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Abstract. A calibrated classifier provides reliable estimates of the true
probability that each test sample is a member of the class of interest.
This is crucial in decision making tasks. Procedures for calibration have
already been studied in weather forecasting, game theory, and more re-
cently in machine learning, with the latter showing empirically that cali-
bration of classifiers helps not only in decision making, but also improves
classification accuracy. In this paper we extend the theoretical founda-
tion of these empirical observations. We prove that (1) a well calibrated
classifier provides bounds on the Bayes error (2) calibrating a classifier
is guaranteed not to decrease classification accuracy, and (3) the proce-
dure of calibration provides the threshold or thresholds on the decision
rule that minimize the classification error. We also draw the parallels
and differences between methods that use receiver operating character-
istic (ROC) curves and calibration based procedures that are aimed at
finding a threshold of minimum error. In particular, calibration leads to
improved performance when multiple thresholds exist.

1 Introduction

In a decision making task, in order to evaluate different courses of action, it is
useful to obtain accurate likelihood estimates of the alternatives. Pattern clas-
sifiers can be used to provide automated mappings between situations (repre-
sented by features) and outcomes (represented by the class membership). Yet,
to be applicable to decision making problems, we require a reliable estimate of
the true probability of class membership of each test sample. We will use the
term calibrated to refer to classifiers with reliable estimates of the class member-
ship probabilities. A successful classifier in terms of classification accuracy is not
necessarily calibrated, e.g., the Naive Bayes classifier.Procedures for calibrat-
ing classifiers have been proposed in different contexts: In weather prediction
tasks [1], in game theory [2, 3], and more recently in the context of pattern clas-
sification [4, 5]. Zadrozny and Elkan were also the first to notice the need of
calibrating classifiers when used as decision making aids.

Our own incentive to study calibration came from applying probabilistic
based classifiers to the problem of characterizing and forecasting the I/O re-
sponse time of large storage arrays given passive observations. As these forecasts
are used for scheduling purposes, we also need to accompany each forecast with



an accurate estimate of the probability of the forecast. We applied a variant
of the calibration procedure suggested in [1, 4] and noticed that in addition to
producing more accurate estimates, the classification accuracy of our induced
classifiers increased. While these empirical results agree with those of Zadrozny
and Elkan [4, 5], a theoretical guarantee that calibration cannot degrade classi-
fication performance was still missing. Our investigation of the calibration pro-
duced the following results which we prove in Sections 3 and 4. First, we can
bound the Bayes error using the same parameters that result from the calcu-
lations needed for calibration. Second, we are guaranteed that the classification
accuracy of the original classifier does not decrease as a consequence of calibra-
tion. Moreover, the classification accuracy can actually increase. Third, using
the calibration process we can compute a threshold or thresholds in the decision
rule of the classifier that minimize the classification error. We show that when
a single threshold is derived from the calibration procedure, the result is equiv-
alent to finding the point of minimum error in an ROC curve [6, 7]. However,
when calibration produces multiple thresholds on the decision rule, the error
achieved with those is lower than that of any single threshold derived from the
ROC based methods. Thus, in addition to producing more accurate estimates
of a-posteriori probabilities, calibration obviates the need for using ROC based
methods for finding optimal thresholds.

The rest of the paper is organized as follows. Section 2 introduces formally
the notions of calibration, refinement and Brier score. Sections 3 and 4 contain
the proofs of our main results. Section 5 illustrates the effects of calibration on
classifiers induced on real data, observing also the effect of the sample size on
the process of calibration. Finally, Section 6 discusses and summarizes the main
results.

2 Notation and preliminary definitions

A classifier takes an incoming vector of features X and maps it to a class label.
We will use C to denote the class variable the values of which are called classes.
Throughout this paper we assume a binary classification problem, i.e., one in
which C takes one of two values. We will use (1, 0), or (c, c̄) to denote a specific
instantiation of C. Each instantiation of X, denoted by x is a sample. We assume
that all samples are i.i.d.

Let p(C|X) be the true a-posteriori distribution of the class given the features.
The optimal classification rule, that is, the optimal function that maps a sample
x to one of the values of C, under the 0-1 cost function, is the maximum a-
posteriori (MAP) rule [8]:

g∗(x) = argmaxc′=(0,1)[p(C = c′|x)], (1)



The decision rule g∗(x) is called the Bayes optimal decision and

eB =
∑
x

p(g∗(x) 6= c|C = c) p(x)

=
∑
x

min(p(C = 1|x) , p(C = 0|x))p(x) , (2)

is the associated probability of error. This error is known as the Bayes error (or
Bayes risk), and it is the minimum probability of error achievable with the given
set of features. 1

Given that p(C|X) is unknown, one strategy for classification is to induce
an estimate p̂(C|X) of the a-posteriori probability, and then use a decision rule
ĝ(X) such that the classification error, given by

CE =
∑
x

p(ĝ(x) 6= c|C = c) p(x) (3)

is minimized. We note that plugging in p̂(C|X) into the decision rule in Eq. 1 may
not be optimal [6], since given the errors and biases embedded in the estimate
p̂(C|X) the threshold of 0.5, implicit in Eq. 1, may not minimize the error in
Eq. 3. We return to this subject in Section 4, where we show the link between
calibration and the decision rule that minimizes Eq. 3.

The classification error provides one way to evaluate classifiers. However,
when using the classifier output as a basis for decision making, we need a score
that takes into account not only the prediction accuracy of the classifier, but
also the quality of the estimate p̂(C|X). One such score is the Brier score [9].
The Brier score is one of a class of so-called proper scores [1] which are used in
evaluating the subjective probability assessment of forecasters. For the binary
classification case, the Brier score is given as the average squared difference
between the forecaster’s probability of C = 1 and the true label:

BS =
1
n

n∑

i=1

(p̂(C = 1|xi)− ci)2, (4)

where n is the number of samples. Among the various intuitive justifications
of this score, the following one is based on decision theoretic considerations.
Assume that the agent (classifier or forecaster), should pay a price proportional
to the confidence with which it asserts its decision. The Brier score uses the
probability of the estimate as providing the appropriate penalty. Note that in
Eq. 4, if the agent predicts C = 1 with high probability but ci = 0 the penalty
will be higher than if he predicts C = 1 with low probability. Thus, the lower
the Brier score, the lower is the penalty assessed to the agent.

1 Note that the summation over X implies finite values for the features; for continuous
features the summation is replaced by integration. Throughout the paper we main-
tain the summation over X, but note that the analysis holds for continuous features
as well.



The notion of calibration can be derived directly from the Brier score. We
need some preliminary definitions. Let t ∈ [0, 1] denote the a-posteriori prob-
ability assessment of a forecaster. Following [1], we assume that t takes on a
finite number of values on the interval [0, 1]. We denote by Rt the set of feature
values for which the classifier density, p̂(C = 1|x), yields a forecast probability
t, namely:

Rt = {x ∈ X : p̂(C = 1|x) = t}. (5)

Let π(t) be the probability that the forecaster predicts C = 1 with probability
t on a random instance. π(t) can also be thought of as the frequency at which
the forecaster predicted C = 1 with probability t on a set of N samples, with
N → ∞. As such, given the probability density of the features, p(x), π(t) can
be expressed as:

π(t) =
∑

x∈Rt

p(x) . (6)

Let p(C = 1|t) be the probability that C = 1 given that the forecaster pre-
dicts C = 1 with probability t. The Brier score can be rewritten as (see [1] for
derivation):

BS =
∑

t

π(t)(t− p(c|t))2 +
∑

t

π(t)p(c|t) (1− p(c|t)). (7)

The first term is a measure of the calibration, and the second term is a measure
of the refinement of the forecaster, denoted as R. Calibration indicates how close
is the probability assessment of the forecaster on C = 1 to the frequency with
which C = 1 occurs (in reality). Note that for calibration to be 0, t has to be
p(c|t) for every t. A well-calibrated forecaster is one with calibration equal to 0.
The notion of calibration fits our purposes, since the probability assessments of
a well-calibrated agent, can be used in decision making as an indication of its
confidence of the classification label provided.

Refinement scores the usefulness of each forecast. As an illustration, assume
that we live in a place that rains 50% of the time. Thus a forecaster that always
announces rain with 50% confidence is calibrated, yet not very useful in helping
to plan a picnic for the following day. Ideally we would like estimates that are
close to certainty. The more concentrated p(c|t) is towards 0 or 1, the more
refined the classifier. To minimize the overall Brier score, a forecaster has to be
both well-calibrated and refined. Thus, if two classifiers are well-calibrated, the
one with the lower Brier score is also more refined. We describe the relationship
between bias, Bayes error, calibration and refinement in the next section.

3 The Brier score, bias, and the Bayes error

In the following we show that being well-calibrated is a weaker condition than
being unbiased. Loosely speaking, a well-calibrated classifier is an “on average”
unbiased classifier. We also show that we can use the notion of refinement (second
term in Eq. 7) as a bound on the Bayes error. In particular, twice the refinement



of a well-calibrated classifier is an upper bound on the Bayes error; and, in
the case that the classifier is unbiased, then its refinement is a lower bound on
the Bayes error. Section 5 illustrates the practical implications of the various
approximations made when calibrating in practice.

3.1 The bias/calibration relationship

Being well-calibrated requires that t = p(c|t). Using Bayes rule we write p(c|t)
as p(c,t)

π(t) which can be further rewritten as:

p(c|t) =

∑
x∈Rt

p(x) p(c|x)∑
x∈Rt

p(x)
, (8)

where π(t) in the denominator is replaced using Eq. 6. The numerator states that
the probability of the joint event that the class variable takes its c value and that
the classifier states this with probability t, is the result of summing over these
precise events in feature space (i.e, for x ∈ Rt). Given our assumption regarding
the i.i.d. nature of the samples, this holds. We can now state the following:

Proposition: An unbiased classifier is also well-calibrated.
Proof. For an unbiased classifier, limn→∞ p̂(c|x) = p(c|x) for every x, where n
is the number of samples. Therefore, as n →∞, for every t: ∀x ∈ Rt, t = p(c|x).
Replacing p(c|x) with t in Eq.(8) yields p(c|t) = t, which is the condition for
calibration to be 0.2

However, a well-calibrated classifier might not be unbiased. We see from
Eq.(8) that for a well-calibrated classifier, its forecast, p̂(c|x) = t for x ∈ Rt,
is a normalized average of the true a-posteriori probability in the region de-
fined by Rt. Clearly, one can construct cases where the classifier is biased, but
p(c|t) = t for all t: for example, suppose we have X = {1, 2}, p(X = 1) = 0.5
and p(c|X = 1) = 0.2 and p(c|X = 2) = 0.6. Suppose also that the classifier
always predicts c with p̂(c|X) = 0.4 for any X (hence on t = 0.4 has non-zero
probability). Obviously, the classifier is biased. However, from Eq. 8 we have
that p(c|t) = 0.4 and the classifier is well-calibrated.

3.2 The Bayes error-refinement relationship

We start by defining a t dependent error measure:

et =
∑

t

π(t)min(t, 1− t). (9)

et essentially mirrors the Bayes error formula of Eq.2, but as we will see, et upper
bounds the Bayes error. We are now ready to state the following result:

Theorem 1 Given a well-calibrated classifier, whose forecasts are p̂(c|x), and
given the true a-posteriori probability p(c|x) with corresponding Bayes error rate
eB, the following holds: eB ≤ et ≤ 2R.



Proof. Recall that for a well-calibrated classifier, t = p(c|t). Making the appro-
priate substitution in the second term of Eq. 7, the refinement R can be written
as:R =

∑
t π(t)t(1 − t). It is easy to show that for 0 ≤ t ≤ 1, min(t, 1 − t) ≤

2 · t(1− t), from which follows that, et ≤ 2R.Now we have to show eB ≤ et. We
rewrite the expressions for the Bayes error in terms of t and Rt:

eB =
∑

t

∑

x∈Rt

p(x) min(p(c|x) , 1− p(c|x)). (10)

We use Eq. 6 to substitute the π(t) term in Eq. 9 and obtain:

et =
∑

t

∑

x∈Rt

p(x) min(t, 1− t). (11)

With this reformulation, all we have to show is that for every x in every Rt,
p(x)min(p(c|x) , 1−p(c|x)) ≤ p(x)min(t, 1−t). We have two cases, when t ≤ 0.5
and when t > 0.5. We proceed with the proof for the first case. The proof for the
second case is completely analogous. For the case where t ≤ 0.5 we can write:

∑

x∈Rt

p(x)min(t, 1− t) = t ·
∑

x∈Rt

p(x)

Using Eq. 8 and the fact that the classifier is well calibrated we replace t in the
right hand side of the above equation to get:

t
∑

x∈Rt

p(x) =

∑
x∈Rt

p(x) p(c|x)∑
x∈Rt

p(x)
·

∑

x∈Rt

p(x)

=
∑

x∈Rt

p(x) p(c|x) . (12)

In going over all x ∈ Rt, we have two cases, depending on whether p(c|x) <
0.5 or p(c|x) ≥ 0.5.2 Let x− be such that p(c|x−) < 0.5. Thus we get that
min(p(c|x−) , 1 − p(c|x−)) = p(c|x−). It follows then that Eqs. 10 and Eq. 12
are equal for all such cases. Let now x′ ∈ Rt be such that p(c|x′) > 0.5. For
that x′, min(p(c|x′) , 1 − p(c|x′)) = 1 − p(c|x′). So, while et sums over p(c|x′),
as in Eq. 12, the Bayes error adds the smaller term, 1 − p(c|x′). It follows that
eB ≤ et. 2

From the proof, we see that ‘looseness’ in the upper bound on the Bayes
error occurs whenever for certain x ∈ Rt, p(c|x) is on the other side of 1/2 with
respect to t. For t’s that are close to 0 or 1, there is less of a chance for such
x’s to exist (see Eq. 8), while t close to 1/2 has higher chances of occurrence for
such cases. Therefore, a well-calibrated classifier with π(t) that has mass close
to 0 and 1 is not only more refined, but also provides a tighter bound on the
Bayes error.

If the classifier is unbiased, we can provide a stronger result. In this case we
know that asymptotically, t = p(c|x) for every x ∈ Rt and we have that R ≤ eB.
This follows from the fact that eB = et when the classifier is unbiased, and from
the fact that for 0 ≤ t ≤ 1, the relation t(1− t) ≤ min(t, 1− t) holds.
2 Recall that these x samples are placed in Rt according to the value of p̂(c|x).



4 Calibration, classification error and ROC curves

As discussed in Section 2, in order to minimize the classification error given by
Eq. 3, we need to find the appropriate decision rule. This, in turn, translates to
finding a probabilistic threshold α, so that we can classify a sample x as belonging
to class c, when p̂(c|x) ≥ α. In this section we provide a procedure for finding
α in terms of calibration. The intuition is as follows. If we had the real density
p(C|X), the optimal decision rule is given by Eq. 1, which in turn implies that
α = 0.5. Now, the process of calibrating may be seen as the process of bringing
p̂(C|X) closer to the real density. Calibrating a classifier is a mapping from p̂(c|x)
to p(c|t). In fact the procedures proposed in [4, 5] essentially implement this
mapping. Thus, under certain conditions we outline below the optimal threshold
α∗ of the original classifier is one where in the calibration mapping p(c|α∗) = 0.5.

To formalize this intuitions we need to express the classification error in terms
of the calibration mapping density. Suppose that our decision function on t is
such that we say C = 0 if t ≤ α and C = 1 if t > α, where 0 ≤ α ≤ 1 (note
that for the plug-in decision rule α = 0.5). Given the density of π(t) on t, the
classification error is a function of α and is written as:

Perror(α) =
∫ α

0

p(C = 1|t) p(t) dt +
∫ 1

α

(1− p(C = 1|t))p(t) dt, (13)

where now t takes any value on the interval [0, 1], and is not limited to a discrete
set as in the previous section. The first integral in Eq. 13 is the (weighted) area
under the calibration map, p(C = 1|t), for which we predict class 0; this area
is proportional to the probability that we missed instances that had label of 1.
The second integral provides the proportion of the error for which we predict 1,
but the actual class label was 0. Borrowing terms from signal detection theory,
the first term is proportional to the probability of missed detection (detection
of class 1), and the second integral is proportional to the probability of false
detection (or false alarm). These areas are illustrated as the marked regions in
Figures 1(a) and (b). We can now state the following:

Theorem 2 Given a classifier with a-posteriori probabilities t, density π(t) and
a calibration map p(C = 1|t), where p(C = 1|t) does not cross 1/2 more than
once, the threshold α on t which achieves minimum probability of error, i.e.,
α∗ = arg minα Perror(α) is given as α s.t. p(C = 1|t = α) = 0.5.

Proof. Taking the derivative of Perror(α) with respect to α yields:

dPerror

dα
= 2 · p(C = 1|t = α)− 1. (14)

Setting the derivative to 0 yields p(C = 1|α∗) = 1/2.2
The reason why the calibration map provides the optimal threshold on t for

minimizing the probability of error is quite simple: the calibration map can be
thought of as a new well-calibrated classifier, with a single feature t - thus the
threshold of 1/2 on this new classifier is optimal. Because we require that the
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Fig. 1. (a) Illustration of the calibration map of a well-calibrated (diagonal line) and
a non-calibrated classifier in (b).

calibration map does not cross 1/2 more then once, there is a (single) threshold
on our “feature” t that achieves the minimum error.

The function p(C = 1|t) can also be used to create ROC curves. To see this,
recall that an ROC curve plots the probability of detection, PD = P (Predict C =
1|Truth is C = 1), against the probability of false alarm, PFA = P (Predict C =
1|Truth is C = 0), created by varying a threshold (e.g., likelihood ratio). The
threshold is varied so that we start from perfect detection, but maximum false
alarm, to no false alarms, but minimum detection. We already stated that the
two integrals composing Perror in Eq. 13 are directly related to PD and PFA,
and to put it more accurately:

PD(α) =
1− ∫ α

0
p(C = 1|t) p(dt)
p(C = 1)

PFA(α) =

∫ 1

α
(1− p(C = 1|t))p(dt)

1− p(C = 1)
, (15)

thus by varying the threshold α, we can generate the entire ROC curve using the
calibration map. At this point it is clear that methods that find the threshold
of minimum error from ROC curves [6, 7] produce the exact same result as the
calibration procedure, when the calibration map does not cross 1/2 more than
once.

However, the calibration procedure generalizes more than what can be achieved
with the ROC method. Theorem 2 can be extended to the case where the cal-
ibration map crosses 1/2 more than once, requiring multiple thresholds on the
original decision function for minimizing the error: given multiple thresholds on
the decision function we can rewrite equation 13 (splitting the integral based on
the number of needed thresholds) and find that minimizing the probability of
error for any number of thresholds still occurs when the calibration map is 1/2.
Such cases could occur with classifiers that output a-posteriori probabilities that



are ranked incorrectly. For example, suppose that one class is split into several
clusters in space, and a classifier (for example, a linear one) separates well some
clusters, leaving other clusters far from the decision boundary. The resultant cal-
ibration map of such classifiers would cross 0.5 at several places, but the point
of minimum error is still at p(C = 1|t) = 0.5. Thus, inverting the calibration
map when at that point provides several thresholds on the decision rule. We
illustrate the above with a two dimensional example, shown in Figure 2(a). The
class marked with circles (class ”1”) consists of two clusters which are divided by
the class marked with x’s (class ”0”). Learning a Logistic regression classifier on
the data leads to a single linear boundary (shown in the figure), which does well
at separating one cluster, but leaves the second one very far from the boundary.
Thus, data from that cluster have higher probability of belonging to class ”0”
than data from class ”0” itself. Figure 2(b) shows the calibration map of the
Logistic regression classifier. The map crosses 0.5 at two values, thus leading to
two decision boundaries (with the same slope of the original, but two different
intersects). With these boundaries, both clusters of class ”1” are well separated,
and the resultant error is significantly lower, reducing from 10% with the original
boundary to 5.5% with the new boundaries.
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Fig. 2. Example of calibration finding multiple thresholds on the decision rule. (a) Deci-
sion boundaries before and after calibration superimposed on data. (b) The calibration
map of the original linear classifier.

The results above can also be extended from the 0-1 loss to the general loss
function, for which c01 is the cost of predicting class 0 when the true class is 1
and c10 is the cost of predicting class 1 and the true class is 0. The Bayes decision
rule minimizing the risk under this loss function calls for classifying a sample x as
1 if p(C = 1|x) > c10

c10+c01
[10].As with the classification error under the 0-1 loss,

applying the threshold c10
c10+c01

on the estimated classifier, p̂(C = 1|x), may not
minimize the risk under the generalized loss. However, using the same arguments
given in Theorem 2, finding the thresholds which minimize the generalized loss
function for a given classifier is the value on t for which p(C = 1|t) = c10

c10+c01
.



5 Calibration with finite data

With finite data sets, we want to estimate p(C = 1|p̂(C = 1|x)) reliably. A pro-
cedure for this estimation was provided in [4, 5], where p̂(C = 1|x) is binned on
the interval [0, 1] and the calibration map is estimated by counting the number
of samples that fall into each bin. The procedure was originally suggested as a
method for calibrating Naive Bayes classifiers, but is applicable to any classi-
fier that outputs probabilities, or a distance measure that can be converted to
probabilities (e.g., Tree-augmented Naive Bayes [11], Logistic regression, mixture
models, and SVMs). The empirical success of calibration on various (typically
large sized data sets) has been shown in previous works – in this section we aim
at providing insight to the finite sample effects that can arise with calibration.

Estimating the calibration map involves learning a function from a scalar
input (p̂(C = 1|x) to a scalar output. Thus, it is insensitive to the number of
features in the classifier. The estimation is sensitive though to the sample size
and to the number of bins used in the estimation procedure. We evaluate the
effect of the sample size on the calibration procedure, thus we use learning curves,
showing the various performance metrics before and after calibration.

We use the calibration procedure for prediction of I/O response time of
individual requests to an enterprize storage array. Our data is based on an
anonymized month-long trace of requests to an Hewlett Packard XP 512 storage
array collected by the Storage Systems group at Hewlett-Packard Laboratories
between 27 September and 27 October 2002. The raw traces are transformed to
10 features that describe queue lengths, locality and sequentiality, as measured
by the server issuing the I/O request to the storage array. The problem is trans-
formed to a binary classification problem by determining that any response time
faster or equal to 1.5 msec is considered fast, while any response time slower
than 1.5 msec is considered slow.

The data consists of 686091 training data and 343046 test data. We build
two competing models to predict the correct class for the I/O request. The first
is the Naive Bayes classifier, with Gaussian conditional distribution for the nu-
merical feature and multinomial distribution for a locality feature. The second
is a mixture of regression (MoR) classifier. The MoR model finds a mixture of
regressors between the features and response time, which provides a distribution
of response time for each value of the features, from which we can compute the
a-posteriori probability of the response time being fast or slow. With the full
training data, the Naive Bayes model achieves 82.18% accuracy before calibra-
tion and 85.60% after calibration, a significant improvement. The MoR model
improves from 85.50% to 86.16%, a more modest improvement, to be expected
from a model that is more naturally calibrated compared to Naive Bayes. The
learning curves, both of accuracy and the Brier score, are shown in Figure 3.

For generating the learning curves we fix the number of bins used in the cal-
ibration procedure at 20, and average the results measured on the test set of 5
trials for each point on the curve. We see that for the Naive Bayes classifier, cali-
bration improves accuracy and the Brier score early on the curve (already at 200
training samples), while for the already almost calibrated MoR, the calibration



procedure does not produce a significant benefit to performance until fairly large
training sets are available. Observing the changes in the Brier score, it appears
that both models achieve near convergence to a calibrated classifier as early as
after 1000 samples. It is also important to note that for the MoR and sample
sizes smaller than 400, the calibration procedure slightly degrades performance
because of overfitting. These experiments illustrate that models that are far from
being calibrated benefit from calibration even with few data; for classification,
any change in the decision boundary in the right direction has a large effect.
However, models that are close to being calibrated are more sensitive to noise
in the calibration map, and are more prone to overfitting with small data sets.
We discuss possible ways to overcome these effects in the summary.
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Fig. 3. Learning curves of Naive Bayes and MoR for the I/O prediction data.

6 Summary

In this paper we characterize the mathematical relation between calibration and
bounds on the Bayes error and the use of calibration to find thresholds in the
decision rule minimizing a classifier’s error. These theoretical results, coupled
with mounting empirical evidence in the literature, illustrate the importance
and value of calibrating classifiers for classification and decision making.

The result relating calibration with the decision rule that minimizes the clas-
sification error, produces an effective procedure for finding optimal thresholds in
this decision rule. This also establishes a direct relationship with ROC curves,
a relationship which was informally alluded to in [6], and is formalized in this
paper. As with any learning algorithm, finite sample effects have to be consid-
ered; our learning curve experiments show that a simple calibration procedure
performs well with large training sets, but can cause overfitting with small train-
ing sets. Reducing the possibility of overfitting can be done by smoothing of the
calibration map or estimating a smooth function (such as the sigmoid) as the
calibration map [5]. As a note, the number of thresholds on the decision function
would depend on the smoothing function used, e.g., with a sigmoid, only one



threshold can be found, which might not be always desirable. We also observe
that calibration is more beneficial, even at small sample sizes, for classifiers that
are inherently not calibrated (such as Naive Bayes), compared to calibration of
classifiers that are more naturally calibrated (such as logistic regression).

Future work includes providing bounds on how the estimation error of the
calibration map affects the estimation of the optimal thresholds for classifica-
tion and the payoff in terms of decision making.Such bounds could help avoid
overfitting, especially with small sample sizes. Extending the method beyond
binary classification problems is another research direction; similar to methods
extending ROC curves beyond binary classification [7]. We are also exploring the
use of calibration in semi-supervised learning, helping eliminate the possibility of
performance degradation when using unlabeled data to learning classifiers, a phe-
nomenon that occurs with biased models that output uncalibrated a-posteriori
probabilities [12].
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