

Polaris: Virus Safe Computing for Windows XP

Marc Stiegler, Alan H. Karp, Ka-Ping Yee1, Mark Miller2
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2004-221
December 1, 2004*

security, virus,
Microsoft
Windows

Polaris is a package for Windows XP that demonstrates that we can do
better at dealing with viruses than has been done so far. Polaris allows
users to configure most applications so that they launch with only the
rights they need to do the job the user wants done. This simple step,
enforcing the Principle of Least Authority (POLA), gives so much
protection from viruses that there is no need to pop up security dialog
boxes or ask users to accept digital certificates. Further, there is little
danger in launching email attachments, using macros in documents, or
allowing scripting while browsing the web. Polaris demonstrates that we
can build systems that are more secure, more functional, and easier to
use.

* Internal Accession Date Only
1Also, University of California, Berkeley
2Also, Johns Hopkins University Approved for External Publication
 Copyright Hewlett-Packard Company 2004

 1

Polaris: Virus Safe Computing for Windows XP
Marc Stiegler, Alan H. Karp, Ka-Ping Yee1, Mark Miller2

Hewlett-Packard Laboratories
Palo Alto, California

Viruses, those nasty pieces of software that can run when you launch an email
attachment, edit a file with macros, or visit web a page that uses scripts, are an ongoing
problem. Unlike some malware that depends on security holes in a piece of code, these
kinds of viruses aren’t exploiting flaws; they’re using the system the way it was designed
to be used. How can that be?

All widely used operating systems, not just Windows, base their security on the identity
of the logged in user. That means every program you run can do anything you can do,
whether you want it done or not. It is this flaw in the basic design of our systems that
viruses exploit. They do things you’re allowed to do that you don’t want done. The
problem is the excess authority that every program gets. There’s no reason Solitaire
needs the ability to search your disk for secrets and send them to your competition.
There’s no reason Excel needs the ability to put a Trojan horse in your startup folder.
Yet, on today’s systems that’s simply the way things work. This view is so ingrained in
the thinking of computer users that the first of Microsoft’s 10 Immutable Laws of
Security [12] states, “If a bad guy can persuade you to run his program on your computer,
it's not your computer anymore.”

A common means of dealing with this
problem is sandboxing, which involves
setting up a set of rules for each program, as
in Java 2 Security [10]. A failing of
sandboxing is that the rules are static.
Adding authorities to a running program,
such as to open a file, is often difficult in
such systems. The alternative is to control
access to individual resources, but to date
such systems have been too hard to use.
Many such applications constantly nag the
user with “May I?” dialog boxes, such as
one from Java Web Start [11] shown in
Figure 1.

Figure 1. "May I?" request from Java Web Start.

Although the user can hide this advisory for the duration of this run, the fact that it is
needed at all indicates that there is no distinction between requests made by the user and

1 Also, University of California, Berkeley.
2 Also, Johns Hopkins University.

 2

those made by the software. Hence, hiding the advisory may allow the software to take
actions counter to the user’s wishes.

This view that a system with fine-grained control is unusable translates into the belief that
we must group authorities into relatively large chunks [6]. Such systems appear on the
surface to be easy to use; issue a command, and it runs. Experience has shown, however,
that such systems become quite hard to use when we try to prevent viruses from abusing
these excess authorities. There are virus scanners to be updated and run on a regular
basis. There are firewalls to be configured. Even worse, blocking the attacks reduces
functionality. Security advisories tell us “Don’t launch email attachments.” “Disable
macros in documents”. “Turn off scripting on web pages.” The final blow is that
systems that grant large chunks of authority are hard to use. We’re all familiar with
dialog boxes such as the one shown in Figure 2.

This dialog box asks you
to choose between not
getting your work done
and losing control of your
machine. Even worse, it
doesn't give you
sufficient information to
make an intelligent
decision. Why is the
macro needed? What
damage might it do? You
have no way of knowing.

Figure 2. Dilemma posed by Excel.

Polaris is a package for Windows XP that demonstrates that we can do better. Polaris
allows users to configure most applications so that they launch with only the rights they
need to do the job the user wants done. This simple step, enforcing the Principle of Least
Authority (POLA), gives so much protection from viruses that there is no need to pop up
security dialog boxes or ask users to accept digital certificates. Further, there is little
danger in launching email attachments, using macros in documents, or allowing scripting
while browsing the web. Polaris demonstrates that we can build systems that are more
secure, more functional, and easier to use.

Using an Application under Polaris

We have found from our earlier work on CapDesk [7] that combining designation with
authorization allows us to manage fine-grained authorities while making almost all of the
security decisions disappear into the background. Double clicking on the icon for a
spreadsheet to launch Excel is an act of designation. In Polaris, we treat the act of
designation also as one of authorization. Polaris allows users to configure most
applications so they launch in polarized mode, that is with only the rights they need for
the job the user wants done.

 3

Of course, the process running polarized Excel needs access to more than just the file
being edited. It needs access to its own executable, for one. Most programs also have a
large number of auxiliary files, such as shared libraries or fonts. Many times they create
temporary files. Since access to these files is needed every time the application runs,
regardless of which file it is editing, we give each application an installation endowment
consisting of the ability to read these files, another concept we carried over from
CapDesk [7]. It is this coupling of an installation endowment and the combining of
designation with authorization that makes the security decisions part of the user’s normal
activity.

Unlike sandboxing or Java Web Start, Polaris is able to add to the authorities available to
a process without any extra effort on the part of the user. The user simply clicks the File
Open icon. Polaris detects the dialog box and replaces it with one from the PowerBox, a
process that has access to all the user’s files. After the user selects a file, Polaris makes
that one file accessible to the running program. There are no extra security decisions to
be made. Polaris infers what authorities the user wants to grant by detecting the user’s
acts of designation in the PowerBox. The Powerbox is the third concept Polaris adopted
from CapDesk [7].

Polarizing an Application

An application needs to be configured to run safe from viruses, a process we call
polarization. We call an instance of a polarized application a Pet. Figure 3 shows the
dialog box set up to configure a Pet to run Excel. The user selects a Pet Name for the pet.
This pet name will appear in the title bar of each window running the pet, giving the user
a convenient verification that the program being run is safe from viruses. If the user
specifies file extensions, the Pet will launch when the user clicks on the icon for a file
with one of these extensions.

Figure 3. Polarizing an application.

 4

It often makes sense to have more than one pet for a given application. For example, a
user might have one browser pet for the Intranet, another one for the Internet, and a third
one for reading files from disk. Since each pet runs in a separate user account, the user
can have the Intranet pet remember passwords without worrying that visiting some
external web site with the Internet pet will reveal them. If the browser can be configured
to treat all web sites as untrusted, the pet for reading files can’t accidentally run a
malicious script.

Visual Cues

It is important that the user be aware of the security environment, but the cues should not
be obtrusive [13]. As shown in Figure 4, Polaris modifies the title bar of the window
running the application. If a pet is running in the window, the pet name appears. If the
application was not launched under Polaris, the pet name is left blank. We also take
advantage of a feature of Windows XP that let’s us change the color of the title bar of
windows running pets.

Figure 4. Visual indication of protection state.

These same visual cues appear in all sub-windows, which is important when more than
one application is open. For example, a macro virus running in Excel could open a file
dialog box that overlaps a window running Word. Without a visual cue, the user might
select a file without knowing which application would get permission to edit it.

Just because an application has been Polarized doesn’t mean the user is prevented from
using the unsafe version. The user can either launch the application directly or right click
on an icon for the file, and select Open instead of OpenSafe. Launched this way, the
application runs in the user’s account with all the user’s permissions. However, if a virus
runs in an unpolarized application, it will be able to abuse any of the user’s authorities.

 5

How Polaris Works

Polaris doesn’t change the operating system or the applications; all that changes is the
way applications are launched. Instead of starting the application in the logged in user’s
account, a polarized application is launched in a restricted user account that has very few
permissions. This procedure uses the operating system’s security mechanisms to limit
what the software, including any viruses it contains, can do.

As Figure 5 shows, Polaris launches the application in steps. First, it copies the file to a
folder accessible to the restricted account. Next, it sets up a synchronizer to keep the
copy and the original file consistent. Finally, Polaris launches the application under the
restricted user account using a variant of the Windows RunAs command [8].

Figure 5. Starting an Excel pet.

If a virus runs in the restricted account, the only thing it can damage is the file it’s in. It
has no ability to modify the user’s startup folder, nor can it read other files looking for
secrets. If the browser has been polarized, malicious scripts can’t plant executable
spyware and adware on the user’s system, nor can they harm the machine. A number of
users in our pilot study who have visited web pages containing viruses can attest to this
last claim.

There are two reasons not to simply change the Windows Access Control List (ACL) and
edit in place. First, many applications, for example Microsoft Word, create temporary
files in the same directory as the documents they open. These applications would only
work properly if we granted both read and write authority to the entire directory
containing the document. Doing so would greatly increase the damage that a virus could
do. The second reason has to do with the difference between permission and authority
(see sidebar). As implemented, the restricted user account has the authority to effect
changes to the original file, but it never gets permission. The advantage is that the
authority is revoked when the synchronizer is stopped, for example when the machine

 6

crashes. By properly distinguishing authority from permission, Polaris doesn’t leave any
dangling permissions to be cleaned up later.

Status

The pre-Alpha version of Polaris has been used by about 20 people in HP Labs, some of
them for six months or more. This pre-Alpha version has some significant shortcomings,
most noticeably when adding authorities to a running program. Nevertheless, for the
most part our users aren’t aware of its presence. In fact, one executive used Polaris with
no problems for several days before we had a chance to tell him what we’d done to his
machine.

The Alpha release of Polaris is currently available under a controlled roll-out. We have
added additional users at HP Labs and started pilots at the School of Public Policy at
George Mason University and in a group in the US Navy. While we’d like additional
reference accounts, we’re limiting the number of test sites for the time being.

Future Work

The most noticeable problem with this release is that launching applications is somewhat
slow. In addition, this version does not handle linked files very well, such as
spreadsheets containing references to other spreadsheets. Also, Java applications will
shut down after a brief period of operation under Polaris. We have solutions to these
problems that we plan to incorporate in the Beta version.

There are some problems we don’t know how to solve. Direct 3D is incompatible with
the security machinery inside Polaris. Hence, over half of all game software is
incompatible with Polaris. Less significant is the fact that PGP won’t run polarized and
some operations of the Cygwin command shell, which attempts to emulate a Unix bash
shell on Windows, modifies access control lists in a manner that is incompatible with
Polaris.

There are some attacks we haven’t yet blocked. The current release does nothing about
limiting network access, which means that a virus could send the contents of the
document being edited to a competitor. We have a solution to this problem that we plan
to incorporate into the Beta release. A problem we don’t have a solution for is the GUI
hole. Due to a fundamental design flaw in Windows, any application can read GUI
events sent to any window on the screen. This flaw is exploited by keyboard sniffers, for
example. Any application can send GUI events to any window on the screen. That
means that a virus could send requests for additional authorities to the PowerBox, and
select any file on the system. However, if Polaris gets adopted widely enough that virus
writers are attacking the PowerBox, we’ll have achieved our goal of making the world far
safer from viruses than it is today.

 7

Summary

By applying the Principle of Least Authority to individual programs, Polaris provides
effective protection against viruses while simultaneously improving usability and
functionality. Running Polarized applications will prevent any viruses that run in them
from doing very much harm. Parts of the system that viruses attack, such as the
Windows directory, the user’s startup folder, and most of the Windows registry, are safe.
With Polaris, we can start to take advantage of all the money that was spent developing
powerful macro languages, use email to send programs to each other, and enable the true
power of web scripting, all without opening up our systems to attack.

References

1. Spafford, E. H., “The Internet Worm Program: An Analysis”, ACM SigComm
Computer Communications Review, 19, #1, pp. 17-57, January 1989

2. CERT, “Love Letter Worm”, Advisory CA-2000-04,
http://www.cert.org/advisories/CA-2000-04.html, May 2000.

3. Raymond, E. “The Jargon File”, http://www.eps.mcgill.ca/jargon/jargon.html.
There’s no date on the web page, but the language makes it clear that the text was
written quite some time ago.

4. Saltzer, H. H. and Schroeder, M. D., “The Protection of Information in Computer
Systems”, Proceedings of the IEEE, 63, #9, pp. 1278-1308, September 1975

5. Miller, M. S. and Shapiro, J. L., “Paradigm Regained”, 2003
6. Kamp, P.-H. and Watson, R., “Building Systems to Be Shared Securely”, ACM

Queue, 2, #5, pp. 42-51, July/August 2004
7. Stiegler, M. D. and Miller, M. S., “E and CapDesk”,

http://www.combex.com/tech/edesk.html.
8. RunAsX, http://www.incog.freeserve.co.uk/runasx.html.
9. GAO, “Technology Assessment: Cybersecurity for Critical Infrastructure

Protection“, GAO-04-321, pg. 27, May 2004
10. McGraw, G. and Felten, E. W., Securing Java: Getting Down to Business with

Mobile Code, 2nd Edition, Wiley:New York, 1999
11. Kim, S., “Java Web Start: Developing and Distributing Java Applications for the

Client Side”, http://www-106.ibm.com/developerworks/java/library/j-webstart/.
12. Microsoft, “10 Immutable Laws of Security”,

http://www.microsoft.com/technet/archive/community/columns/security/essays/1
0imlaws.mspx.

13. Yee, K-P, “User Interaction Design for Secure Systems”. In Proceedings of the
International Conference on Information and Communications Security, Springer-
Verlag LNCS 2513, p. 278-290, 2002.

Sidebar: Viruses and Worms

The terms virus and worm have been used interchangeably to describe somewhat
different types of malware. We use a loosely followed distinction that worms propagate
on their own, but viruses are only spread by people. The prototypical worm was released

 8

by Morris in 1989 [1]. An early virus is Love Letter [2], which induces people to open its
attachment, a VBS script. Once launched, this script makes several modifications to the
machine and sends copies of itself to all entries in all the Outlook address books on the
system. The definitions we use here are officially accepted by the US Government [9].
“The Jargon File”[3] also supports these definitions.

worm n.

[from `tapeworm' in John Brunner's novel "The Shockwave Rider", via XEROX PARC]
A program that propagates itself over a network, reproducing itself as it goes. Compare
virus. Nowadays the term has negative connotations, as it is assumed that only crackers
write worms. Perhaps the best-known example was Robert T. Morris's Great Worm of
1988, a `benign' one that got out of control and hogged hundreds of Suns and VAXen
across the U.S.

virus n.

[from the obvious analogy with biological viruses, via SF] A cracker program that
searches out other programs and `infects' them by embedding a copy of itself in them, so
that they become Trojan horses. When these programs are executed, the embedded virus
is executed too, thus propagating the `infection'. This normally happens invisibly to the
user. Unlike a worm, a virus cannot infect other computers without assistance.

The question is hardly settled, though. The title of a CERT advisory is “Love Letter
Worm” [2].

Sidebar: Privilege, Permission, and Authority

The security community often refers to the Principle of Least Privilege [4]. However,
exactly what constitutes a privilege isn’t clear. One attempt at a definition [5] introduces
the distinction between permission and authority. The authors define permission to be
the set of rules as written down, say in an access control list, and authority to be the set of
actions a process can cause to happen. The latter combines the set of permissions with
the behavior of parties having these permissions.

Consider a web server. The process running the server has permission to read the files of
the web site; there is a specific entry in the ACL for each file. Someone visiting the web
site has no entry in the ACL but still can read the contents of the file because the server
presents the information. Hence, the visitor has authority to read the files even though
there is no explicit permission granting the access.

Security analysis that considers only permission will be incomplete. Security analysis
that includes authority is necessarily limited by our ability to understand the behavior of
programs. Fortunately, it is often possible to get a usable bound on the authority
available to any process [5].

