context node
down and then creating either an attribute or text nodes at the bottom.

voi d|set(java.lang. String aXPath, java.lang.String aVal ue)
Sets the value of either an attribute or the text below an element.

Methodsinherited from interface com.hp.hpl.dexter xmlbean.| Readable |

get, getFragnent, getMiulti, getReadablelterator, toDOM toString, toString |

11.3 |Executable

The interface which a class must implement in order to be executed within the Dexter Container.
In the Dexter prototype, an XMLBean caled the RunnerBean implemented this interface. The
idoc workflow documents are encapsulated by RunnerBeans.

Method Summary

java.l ang. String|get HumanReadabl eCurrent | nstructi on(Cont ext Bean cxt)
Returns a string with details about the current instruction.

java.l ang. String|getlnstructi onType(Cont ext Bean cxt)
Requests what the type of instruction to perform.

j ava. net. URl |aet Ooer and(Cont ext Bean cxt)

58

Requests the URI of the operand for the current instruction.

java.l ang. String|get Oper andType(Cont ext Bean cxt)

Requests the source type of the operand

java. net. URl |get Oper at or (Cont ext Bean cxt)

Requests the URI of the operator document.

java.l ang. String |get Oper at or Type(Cont ext Bean cxt)

Requests the source type of the operator

j ava. net. URl |get Par anet er (Cont ext Bean cxt)

Requests the URI of any parameter document.

java. lang. String|get Par anet er Type(Cont ext Bean cxt)

Requests the source type of the parameter

java. net. URl |get Tar get (Cont ext Bean cxt)

Request the URI of the target to write the results of the operation

java.l ang. String|get Tar get Type(Cont ext Bean cxt)

Requests the source type of the target.

j ava. | ang. Bool ean |i sAsynchr onous(Cont ext Bean cxt)

Tests whether the instruction can be performed asynchronoudly.

short |nextlnstructi on(Cont ext Bean cxt)
Requests the instruction pointer be moved to the next instruction.

11.4 ILockable

An interface for acquiring and releasing locks on XMLBeans. Locks are held against the thread
which asks for them.

Method Summary

| Readabl e |[get Readabl e()
Acquire alock to read an XMLBean and return an interface to allow reading.
| Readabl e |[get Readabl e(j ava. | ang. Obj ect aToken, |ong aTi meout)
Acquire alock (using atoken) to read an XMLBean and return an interface
to allow reading.
I Witable|getWitabl e()
Acquire alock to write to an XMLBean and return an interface to allow
writing.
I Witable|getWitabl e(java.lang. Obj ect aToken, |ong aTi meout)
Acquire alock (using atoken) to write to an XMLBean and retun an
interface to alow writing.
voi d|rel easelLock()
Releases any held locks on this bean by the current thread.
voi d |rel easeLock(iava. |l ana. Obi ect aToken)

59

Releases any held locks on this bean by the given token.

115 ICacheable

An interface which classes must implement in order to be put into the container cache. The
Cache controller uses this interface for managing the lifecycle of a cached object.

Method Summary

| ong |get Age()
Return the time since the object was created.

i nt |get Fi xCount ()
Returns the number of clients fixing the object into the cache.

| ong |get MeanTi neBet weenAccesses()
The avaerage number of milliseconds between accesses to the object.

| ong |get Ti neSi nceLast Access()
The number of milliseconds since the last access of the object.

voi d|i ncrenent Fi xCount (i nt al ncrenent)
Adjusts the fix count relative to its current value.

bool ean |i sDirty()
Return true if the object has been modified but not persisted.

11.6 |1Pod

The interface for XMLBeans to allow them to contain references to other XML Beans.

Field Summary

static java.lang. String | ROLE META constant for the role of a Meta document- needed for
al beans within dexter.

Method Summary

voi d |addBean(j ava. | ang. Stri ng aRol eNanme, | XM_Bean aBean)
Makes the given bean contained by the current bean.

| XMLBean |get Bean(j ava. |l ang. Stri ng aRol eNane)
Returns a bean fulfilling a particular role.

java.util.lterator |get Rol es()
Returns an iterator over the names of all the roles.

60

voi d |renmoveBean(j ava. | ang. Stri ng aRol eNane)
Stops the bean with the named role being contained by this bean.

11.7 |Passivatable

Interface for objects that can be passivated to and activated from the PassivationStore.

Method Summary

voi d|activate(java.io. Reader aReader, Cache aCache)
Activate the this object with data from the reader.

voi d|passivate(java.io. Witer aWiter)
Passivate this object to the given writer

11.8 | DocumentA ccessor

A interface @pable of alowing access to the document for a given URI independent of its
implementation or location.

Method Summary

bool ean |checkSupport (i nt aSupport Fl ags)
Check to see if support exists for a given operation.

voi d |del et eDocunent (j ava. net. URl aURI)
Deletes the given URI such that it should not exist in future.

bool ean |docunent Exi st s(j ava. net. URI aURI)
Check to seeif the given URI exists.

voi d |si nkDocunent (j ava. net. URI aURI
java.i o. Reader aDocunent)

Updates the given URI with data from the given reader.

org. w3c. dom Docunent |sour ceDocunent ByDOMj ava. net. URI aURI)
Creates a DOM document for the data for a given URI.

java.io. Reader |sourcebDocunent ByStrean(j ava. net. URl aURI)
Creates areader for the datafor a given URI.

61

12 References

[1] ebXML. See http://www.ebxml.org/

[2] Interactive Financia exchange Forum. See http://www.ifxforum.org/ifxforum.org/index.cfm
[3] XML Path Language (XPath). See http://www.w3.0rg/TR/xpath

[4] XML Pointer, XML Link. See http://www.w3.0org/XML/Linking

[5] XML Query. See http://www.w3.org/ XML/Query

[6] XSL Transformations. See http://www.w3.org/TR/xslt

[7] Web Services Description Language (WSDL) http://www.w3.org/TR/wsdl

[8] XSL Formatting Objects. See http://www.w3.0rg/TR/xd/slice6.html - fo-section

[9] XML-Signature Syntax and Processing. See http://www.w3.org/TR/xmldsig-core/

[10] XML Schema. See http://www.w3.0rg/ XML /Schema

[11] RelaxNG. See http://www.0asi s-open.org/committees/rel ax-ng/

[12] XUpdate. See http://www.xmldb.org/xupdate/

[13] http://www.rosettanet.org/

[14] Business Process Execution Language for Web Services. See http://www-
106.ibm.com/devel operworks/webservices/library/ws-bpel/

[15] Common Gateway Interface. See http://hoohoo.ncsa.uiuc.edu/cgi/overview.html

[16] Microsoft XDocs. See:

http://www.mi crosoft.com/presspass/features/2002/Oct02/10-090fficeFamily.asp

[17] Web Services for Interactive Applications. See http://www.0as s-open.org/committees/wsia/
[18] XForms. See http://www.w3.org/TR/2002/WD-xforms-20020118/

[19] Web Services for Remote Portals. See http://www.0asi s-open.org/committees/wsrp/

[20] XML Encryption. See http://www.w3.org/Encryption/2001/

[21] XML Access Control Markup Language. See http://www.oasi s-open.org/committees/xacmi/
[22] XML Information Set. See http://www.w3.0rg/TR/xml- infoset/

[23] Schmidt, D.C.; Stal, M.; Rohnert, H.; Buschmann, F. Pattern-Oriented Software
Architecture. Wiley, 2000.

[24] Business Transactions Protocol. See https.//www.0asis-open.org/committees/business-
transactions/

[25] User Interface Markup Language. See http://www.uiml.org/index.php

[26] XML Pipeline Definition Language. See http://www.w3.0rg/TR/xml-pipeline/

[27] Web Service Choreography Interface. See http://www.w3.org/TR/wsci/

[28] Shegalov, G.; Gillmann, M.; and Weikum, G. XML-enabled workflow management for e
services across heterogeneous platforms The VLDB Journal, 2001. 10:91-103. Available online
at http://citeseer.nj.nec.com/shegal ovOlxmlenabled.html

[29] XCool XML Query Language Implementation http://xcool.sourceforge.net/

[30] XSL-T Processing Engine http://xml.apache.org/xalan-j/

62

