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Abstract

This report addresses the problem of calibrating camera parameters such as lens distortion and color scaling

using variational methods. We have presented multi-view stereo techniques based on variational ideas to (i)

evolve pose parameters of a 3D model object to take advantage of the known shape of calibration objects, and

to reduce computational complexity, (ii) evolve distortion parameters of cameras given a 3D model shape, (iii)

evolve color calibration parameters of cameras given a 3D model shape.

1 Introduction

The problem of recovering 3D representation of scenes from multiple 2D images has been one of the main

research interests in computer vision. Many of the existing stereo techniques involve pre-processing the

camera images to extract 2D features such as corners, lines, and contours of objects in the scene. These

features are then used to find correspondences between camera views. In practice, searching for features

and establishing correspondences using epipolar geometry techniques is not an easy task due to noise and

local extrema. Early variational approaches to the 3D reconstruction problem were pioneered by Faugeras

et.al. [1] who also relied on local feature matching. A more recent variational approach by Yezzi and

Soatto [2] proposed a joint region-based image segmentation and simultaneous 3D stereo reconstruction

technique. This report addresses camera calibration techniques built on this later stereo reconstruction

framework which avoids searches for local correspondences and is versatile enough to accomodate the

new applications to be shown.

Camera calibration refers to the problem of finding the mapping between the 3D world and the camera

or image plane. For most computer vision algorithms aimed at reconstructing reliable digital repre-
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sentations of 3D scenes, accurate camera calibrations are essential. For geometrical measurements for

instance, the camera lens distortion is an important issue, and will result in inaccurate 3D reconstructions

if not taken into account. Another common problem in multi-view stereo techniques is caused by color

miscalibrations between cameras due to different sensor characteristics.

The contributions presented in this report are as follows. We first present a variant of the Yezzi-Soatto

algorithm in which a 3D object is allowed to move with a semi-affine motion model in Section 2. We

developed this scheme for our applications in calibration, where the 3D object shape is roughly known (up

to 3 scales and rigidity) to obtain more efficient and faster algorithms. We then present a novel technique

for lens distortion calibration in Section 3 and a novel technique for relative inter-camera color calibration

in Section 4. Conclusions and future work directions are given in Section 5.

2 Evolution Equations of 3D Object Motion Parameters

The Yezzi-Soatto 3D stereo reconstruction model builds a cost on the discrepancy between the reprojec-

tion of a model surface with a radiance f (radiance of background g), and the actual measurements from

multiple camera views. Let gi denote the transformation from world coordinates to camera coordinates:

gi : ~X −→ ~Xi, and π denote the perspective transformation from camera frame to the image plane:

π : ~Xi =−→ ~xi = (xi = Xi

Zi
, yi = Yi

Zi
)T .

On the image plane, the cost functional for the Yezzi-Soatto model can be written as a joint segmenta-

tion problem over regions of n camera images Ii:

E =
n∑

i=1

∫

Ri

[f((π ◦ gi)
−1(~xi)) − Ii(~xi)]

2d~xi +
n∑

i=1

∫

Rc
i

[g − Ii]
2d~xi (1)

This energy can be lifted back onto surface S :

E(S) =

n∑

i=1

∫

S

[(f( ~X) − Ii(π ◦ gi( ~X)))2 − (g − Ii)
2] Xi( ~X)σ( ~Xi)dA, (2)

where σ is the Jacobian of the change of coordinates from the image plane to the surface, and Xi is the

visibility function of a voxel on the surface. The deformation of the surface S w.r.t. this energy or data

fidelity measure is then obtained by finding the Partial Differential Equation (PDE) which is the gradient

descent flow of the energy E. A popular class of numerical techniques known as Level Sets Methods [3],

is utilized to evolve the surface S via the evolution of a 3D function Ψ : R
3 −→ R. Nevertheless,

an update of the level set function is required after each iteration of the associated PDE, and even with

more efficient narrowband schemes [4], there is a considerable amount of computation involved. For our
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intended applications, in which there is a calibration object whose shape can be roughly known a priori,

rather than deforming the surface of the 3D object, we will evolve its pose and scale parameters instead.

Next, we will derive the equations to update the parameters of the surface motion, which is more gen-

eral than a similarity but less general than a fully affine (which we refer to as semi-affine) transformation,

using the energy E in Eq. (2).

Let the original rigid surface be denoted by So, then S = g(So), or ~X = g( ~Xo) = Rs
~Xo + Ts, and let

λ denote parameters of the rigid motion g. Then the gradient of the energy E w.r.t. λ is given by:

∂E(λ)

∂λ
=

∫

S

∑

i

Fi( ~X) <
∂ ~X

∂λ
, ~N > dA,

=

∫

So

∑

i

Fi(g( ~Xo)) <
∂(g ~Xo)

∂λ
,Rs

~No > dAo

where Fi includes data and visibility related terms. Note that the visibility function Xi(g( ~Xo)), in-

cluded in the data term Fi(·) is computed using the original visibility function but compensated for by

the RT
s ( ~Ci − Ts) ), where ~Ci is a camera center.

For translation parameters:

<
∂(g ~Xo)

∂λ
,Rs

~No >= Rs
~No.

For rotation parameters:

<
∂(g ~Xo)

∂λ
,Rs

~No > = < Rs








0 Zo −Yo

−Zo 0 Xo

Yo −Xo 0








, Rs ~No >

= < −Rs
~̂Xo, Rs

~No >= − < RT
s Rs

~̂Xo, ~No >= − ~NT
o · ~̂Xo, (3)

where we utilize exponential coordinates (see [5] for details on this representation) for the global rotation

parameters of the surface.

For further flexibility in initializing a model surface, we add three scaling parameters along the X,Y,

and Z axes. Then the semi-affine (in between a similarity and a fully affine) transformation for a point

Xo on the surface becomes: ~X = g( ~Xo) = RS ~Xo + T , where S =








sx 0 0

0 sy 0

0 0 sz








. The gradient of

the energy w.r.t. the scaling parameters λ = sj is similar to the above derivations:

∫

So

∑

i

Fi(g( ~Xo)) <
∂(g ~Xo)

∂λ
,Rs

~No > dAo
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where

<
∂(g ~Xo)

∂λ
,Rs

~No >=< Rs
∂S

∂λ
~Xo, Rs

~No >= ~Xo · ~No. (4)

The evolution equations for the motion parameters λj are given by:

∂λj

∂t
= −

∂E

∂λj
=

∫

So

∑

i

Fi(g( ~Xo)) < ~NT
o · ~̂Xo > dAo, (for rotation), (5)

∂λj

∂t
= −

∂E

∂λj

= −

∫

So

∑

i

Fi(g( ~Xo)) < Rs
~No > dAo, (for translation). (6)

The evolution equations for the scaling parameters λj are given by:

∂λj

∂t
= −

∂E

∂λj

= −

∫

So

∑

i

Fi(g( ~Xo)) ( ~Xo · ~No) dAo, (for scaling). (7)

Note that we can generalize this idea in a straightforward fashion by considering S to be more general

than a simple diagonal matrix in order to accomodate a fully affine motion of the surface.

We will use equations (5-6-7) in updating the pose of the surface S to estimate its correct placement in

the 3D space for the calibration applications presented in Sections 3 and 4.

3 Lens Distortion Calibration

The linear model in an ideal pinhole camera model [6] leads to imaging of world lines as lines on the

image plane, and simplifies many computations and considerations. However, for most real cameras with

low-cost or wide-angle lenses this assumption does not hold, and nonlinearities introduced by a well-

known phenemonen referred to as a lens distortion should be taken into account. The corresponding

distortion parameters should be estimated for each camera.

In many existing calibration techniques, good estimates for external camera parameters (relative pose of

the cameras with respect to the origin of world coordinate frame), and internal parameters (focal length,

image aspect ratio, principal point, ...) are first obtained by a pinhole camera model neglecting lens

distortion. Then distortion calibration is performed while holding the other parameters fixed [7–9]. This

is possible because the mapping from 3D world coordinates to the 2D image plane can be decomposed

into a perspective projection and a mapping that models the deviations from the ideal pinhole camera.

The distortion mapping is usually a function defined from the ideal image plane to the distorted image

plane. One approach is to decompose it into two terms: radial and tangential distortion [7]. The radial

distortion is a deformation along the radial direction from a center of distortion point to an image point,

and the tangential distortion is a deformation in a direction perpendicular to the radial direction, and is

negligible in the context of many computer vision applications. To model the radial distortion effects, a
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commonly used distortion function D(r) is given by (1 + k1r
2 + k2r

4 + ...) where r is the radius from

the center of distortion to a point on the ideal image plane. The principal point is often used as the center

for radial distortion [6], which we will also adopt.

A popular group of lens distortion calibration methods in the literature, mainly under the category

known as plumb line methods, rely on a first step of extracting edges from the images. Either a user man-

ually selects the image curves or there must be a way to reliably estimate image edges which correspond

to linear 3D segments in the world. An optimization problem is set up by defining a measure of how much

each detected segment is distorted. The curved lines in the image which do not really correspond to 3D

line segments will constitute outliers in this optimization procedure. Other techniques such as [10] rely

on point correspondences. Given a set of 3D points, the associated epipolar and trilinear (among three

cameras) constraints are arranged into a tensor, which is computed with estimated distortion parameters

at each step to minimize a reprojection error in an iterative manner.

Next we present a new distortion calibration technique in which we do not rely on extraction of edges

and search for point correspondences. Instead, we devise an integrated calibration technique in which the

distortion parameters of cameras are computed in a tightly coupled framework. The desired coupling of

multiple camera views comes from estimating a common 3D object (in this case the calibration object).

In other words, we minimize the cost between the reprojection of the 3D calibration object and the image

measurements by evolving the distortion parameters of the cameras. The details are presented next.

3.1 Calibration of the Lens Distortion Parameters

Our notation is as follows:

(World) ~X −→
︸︷︷︸

gi

~Xi −→︸︷︷︸

π

~xi =








Xi

Zi
= xi

Yi

Zi
= yi

1








−→
︸︷︷︸

D

~̂xi −→
︸︷︷︸

0

B

B

B

B

B

B

@

Lu 0 u0

0 Lv v0

0 0 1

1

C

C

C

C

C

C

A

(u, v) (image coordinates),

where D is the distort function:

~̂xi = D~xi = (1 + ki
1r

2 + ki
2r

4 + ki
3r

6 + ...)~xi, (8)

r2 = (x2
i + y2

i ), and ki
j is the jth distortion coefficient for camera i.

The gradient of the energy E (1), defined over the distorted image plane instead of the ideal plane, w.r.t.

distortion parameters ki
j is given by

∂ki
j

∂t
= −

∂E

∂ki
j

= −

∫

Ĉi

Fi((D ◦ π ◦ gi)
−1 ~̂xi) <

∂ ~̂xi

∂ki
j

, ~̂ni > dŝ (9)
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where ŝ is the arclength of the contour Ĉi on the image plane (the distorted or actual observed image

coordinates), and note that we assumed a piecewise constant radiance model on the surface and the

background to simplify the computations.

We can compute ∂ ~̂xi

∂ki
j

as follows:

∂ ~̂xi

∂ki
1

= r2 ~xi,
∂ ~̂xi

∂ki
2

= r4 ~xi,
∂ ~̂xi

∂ki
3

= r6 ~xi, · · · (10)

hence ∂ ~̂xi

∂ki
j

= r2j ~xi, and

<
∂ ~̂xi

∂ki
j

, ~̂ni > dŝ = < r2jπ( ~Xi), J
∂

∂s
(D ◦ π) ~Xi > ds

= < r2jπ( ~Xi), JD′ ◦ π′ ∂

∂s
~Xi > ds (11)

where J denotes the 2 × 2 ninety degree rotation matrix, D ′ = (1 + ki
1
r2 + ki

2
r4 + ki

3
r6 + ...), and

π′ denotes the Jacobian of π. After lifting the integral in Eq.(9) back onto occluding boundary Ci of the

surface, and some further manipulations, we get

∂ki
j

∂t
=

∫

Ci

Fi
r2jD′|| ~Xi||

Z3
i

< ~Ni,








Xi

Yi

0








> ds (12)

as the calibration equation for the lens distortion parameter k i
j .

Note that the distortion calibration method we propose can handle different models of distortion by

changing the D function, and related derivatives in Eq.(10).

3.2 Using Several Poses of the Object

When camera views from multiple poses of the object are available, we can take advantage of the exis-

tence of variously distorted views in calibrating the lens distortion. In the first phase, we estimate both

pose and distortion coefficients from separate experiments. To simplify the explanation, let us assume

that we want to solve for only one distortion coefficient ki for each camera i. Once we obtain rough

estimates for the object pose and distortion coefficients ki, we can fuse a “common distortion” k̃i from

these separate experiments for each camera i and then jointly evolve k̃i’s as follows:

∂k̃i

∂t
=

Mposes
∑

m=1

∫

Cm

Fi,m
r2jD′|| ~Xi,m||

Z3
i,m

< ~Ni,m,








Xi,m

Yi,m

0








> ds (13)
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At the same time, we evolve the pose parameters of separate poses of the object, only difference being

the incorporation of the new “common distortion” in the equations. For instance, we do evolve any of

them for a given pose as follows:

∂λ

∂t
= −

∑

i

∫

So

Fi(g( ~Xo)) <
∂(g ~Xo)

∂λ
,Rs

~No > dAo (14)

where Fi includes computation of Ii(D · π · gi (g( ~Xo))) with the new common distortion coefficients k̃i

in the multiplying distortion factor D.

3.3 Experimental Results

We tested our distortion calibration algorithm using a white bar object, made from a foam core as shown in

Fig.1. We captured its views before a dark background with the multi-view stereo rig system, a desktop

multi-camera system designed for remote multimedia collaboration, developed by HP Labs [11]. The

images of the calibration object captured from three of the five cameras in the rig are given in Fig.2.

Many desktop multi-camera systems use wide angle and inexpensive camearas which produce severe

distortion effects as can be observed in these camera images. For our calibration algorithm, we initialize

a surface model of the real calibration object which is shown from several vantage points in Fig.3.

Figure 1: Photograph of the calibration object.

Figure 2: Three out of five camera views of the real calibration object.
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Figure 3: Initialized surface model shown from three different vantage points.

After initializing the surface, the first phase of our algorithm is to evolve its pose parameters to position

the 3D object model roughly in the correct location in 3D space. For the experiments presented in this

report, we have used three different poses of the calibration object, but we can increase the number of

poses used in the process. Example evolutions of the pose parameters are shown in Fig.4, for three

different pose captures of the calibration object in each column (showing only one camera view for each

pose). The distortion coefficients are also evolved at a slower pace. That is, the time step used in the

associated PDE is small in the first phase. In the experiments, the distortion function D in Eq.8 with one

distortion coefficient k1 for each camera is used.

After the separate evolutions for each of the poses have converged, common initial distortion coeffi-

cients are computed as the average of the results from phase 1. In the second phase of the algorithm, we

evolve the distortion coefficients for each camera again separately but summed over different poses. We

show sample views of pose 1, 2, and 3 in row 1 of Fig.s 5-6-7. As the distortion coefficients converge

to true values, the reprojection of the surfaces onto the distorted views results in a better match to the

image data and continues to minimize the overall energy. Such images with reprojections are shown on

the second row of Figures 5-6-7. The undistorted views shown as well on the third row. The straightening

effect of this operation on the curved lines can be clearly observed in these images.

4 Color Calibration

In this section, we present a variational approach to color calibration problem in multi-camera systems.

Variations in the characteristics and responses of each camera due to ambient conditions like temperature,

manufacturing differences, and so on, result in different color measurements between cameras. This

affects the algorithms that depend on these measurements. Camera color calibration refers to the problem

of estimating the color calibration parameters of cameras to overcome these unwanted effects. A common

approach taken toward this problem is to calibrate each camera independently through comparisons with
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known colors on a color calibration object.

The current color calibration object is a color cube with patches of known colors whose images are

captured from each camera. Demosaicing coefficients are calculated independently for each camera based

upon the absolute colors on the calibration object and the measured color responses of each camera. Slight

errors and differences that arise from this independent calibration procedure sometimes lead to noticeable

seams or discontinuties in the texture mapping process during the transition of the texture map between

neighboring cameras. Our goal is to help even out these discrepancies by devising a relative inter-camera

color calibration technique in which demosaicing parameters of cameras are calculated jointly in a tightly

coupled framework rather than just one camera at a time.

Similar to our approach to lens distortion calibration, the desired coupling of the multiple camera

views comes from estimating a common 3D shape, and in addition a common radiance function for the

calibration object (in this case, the color cube). We again take advantage of the fact that the object shape

is known up to location and scale to simplify the problem. Hence, we estimate the pose parameters of the

cube, the radiance function on the cube, and the color calibration coefficients for each camera.

The differences in absolute colors measured in the response of each camera are modeled by a simple

multiplicative factor in its gray scale measurements and an additive offset parameter. Note that we will

extend this framework to color RGB and to RGGB images in a straightforward fashion later.

The first variation of our energy functional E using this model leads to a gradient descent flow for the

color calibration parameters αi and βi for each camera i:

∂E

∂αi
= −2

∫

Ri

[f − (αiIi + βi)]Iid~x − 2

∫

Rc
i

[g − (αiIi + βi)]Iid~x,

∂E

∂βi
= −2

∫

Ri

[f − (αiIi + βi)]d~x − 2

∫

Rc
i

[g − (αiIi + βi)]d~x.

In our experiments, we utilized white noise additive offsets and multiplicative scaling coefficients to

perturb the measured images, thereby exaggerating the effect of color miscalibrations. First, we initialize

a model cube, and a radiance function on the cube, as shown in top row of Fig.4 along with two out of

five camera views. Evolutions of the pose parameters of the cube, and the radiance function are shown in

rows 2 and 3. The next three rows show how the greyscale values in these views change as the calibration

coefficients are evolved ( the first row: the original captured three views, the second row: views with

simulated miscalibration effects, the third row: views after the evolution of color calibration coefficients

are completed).
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5 Conclusions and Future Work

We have presented new multi-view stereo techniques to:

• evolve pose parameters of a 3D model object to take advantage of the known shape of calibration

object, and to reduce computational complexity

• evolve distortion parameters of cameras given a 3D model shape

• evolve color calibration parameters of cameras given a 3D model shape

Pros and cons of these techniques along with future research directions are listed as follows:

• For the distortion calibration technique, the algorithm assumes knowledge of external and internal

camera parameters. A future research direction would be to devise and integrate the calibration

techniques for those parameters into the system as well. Indeed, an external camera calibration

technique built on the same framework was developed in [12]. This is a nice feature of the method-

ology adopted in this report, because it can integrate a whole bunch of small and different problems

such as distortion calibration, color calibration into an overall unified system based on the joint

segmentation framework, and simultaneously evolve pose, color, distortion, extrinsics, and other

parameters as well.

• A simplifying assumption of piecewise constant radiance model on the foreground 3D object and

the background is used. More realistic models such as the piecewise smooth assumption for the

foreground exist (see [13]). Our goal is also to devise and integrate the equations for a piecewise

smooth model for the background to lift the simplifying assumption mentioned above. With more

complex foreground and background models, these algorithms have an advantage in treating com-

plex scenes over point-matching-based algorithms where the point picks have to be made manually.

• The presented methods eliminate the need for search of image edges, point correspondences from

images, which can be very sensitive to pixel-level noise whereas our approach being based on

image regions for comparisons, is not as much sensitive to noise as the former.

• Possible use of these techniques exist in constructing a 3D representation of the visual hulls gen-

erated by the image-based visual hull systems such as the one currently used at HP Labs. In our

framework, a 3D volumetric object model is already available as a surface, and this representation

can be deformed, smoothed or processed as required in a convenient way by the associated PDEs

for geometry refinement or other purposes. The 3D shape representation is also suitable for high
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level perceptual uses, such as object recognition, face detection, and so on with its available vast

set of features. For instance, the surface curvature, normals, and other such geometric features are

easily computable from the current representation.

To visualize the mentioned potential, we constructed the surface representation of the visual hull

using silhouettes extracted by the Coliseum system of HP Labs. Three out of five camera views,

along with the visual hull from different vantage points are shown in rows 1 and 2 of the Fig.9

respectively. In rows 3 and 4, reconstruction of a 3D scalar radiance field (can be a vector field for

an RGB representation) on the surface is shown where the last row shows smoothing effects on the

very rugged initial visual hull representation.

• The framework onto which the techniques in this report are built, was based on only diffusivity

model of surfaces, however they are extendable to more general reflectance models with specularity

and diffusitivity as shown in [14].

• Another advantage of our framework is that it easily accomodates additional data. In the more

classical approaches to stereo, bringing in more data, or adding more images to the algorithm might

not help all the time, that is if something goes wrong in the independent segmentation phase of

even one image, it destroys the whole process of reconstructions and geometry. On the other hand,

adding more data to this joint segmentation framework, will only improve robustness, provide more

tolerance towards errors and nothing else.

• As for near future work of the distortion calibration method, more improvements will follow with

utilizing more poses, hence many more camera images of the calibration object, and more than one

distortion coefficient in the model selected. We can also utilize more general/complicated distortion

models than the simple polynomial D function. Also, accuracy assesment tests will be carried out.

• Camera calibration application is particularly suited to our framework, since it does not have to be

done in real-time which is not supported by these techniques for now, and also the environmental

conditions may be allowed to vary to a degree (e.g. our choice of a constant colored foreground

object before a dark background).

• Right now, we have an implicit representation of the calibration objects, i.e. the cube or the rect-

angular bar. Computing surface normals, visibility functions for the surface occluding boundary

from this implicit representation is not perfectly exact, and the quantities are slightly smeared. A

future direction towards more efficient algorithms, is to use an explicit representation of the cube
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with its nine parameters (scale, pose, orientation) to more accurately describe the occluding bound-

aries. With this approach, we won’t need 3D grids for the data structures in the algorithm, and will

increase both accuracy and speed.

As a result, the 3D stereo techniques based on variational ideas, and implemented via level set tech-

niques, leads to new research directions, and finds a wide variety of applications to various problems in

computer vision. We demonstrated the potential and versatility of these techniques with two applications

to camera calibration problem, and many possibilities and directions of improvement in this report.

References

[1] O. Faugeras and R. Keriven, “Variational principles, surface evolution pdes, level set methods and

the stereo problem,” Tech. Rep., INRIA, 1996.

[2] A. Yezzi and S. Soatto, “Stereoscopic segmentation,” Int. J. Computer Vision, vol. 53, pp. 31–43,

2003.

[3] S. Osher and J.A. Sethian, “Fronts propagating with curvature dependent speed: Algorithms based

on the Hamilton-Jacobi formulation,” J. Computational Physics, vol. 49, pp. 12–49, 1988.

[4] D. Adalsteinsson and J.A. Sethian, “A fast level set method for propagating interfaces,” J. Compu-

tational Physics, vol. 118, pp. 269–277, 1995.

[5] R.M. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to Robotic Manipulation, CRC

Press, 1994.

[6] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University

Press, Cambridge, UK, 2000.

[7] F. Devernay and O. Faugeras, “Straight lines have to be straight,” Machine Vision and Applications,

vol. 13, pp. 14–24, 2001.

[8] J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy

evaluation,” IEEE Trans. Pattern Analysis, and Machine Intelligence, vol. 14, pp. 965–980, 1992.

[9] Z. Zhang, “A flexible new technique for camera calibration,” Tech. Rep., Microsoft Research,

MSR-TR-98-71, 1998.

12



[10] G.P. Stein, “Lens distortion calibration using point correspondences,” in Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, 1997.

[11] H.H. Baker, D. Tanguay, I. Sobel, D. Gelb, M.E. Goss, B.W. Culbertson, and T. Malzbender, “The

coliseum immersive teleconferencing system,” Tech. Rep., HP Labs, HPL-2002-351, 2002.

[12] A. Yezzi and S. Soatto, “Structure from motion for scenes without features,” in Proc. IEEE Conf.

on Computer Vision and Pattern Recognition, 2003.

[13] H. Jin, A. J. Yezzi, Y-H. Tsai, L-T. Cheng, and S. Soatto, “Estimation of 3d surface shape and

smooth radiance from 2d images: A level set approach,” Tech. Rep., Preprint, 2003.

[14] H. Jin, S. Soatto, and A. Yezzi, “Multi-view stereo beyond lambert,” in Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, 2003.

13



Figure 4: Column 1: Pose1. Row 1: one camera image shown, Row2: with projection of initialized

surface (orange mask), Rows 3-5: during evolution of the pose parameters of the surface, Row 6: with

converged pose parameters. Columns 2-3: same as column 1 for poses 2 and 3, respectively.
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Figure 5: Pose 1. Row 1: Three out of five captured views. Row 2: Projected surface after distortion

parameters have converged. Row 3: Undistorted with the obtained distortion coefficients.

Figure 6: Pose 2. Row 1: Three out of five captured views. Row 2: Projected surface after distortion

parameters have converged. Row 3: Undistorted with the obtained distortion coefficients.
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Figure 7: Pose 3. Row 1: Three out of five captured views. Row 2: Projected surface after distortion

parameters have converged. Row 3: Undistorted with the obtained distortion coefficients.
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Figure 8: Top: Row 1: Two of the original views and an initialized cube. Row 2-3: Evolution of the

radiance on the cube and the pose parameters of the cube. Bottom: Row 1: Three original views. Row 2:

The same three different after deliberate simulated miscalibration of the greyscales. Row 3: The views

after evolution of the calibration parameters has completed.
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Figure 9: Row 1: Three different views, Row 2: Visual hull initialization from the extracted silhouettes

shown from 3 different vantage points, Row 3: radiance initialization on the surface, Row 4: After

smoothing the visual hull.
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