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Summary

One of the great current debates in biology concerns whether the observed behaviour of a system can be

accounted for in terms of the behaviours of its subcomponents. The problem is often presented as a question

of ‘holism versus reductionism’; whether ‘the whole is greater than the sum of its parts’. The holist position is

that biological systems display certain phenomena that cannot be understood by thinking about the system

at any lower level than its entirety; reductionists argue that systems can be explained completely in terms

of their subcomponents. We show that de Simone’s theorem, a result derived in a relation of Professor

Robin Milner(FRS)’s Turing Award winning work in concurrency theory (a branch of theoretical computer

science) provides an answer to this problem. De Simone’s theorem proves that all possible systems can be

reasoned about in terms of their subcomponents. Hence, if the parts of systems are represented as processes

with internal state rather than functions, it is always possible to explain system behaviour in terms of the

interactions between its parts.

1 Introduction

Concerns over reductionism have been raised in many areas of biology (Williams, 1997), including ecology

(Bergandi & Blandin, 1998; Lenton, 1998; Levin, 1998; Wilkinson, 1999), evolution (Stebbins & Ayala,

1981; Gould, 1998; Wilson, 1997; Seaborg, 1999), neuroscience (Edelman & Tononi, 1995; Barlow, 1998),

behaviour (Gould, 1997; Rose, 1998; Goodwin, 1998a) and developmental biology (Berrill & Godwin, 1996;

Alberch & Branco, 1998; Brenner, 1998). Frequently-cited reasons for the failure of reductionism include

(1) it cannot cope with contingent behaviour or code up a system’s history; (2) it gives insufficient weight to

interactions between subcomponents; and (3) it cannot deal with emergent properties that seem not to be

explicable in terms of subcomponents alone (Williams, 1997; Mayr 1985). However, these claims result from

associating the activity of reducing a system to its sub-components with the mathematical representation

of those entities. Hence most biologists might claim to accept the notion of constitutive reductionism1, but

many do not accept that the properties or behaviours of constitutively reducible systems can be deduced

from a knowledge of the properties of their components (Mayr, 1998; Williams 1997). For instance, Ernst

1Biologists and philosophers (e.g., Mayr, 1982, Sarkar 1992) distinguish between theory (where a theory or branch of science

is shown to be consistent with, derived from or explained by another); explanatory (where a system is explained in terms of the

behaviour of more fundamental systems or components) and constitutive reductionism (the principle that systems are composed

of systems or entities at a lower level and conform to the laws governing the latter). The interesting debates concern theory

or explanatory reductionism; constitutive reductionism (i.e. that biological systems are composed of molecules and atoms and

these systems obey the laws of physics/chemistry) is generally accepted.
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Mayr (1985) argues (p 58): “[biological] Systems at each hierarchical level have two characteristics. They

act as wholes (as if they were a homogenous entity), and their characteristics cannot (not even in theory)

be deduced from the most complete knowledge of the components, taken separately or in other partial

combination”.

Many of the limitations stated for the reductionist approach result not from thinking about the system

in terms of subcomponents, but of representing those subcomponents as functions. For instance, May (1998)

states “Much of the reductionist success in physics can be put down to the existence of linear superposition

principles; one can dissemble things and then meaningfully reconstruct the whole by adding them back

together. When you have non-linear phenomena, processes similar to phase transitions in physics occur,

where small changes in one variable can make for discontinuous changes in the whole system. Phenomena

such as these are difficult to intuit from the study at the lower level.” This has lead some biologists to

take extreme positions: “Most of what is most characteristic of living organisms cannot be expressed in

mathematical terms or in terms of the simplistic laws of physics” (Mayr, 1985; p 54). The success of

functional representation of physical and biological systems has been tremendous and students of these

areas may be tempted to regard this as the only ‘proper’ mathematical representation of a system. One

consequence of this view is the use of increasingly complex functions to account for a biological system’s

behaviour (Goodwin el al., 1989). As the complexity increases, the mapping between the functions used

and the recognised components within the system is lost. Interactions between components are also difficult

to represent explicitly: rather, they are implicit in the coupling between equations. Since the system is no

longer represented (and hence understood) in terms of its components and interactions it is believed that

this implies that it cannot be reduced. In fact, this is the consequence of using functions to account for

the behaviour or effects of the sub-components, rather than an approach that allows natural representation

(i.e., every object in the system is represented by an object in the model) of those sub-components. When

biological complexity is considered from a computer science theory perspective, and interactions are modelled

explicitly, hierarchy and emergence appear less problematic for reductionism (Muir, 1982); a position taken

by Brenner (1998, p110): “We do not have to talk about these properties as emergent but look on them as

arising directly from the properties of their components and their interactions. The whole is some special

mathematical function of the parts, but we can safely say that this function is not the sum”.
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2 A Modelling Approach

The need to reason about concurrent computer systems, which are intrinsically composed of many interacting

parts, has provided a major challenge to the ways we represent and analyse the dynamics of complex systems.

This need has given rise to an algebraic approach to reasoning over systems formed from component parts

that treat those parts as first class objects. In the process algebraic approach (Milner 1980, 1983, 1989; Hoare,

1985; Hennessy, 1988; Baeten & Wiejland, 1990; Baeten, 1990) systems are represented as compositions of

processes that have internal state, and interact by exchanging messages. The addition of state means that,

unlike functions, when given the same arguments (input message(s)) a process need not always give the same

response (results/outputs). A particularly important consequence of the process view of systems is that all2

possible types or patterns of interaction can be represented (de Simone, 1985) with a limited and therefore

comprehensible set of operators.

In reasoning about a system the important issue is to compose (or add) the parts together correctly.

In other words, we need appropriate operators to ‘glue’ our components together. In a system formed

from interacting parts this will inevitably be some form of parallel composition (see Box 1), since we must

permit the parts to coexist simultaneously. With the operators action prefix, parallel composition, restriction,

recursion and choice of the process algebra SCCS/Meije, de Simone (1985) proved that any feasible parallel

operator can be represented, and hence we can represent any way of composing a system. That is, no matter

what the nature of the interactions which dictate the behaviour of the composed system as a result of the

behaviour of its parts, they can be represented by the five basic operators of SCCS/Meije. De Simone’s

result implies that in order to understand any composed system we need only understand the representation

of its underlying compositions within SCCS/ Meije.

Explaining the operators in slightly more detail, see Milner (1989) for a tutorial on process algbera, a

process term is presented with basic operators which act as follows:

Action prefix: we write a : P to describe a process that performs the action a and as a consequence

becomes the process P . This action can be any suggestive name. For instance we might use breed and

write breed : MoreAnimals. As a convention we tend to start action names with a small letter and

process names with a capital to distinguish between them. Using the later operators we can see how
2Strictly all systems formed from bisimulation (Milner, 1980, 1989) preserving operators. Bisimulation preservation is a very

weak requirement which phisical compositions will obey. However, in a formal logical context it is possible to derive abstract

operators that will not preserve bisimulation. Stronger demonstrations of the generality of process algebra, which do not require

bisimulation preservation are achieved by defining the scope (Groote & Vaandrager 1992; Bloom et al., 1995) of the operational

rules permitted in the definition of a particular calculus.
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we might sensibly form the process MoreAnimals.

Choice: we write P + Q to define a process that can be either the process P or the process Q. As

an example eat : Live + starve : Die will denote a process that chooses to perform the actions eat or

starve and evolves respectively into the processes Live or Die. Notice at this point we have given no

information about how the choice is resolved, clearly we shall wish that this choice can be influenced

by the environment, which in this instance will be other processes.

Parallel composition: we write P ×Q to represent the process P executing alongside the process Q in

synchronous parallel. As an example eat : Live × eat : LIve might define two animals living in the

same environment needing to eat to live. The importance of this being a synchronous parallel is that

we insist that both of the processes evolve at the same time, in order that the compound may itself

evolve.

Permission: we write P dS to say that only those actions in a set names S performed by P are permitted

to occur. For example (eat : Live + stuff : Happy)d{eat} is not allowed to perform the action stuff .

So far we have no indicated how one process influences another, only that they should be capable of

such. If we choose our to structure our actions wisely so that they come in pairs input and output

which we can denote by a and a and further arrange that when these two actions are performed at the

same time then they in some sense ’vanish’3. The combination of actions structured in this way and

permission allows us to insist that certain actions ’vanish’ and this can only occur if they communicate

(the combination of input and output) with their partner within the scope of such a permission. It is

this combination of effects that gives the process algebra its descriptive power.

Recursion: since we will want our processes to have the capability to persist we need a notion of

loop. The simples way to introduce this is to allow process variables and then bind process expressions

to them, with the intent that whenever we see a variable we replace it with its associated definition.

Writing P
def
= E for the act of defining the variable name4. As an example a simple creature Animal

def
=

eats : Animal + starves : 0, this is an animal which if it eats continues otherwise it starves and is

then capable of no further action which is given as a process written 0.
3For the technically minded the most elegenat way to do this is to draw our names from a free abelian group and insist that

inverses represent the dual output to the input. The identity element in the group is now the natural representation of the

passage of one unit of time or computation with no observable behaviour taking place.
4In this case we have to be careful that definition and equality are not confused. In the full presentation of a process algebra

we have a formal notion of what it is for two processes to be equal and we reserve the equals sign for this.
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In the full presentation (Milner, 1983; deSimone, 1985; Milner, 1989) the meanings of the operators

above, which are expressed as intent in english herein, are fornally defined via a natural deduction style

recursively over the syntax which defines the process.

Whilst process calculi such as SCCS deal only with causality and time and are therefore limited in

their ability to account for physical phenomena, they can be simply extended to include phenomena such

as probability or priority (Tofts, 1994), and consequently have sufficient expressive power to represent and

reason (Tofts, 1992) over many complex systems, including biological ones. They have been used successfully

to model aspects of social insect behaviour (Tofts 1992), host-parasite interaction (Christodolou, 1999)

evolution of sex determination (Hatcher & Tofts, 1995), music composition (Ross, 1995) and interacting

computer systems (Milner, 1989).

One of the most fully realised component views of systems is the recently popular object oriented pro-

gramming approach. This approach to system description has been exploited widely in the modelling of

individual based systems within the biological community. Indeed the original notation Simula (Birtwistle et

al., 1979) was intended by its author to be a physical system description language, “which with the addition

of input/output statements could be executed on a computing system”. Process algebra provides a natural

(fully abstract with one-to-one mapping of components) model of such languages. Recent work in this area

(Milner et al., 1992) seems to indicate a world view which may well be more fundamental than that of the

lambda calculus (Barendegt, 1987), the formal presentation of functions.

The SCCS/Meije observation that all possible parallel operators are representable implies that, if one

accepts constitutive reduction, any system can always be represented in terms of its parts. Therefore, in

principle, all systems can be explained in terms of the sum (composition) of their parts. Whether a process-

based approach provides adequate explanation for the behaviour of a system will depend, as with any other

modelling paradigm, on the development of models and their scientific test. By allowing components to have

different states, models in which the behaviour of parts and hence systems are contingent on history are

automatically obtained. By shifting the emphasis to objects (components) rather than functions, interactions

are also naturally representable. Hence, with a state-based approach, objections (1) and (2) are not true of

reductionism, if by reduction we mean the act of abstrating or describing a system in terms of it parts.

3 Discussion

The suggestion that emergence illustrates the failure of reductionism is flawed from a mathematical per-

spective. Emergent phenomena are a frequent observation from all disciplines of biological modelling: once
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a model is built, complex (sometimes unexpected and often counter-intuitive ) patterns of behaviour may

emerge. This is true even within a functional framework: cyclic or chaotic dynamics may ‘emerge’ from func-

tional representations of populations, yet clearly this complex dynamical behaviour is not, in any meaningful

sense, more than the ‘sum’ of its parts. Similarly, the object-oriented community has frequently observed

that complex patterns emerge from relatively few object types interacting with few and simple rules (devel-

opmental biology: Kersberg & Changeux, 1998; Kersberg & Wolpert, 1998; social insect behaviour: Tofts,

1992; Bonabeau et al., 1998). The models involved are reductions of observed systems to subcomponents

and interactions, yet these reductionist tools show emergent properties. Hence, the mere observation that

system-level behaviour appears complicated and is currently inexplicable within a reductionist paradigm

does not imply that only alternative paradigms can succeed (Sarkar, 1992).

Reductionism is at a disadvantage because the term is seldom defined explicitly, and most frequently

it is discussed with reference to its perceived failings by those that believe it cannot work. For instance,

Capra (1996) (p 17) defines reductionism implicitly by comparison of terms: “The emphasis on the parts

has been called mechanistic, reductionist, or atomistic; the emphasis on the whole holistic, organismic, or

ecological”. With strict interpretation of criteria (1) -(3), most non-trivial biological systems would appear to

be holistic; indeed Capra cites non-linear dynamics, chaos and fractals, network dynamics, self-organisation

and quantum physics as examples of holist theory. However, under strict holism, wholes are regarded as

inexplicable in terms of parts, thus every system is considered indivisible or atomistic. Hence the notions of

‘parts’ and ‘levels’ of greater or lesser inclusion are rendered meaningless, and the concept of ‘atom’ changes

for each system considered. Such a methodology denies the attempt to explain any system in terms of others,

and restricts understanding to observation alone; it therefore must lie outwith the practice of science.

Apparent holism is particularly common in the popular science literature and popular press (Lovelock,

1991; Eldredge, 1995; Polkinghorne, 1996), and is sometimes used (or abused) to imply that reductionist

science is harmful or dangerous (Rose, 1997; Volk 1997; Turney, 1998; Rifkin, 1998). For instance, Capra

(1996, p5): argues that species extinctions, population explosion, third world debt and ethnic violence are

“just different facets of one single crisis, which is a crisis of perception” (p 5). Capra (p6) suggests that

solution to these problems requires a “paradigm shift” from “outmoded” reductionist thinking to “a holistic

worldview, seeing the world as an integrated whole rather than a dissociated collection of parts”. Goodwin

(1998b) reviews Turney (1998) agreeing that reductionist science has led to disturbing practices including

vivisection, eugenics, genetic engineering, in vitro fertilisation and ‘designer babies’, and also appends his

own list of “other biological nightmares” (p 49); suggesting “continuing public anxiety about the practice

and applications of science should be read as a correct diagnosis of a pathology in the type of science we
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pursue” (p 49). These and other concerns are also raised in Appleyard (1999), Rifkin (1998), Scheider (1996)

and are countered in Wolpert (1999).

Whilst the question of holism over reductionism might seem esoteric or outmoded, it is of fundamental

importance because its debate in the public domain reflects and influences the public perception of science.

The limitations of reductionism are not those imposed by thinking of systems in terms of their parts, but

by the way we represent and analyse those parts. A system need never be greater than the sum of its parts,

if one does the sums correctly.
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Box 1

The formal functional representation of the natural numbers due to Church (Barendregt, 1987) is well

known. By way of contrast there are many ways to construct the natural numbers as processes or objects,

for simplicity we use CCS (Milner 1980, 1989). The example below shows that we represent both the

objects (in this case numbers) and the glue (operators) between them as processes. By convention names

starting with a lower case letters are actions (with overbarring denoting the output duals of the default input

behaviour), and Names starting with an upper case letter are states. The operators: | is parallel composition,

+ is choice, . is action prefix, [a/b] renames action a by action b and \{a, . . .} denotes restriction or context

closure, see (Milner 1989) for the formal presentation of this reasoning methodology. For those unused to

formal representations of the natural numbers the below may seem cumbersome, but in fact is no harder,

indeed in many ways simpler than the standard functional approaches (Barendregt, 1987).

DZero
def
= done.DNil

DOne
def
= one.DZero

DTwo
def
= one.DOne

DThree
def
= one.DTwo

...
...

...

DN
def
= one.(DN − 1)

Three
def
= (copy.Three|DThree)

N
def
= (copy.DN |N)

Do Add
def
= copy.copy1.copy2.done1.done2.done.Do Add

Add(N,M)
def
= (N [copy1/copy, done1/done]|M [copy2/copy, done2/done]|

Do Add)/{copy1, copy2, done1, done2}

Do Minus
def
= copy.copy1.copy2.Doing M

Doing M
def
= onel.(oner.Doing M + donel.Done M1) + donel.Done M1 + doner.Done M

Done M1
def
= onel.one.Done M1 + doner.Done M

Done M
def
= done.Do Minus

Sub(N,M)
def
= (N [copy1/copy, donel/done, onel/one]|M [copy2/copy, done2/done, oner/one]|

Do Add)/{copy1, copy2, done1, done2}

In the above we define addition and subtraction; it is similarly straightforward to define multiplication
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and division in this style. It should be noted that by inheriting state from the numbers involved in the

operators, the operators in this view do not have to count themselves, and therefore we have not used

the power of the natural numbers to represent operators over them, as one would hope. Indeed one can

demonstrate that functions are just special types of process that do not have internal state. Hence in some

circumstances it is possible to abstract from a process theoretic system description to a functional one.

13


