

Architecture for Resource Allocation Services supporting Interactive
Remote Desktop Sessions in Utility Grids

Vanish Talwar, Bikash Agarwalla1, Sujoy Basu, Raj Kumar, Klara Nahrstedt2
HP Laboratories Palo Alto
HPL-2004-218
November 23, 2004*

E-mail: vanish.talwar@hp.com, bikash@cc.gatech.edu, sujoy.basu@hp.com, raj.kumar@hp.com,
klara@cs.uiuc.edu

Resource Allocation
Service, Grid
Computing, remote
desktop sessions,
QoS

Emerging large scale utility computing systems like Grids promise
computing and storage to be provided to end users as a utility. System
management services deployed in the middleware are a key to enabling
this vision. Utility Grids provide a challenge in terms of scale, dynamism,
and heterogeneity of resources and workloads. In this paper, we present a
model based architecture for resource allocation services for Utility
Grids. The proposed service is built in the context of interactive remote
desktop session workloads and takes application performance QoS
models into consideration. The key design guidelines are hierarchical
request structure, application performance models, remote desktop
session performance models, site admission control, multi-variable
resource assignment system, and runtime session admission control. We
have also built a simulation toolkit that can handle mixed batch and
remote desktop session requests, and have implemented our proposed
resource allocation service into the toolkit. We present some results from
experiments done using the toolkit. Our proposed architecture for
resource allocation services addresses the needs of emerging utility
computing systems and captures the key concepts and guidelines for
building such services in these environments.

* Internal Accession Date Only
 1College of Computing, Georgia Institute of Technology, Atlanta, GA
 2 University of Illinois at Urbana-Champaign, IL
 Published in and presented at 2nd Workshop on Middleware for Grid Computing, 18 October 2004, Toronto,
Ontario, Canada Approved for External Publication
 Copyright 2004 ACM

Architecture for Resource Allocation Services supporting
Interactive Remote Desktop Sessions in Utility Grids

Vanish Talwar
HP Labs

vanish.talwar@hp.com

Bikash Agarwalla
Georgia Tech

bikash@cc.gatech.edu

Sujoy Basu
HP Labs

sujoy.basu@hp.com

Raj Kumar
HP Labs

raj.kumar@hp.com

Klara Nahrstedt
UIUC

klara@cs.uiuc.edu

ABSTRACT
Emerging large scale utility computing systems like Grids promise
computing and storage to be provided to end users as a utility. Sys-
tem management services deployed in the middleware are a key to
enabling this vision. Utility Grids provide a challenge in terms of
scale, dynamism, and heterogeneity of resources and workloads.
In this paper, we present a model based architecture for resource
allocation services for Utility Grids. The proposed service is built
in the context of interactive remote desktop session workloads and
takes application performance QoS models into consideration. The
key design guidelines are hierarchical request structure, application
performance models, remote desktop session performance models,
site admission control, multi-variable resource assignment system,
and runtime session admission control. We have also built a simula-
tion toolkit that can handle mixed batch and remote desktop session
requests, and have implemented our proposed resource allocation
service into the toolkit. We present some results from experiments
done using the toolkit. Our proposed architecture for resource allo-
cation services addresses the needs of emerging utility computing
systems and captures the key concepts and guidelines for building
such services in these environments.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network Operating Systems, Client/server;
D.4.1 [Operating Systems]: Process Management—Scheduling;
D.4.7 [Operating Systems]: Organization and Design—Interac-
tive systems

General Terms
Design, Management, Performance

Keywords
Resource Allocation Service, Grid Computing, Remote Desktop
Sessions, QoS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2nd Workshop on Middleware for Grid Computing Toronto, Canada
Copyright 2004 ACM 1-58113-950-0 ...$5.00.

Utility Grid
Resource

Management
Server

Blade
Server(s)

User’s
Thin Client

1. Submit
request for a

remote desktop
session

3. Remote Desktop
Session

2. Resource
Allocation Storage

Node(s)

Figure 1: High level conceptual view of the system supporting
remote desktop sessions

1. INTRODUCTION
Today’s enterprise IT systems are being consolidated into cen-

tralized data centers for reducing cost and to improve manageabil-
ity. Efforts are now being made to increase the degree of sharing of
these consolidated computing and storage systems and to provide
them to the end-user as a utility. Such systems are being coined as
Utility Computing Systems or Utility Grids. In such systems, ge-
ographically distributed data center sites host the shared IT infras-
tructure - blade servers and storage servers, which are allocated dy-
namically and on-demand to the applications of the end-user. These
applications could be enterprise three-tier applications, batch appli-
cations, and interactive applications. In this paper, we are partic-
ularly interested in interactive applications hosted on shared blade
servers in the data center. These applications are then viewed by the
end-user through remote desktop sessions provided through tech-
nologies like Citrix [1], Microsoft Terminal Servers [2], VNC [3].
The examples of applications viewed through such sessions belong
in the vertical segments of financial services, CAD/CAM appli-
cations, and office applications like MS Word, MS Outlook, MS
Excel etc. Figure 1 shows the conceptual view of such a system.

One of the fundamental system management services needed in
the middleware to enable the vision of Utility Grids is a Resource
Allocation service. This service is responsible for the dynamic
allocation of a fraction of a blade servers’ resources in response
to an end-user request. Todays’ IT systems typically pre-install,
pre-allocate, and reserve the servers and storage resources for end-
customers’ applications, leading to over-provisioning and higher
costs. On the other hand, a utility computing system envisions
servers and storage resources to be sharable across end-customers’
applications and be allocated dynamically as the need arises. This
brings out the need for a resource allocation service that has to
consider the real-time system utilization of the blade servers, and
the dynamic requirements of requests while making an allocation
decision. The resource allocations made must further meet the min-

1. Top level
requests by end-
user for remote
desktop sessions

COMPUTE
NODE

Remote desktop
session

Application

4. Middle level
requests for
starting applications
within a remote
desktop session

5. Application specific
workload consisting of
the users’ interaction
with a particular executing
application

COMPUTE
NODE

SITE

3. Dispatch
request

COMPUTE
NODE

END-
USER

RESOURCE
MANAGEMENT SERVER

2. Allocate a compute
node for the requested
remote desktop session

Figure 2: Flow diagram in the proposed system

imum performance requirements of the hosted applications, while
maintaining a high system utilization by avoiding over provisioning
of resources to the applications. Prior work has looked at building
resource allocation services for supporting batch applications [4],
and three-tier enterprise applications [5]. We would like to address
the needs of interactive remote desktop sessions which are typi-
cally more sensitive to performance needs. We make the following
contributions through this paper:

� Architectural design guidelines and detailed description of a
resource allocation service for supporting interactive remote
desktop sessions in Utility Grids. In summary, the key guide-
lines are a hierarchical request structure, application perfor-
mance models, remote desktop session performance models,
site admission control, multi-variable resource assignment
system, and runtime session admission control.

� Simulation toolkit that implements the resource allocation
service and some experimental results for mixed workloads
obtained using the simulation toolkit.

Our proposed architecture services requests for remote desktop ses-
sions from end-users dynamically and allocates on-demand a frac-
tion of a blade server in the data center site for the end-users’ re-
quest. The fraction of the resources to be chosen is determined
through the dynamic generation of the performance model for the
requested remote desktop session using pre-generated application
performance models for the applications that would execute in the
context of the requested remote desktop session. The allocation is
thus QoS driven and admission control systems are used to enforce
QoS. Further, the low level details of the sharing of IT infrastruc-
ture is hidden from the end-user and the end-user is provided with
a virtualized environment with QoS guarantees.

The rest of the paper is organized as follows. In Section 2, we
present the proposed architecture. Section 3 describes the simula-
tion toolkit and experiments. We conclude in Section 4.

2. ARCHITECTURE
The system model we consider in this paper is a single data cen-

ter site. A data center site consists of blade servers (henceforth also
referred to as compute nodes), storage servers, and a resource man-
agement server. Our proposed resource allocation service compo-
nents are resident on the resource management server and the blade
server as would be explained in Section 2.1 and Section 2.2. Figure
2 shows the flow diagram of the sequence of steps executed in the
system. The end-users submit requests for remote desktop sessions
to the Resource Management Server. The resource management
server then allocates a fraction of a blade server’s resources for the

Generate Remote
Desktop Session

Performance
Model

REPOSITORY

1. Resource Model

2. Application
 Performance
 Models

3. Real Time Utilization
 data from compute
 nodes

Site Admission
Control

Resource
Assignment

RESOURCE MANAGEMENT SERVER

S
T
A
N
D
A
R
D

I
N
T
E
R
F
A
C
E

Input
Queue

Pending
Queue

Figure 3: Resource Management Server

user’s request for the remote desktop session. A request to start
the remote desktop session is then dispatched to the allocated blade
server. Once the session is started, the user interactively starts ap-
plications through the established remote desktop session connec-
tion. This is shown as middle level requests in Figure 2. These mid-
dle level requests go through a Session Admission Control System
at the blade server. Once the applications are started, the user inter-
acts with those applications through an application specific work-
load. We thus have a hierarchical request structure in the system,
top level requests, middle level requests, and application specific
workload, as illustrated in Figure 2.

2.1 Resource Management Server
Figure 3 shows the architecture for the resource management

server. It hosts a repository consisting of application performance
models, resource models, and the real time utilization data of blade
servers. There are two queues, an Input Queue holds the users’
requests when they first enter the system; and a Pending Queue
holds requests that could not be assigned a blade server that meets
the requests’ performance requirements. The requests in the Pend-
ing Queue wait till the release of resources by the blade servers
sufficient enough to meet the requests’ performance requirements.
The resource models capture the static characteristics of the blade
servers eg. the server make, the maximum CPU and memory ca-
pacity etc. On selecting a request from the Input Queue, the set
of blade servers satisfying the users’ preference of static character-
istics are obtained through a match of the users’ preferences with
those in the resource models. Subsequently, a ‘remote desktop ses-
sion‘ performance model for the requested remote desktop session
is dynamically generated based on the list of applications desired
in that session. This step uses the application performance models
from the repository. The Site Admission Control System and the
Resource Assignment System then make their decisions using this
generated model. We describe these in subsequent subsections.

2.1.1 Application Performance Model
The application performance model describes the resource re-

quirements of the application to be able to perform at an acceptable
QoS level. Such a model is key to our proposed resource allocation
service. Such models would be built offline by the system admin-
istrators and populated into the repository. We are interested in
building such models for interactive applications hosted on blade
servers and viewed in a thin client setting using remote desktop
sessions as shown in Figure 1. Below, we describe briefly how to
build such models. Subsequently, we give a formal representation
for the model.

Application profiling is the basis for building application per-
formance models. Application profiling is done by executing the
application in isolation on a standard platform, and then applying a

characteristic workload to the application. The resource consump-
tion of the application is continuously monitored over the entire
period of execution. Statistical techniques are then applied to the
trace data to determine a desired resource requirement value that
should be allocated to the application for acceptable performance.
There has been prior work in this area, most of which has been stud-
ied in the context of batch and e-commerce applications [6]. The
profiling of interactive applications in a thin client setting present
additional challenges: Firstly, the execution of an interactive ap-
plication is primarily influenced by end-user behavior. This user
behavior needs to be modeled for the application being profiled
and subsequently a synthetic workload needs to be generated con-
forming to the modeled user behavior. The work being done in
this area eg. [7, 8, 9] typically propose the use of states to capture
user interactions, and the use of Markov chains to model proba-
bilistic transitions. Additional problems presented by thin client
systems is (i) the need to also measure user perceived performance
on the client for accurate latency measurements, and (ii) the need
to consider the resource consumption of the remote display server
in addition to that of the application. We do not go much further
into the details of the methodology of building the application per-
formance models and keep our focus in this paper to architectural
principles. The reader is referred to related works cited above and
also in works of [10, 11, 12, 13] which describe the measurement of
the resource consumption of interactive applications in a thin client
setting.

Throughout the paper, we represent the application performance
model of an application Ai using Ai

� �
Ci � Ni � Si � LNi � LSi � , where

Ci � Ni � Si represent the desired CPU utilization (in cycles/second) ,
desired network bandwidth, and desired storage bandwidth respec-
tively for the application. LNi represents the acceptable network
latency between the end-users’ thin client and the blade server, LSi

represents the acceptable storage latency between the blade server
and remote storage node.

2.1.2 Remote Desktop Session Performance Model
A remote desktop session performance model describes the re-

source requirement for a remote desktop session. Such a model
is generated dynamically for every user request. A remote desk-
top session, for the purposes of modeling, is viewed as consisting
of a remote display server and one or more application processes.
For example, a VNC remote desktop session [3] would consist of a
VNC remote display server and all the applications running in the
context of this VNC desktop session. These applications are started
interactively by the end-user and they execute in the context of the
remote desktop session on the blade server. All of these applica-
tions share the resources allocated to the remote desktop session in
which they execute. We next describe a framework for building a
remote desktop session performance model.

A remote desktop session performance model is built using the
application performance models of the applications which would
execute in its context. This list of applications are obtained dynam-
ically through the users’ request or it would be inferred based on
the users’ profile[13]. On obtaining this list of applications, we read
in the individual application performance models for these applica-
tions from the repository. At the time of generation of the remote
desktop session model, we do not however know the execution or-
der of these applications. The users’ request and/or users’ profile
only gives us the list of applications desired during the session. The
user could interactively start these applications in various possible
execution orders at runtime. The end-user may further decide at
run-time to start several instances of each application. Thus, the
execution order of applications, and number of instances for each

t1 t2 t3

A1

A2

A3

A4

A5

t1 t2 t3

A1

A2

A3

A4

A5

t4 t5

t1 t2 t3

A1

A2

A3

A4

A5

t4 t5

t4 t5

Figure 4: Modeling the resource requirement for a remote desktop
session at the Resource Management Server. The top, middle, and bot-
tom graphs show the Simultaneous, Sequential and Mixed execution
order of five applications.

application is a run-time decision not known at the time of gen-
eration of the remote desktop session performance model at the
Resource Management Server. However, the remote desktop ses-
sion performance model depends on such execution orders. One
solution to address this problem would be for the user to specify
the execution orders and instances for his desired applications in
her request. However, this may not be a very good solution since
the user may find it difficult to determine such execution orders at
the time of submission of her request. Moreover, since we enable
interactivity, the user would like to choose the order and number
of instances at runtime. We propose some models for determining
the execution orders of the applications. One of these models of
execution orders is then selected for a users’ request by a policy
decision, and then the system generates the corresponding remote
desktop session performance model using that execution order. We
describe below and illustrate in Figure 4 some of these execution
order models and their corresponding remote desktop session per-
formance models. We consider n applications, Ai � i � 1 to n, in a
users’ remote desktop session and the remote desktop session per-
formance model to be represented as
RemoteDesktopi

� �
Cdesktop � Ndesktop � Sdesktop � LNdesktop � LSdesktop � .

The notations are explained in Figure 5.
(a) Simultaneous execution of an instance of each desired appli-

cation. In this case, the aggregate resource requirements for the
remote desktop session is modeled as the sum of the individual re-
quirements
Cdesktop

� OC � ∑i � n
i � 1 Ci,

Ndesktop
� ON � ∑i � n

i � 1 Ni,
Sdesktop

� OS � ∑i � n
i � 1 Si,

where OC, ON , OS are the extra overheads that is accounted for
due to other processes eg. monitoring software etc., that may run
within the remote desktop session at runtime. The latency require-
ments for the remote desktop session is taken as the minimum of
those for the individual application sessions.
LNdesktop

� mini � n
i � 1 LNi , LSdesktop

� mini � n
i � 1 LSi .

(b) Sequential execution of the applications. In this case, the aggre-
gate resource requirements for the remote desktop session is mod-
eled as the maximum of the individual requirements
Cdesktop

� OC � maxi � n
i � 1 Ci,

Ndesktop
� ON � maxi � n

i � 1 Ni,
Sdesktop

� OS � maxi � n
i � 1 Si,

The latency requirements for the remote desktop session is taken as
the minimum of those for the individual application sessions.

Symbol Meaning
UC Current CPU percentage utilization
UN Current network bandwidth percentage utilization
US Current storage bandwidth percentage utilization

Cdesktop Aggregate CPU utilization in cycles/second for the remote desktop session
Ndesktop Aggregate network bandwidth for the remote desktop session
Sdesktop Aggregate storage bandwidth for the remote desktop session

LN desktop Acceptable network latency for the remote desktop session
LS desktop Acceptable storage latency for the remote desktop session

P CPU Processor speed
NT Total network bandwidth for the compute node

NE Dynamic End-to-end network bandwidth between the compute node
 and the users’ submission node hosting the display (for remote display traffic)

SE
 Dynamic End-to-end storage bandwidth between the compute node and
 the file server hosting the user’s data (for remote storage traffic)

NLE
End-to-end network latency between the compute node and the users’

submission node hosting the display

SLE
End-to-end storage latency between the compute node and the file server

hosting the user’s data

ST Total storage bandwidth for the compute node

TC
Maximum Threshold percentage set for the CPU Utilization on the

compute node eg. 80%

TN Max Threshold percentage set for the Network Utilization on the
compute node

TS
Max Threshold percentage set for the Storage Utilization on the

compute node

Figure 5: Notations

LNdesktop
� mini � n

i � 1 LNi , LSdesktop
� mini � n

i � 1 LSi

(c) Mixed Case when some applications are executed simultane-
ously, and some others are executed sequentially. In this case, the
resource requirement is either modeled as a value based on history
based prediction between the two extremes of simultaneous execu-
tion and sequential execution, or it is negotiated with the end-user.
(d) Unknown Profiles of the applications. This would be the case
when the applications are being executed for the first time, and
the system is completely unaware of the resource requirements. In
this case, the resource requirements for the remote desktop session
could be modeled assuming worst case requirements (like requiring
the maximum permissible resources on a node), or the user could
specify the requirements.

2.1.3 Site Admission Control System
The Site Admission Control system uses the remote desktop ses-

sion models for admission control decisions. This system is respon-
sible for determining if a blade server with its current resource uti-
lization values can meet the resource and latency requirements for
a given remote desktop session. The resource assignment heuristics
are then applied to only those resources that satisfy the admission
control test. The Site Admission Control system takes as input:
Remote Desktop Session performance model for the requested list
of applications, blade servers that satisfy the coarse grain static
resource requirements for the user’s request, and the real time re-
source utilization values of the nodes. Below is the admission cri-
terion. Please refer to Figure 5 for the notations.
P � � TC � UC ��� 100 � Cdesktop,
min

���
TN � UN � � NT � 100 � NE ��� 100 � Ndesktop,

min
���

TS � US � � ST � 100 � SE ��� 100 � Sdesktop,
NLE � LNdesktop , SLE � LSdesktop .
The expressions on the left side of the comparison operator repre-
sent the currently available resources on the compute node (blade
server) and those on the right side of the comparison operator repre-
sent the resource requirement for the remote desktop session. The
admission check is thus to compare that the currently available re-
sources on the compute node can satisfy the required values for the
requested remote desktop session. Note that due to the heterogene-
ity in the hardware platforms eg. CPU, we have to normalize the
values of the quantities before comparison eg. CPU utilization is
expressed in cycles/second.

2.1.4 Resource Assignment System
The Resource Assignment system is responsible for assigning

one of the blade servers which satisfies the site admission check,
for the users’ request. It takes into consideration the remote desktop
session performance model, and aims to minimize the wait time for
requests. The wait time in this section refers to the time it takes for
the blade server to be assigned to a user since receiving the request.
Unlike batch job submissions, a user after submitting the request
for remote desktop session typically waits for the blade server to be
allocated to him immediately. In our system, the wait time is de-
pendent on (is the summation of) the wait time in the Input Queue1,
the wait time in the Pending Queue2 waiting for resources to be-
come available, and processing overhead of the admission control
and assignment algorithms. We allow for priorities to be assigned
to requests based on the profile of the user. The requests would be
picked from the Input Queue based on priority, thus reducing the
wait time for higher priority requests in the Input Queue.

Multi Variable Best Fit Algorithm
Figure 6 presents the pseudo code for a multiple variable best fit
algorithm that takes resource requirement heuristics into consider-
ation for resource assignment. Note that at this point only those
blade servers are being considered which satisfy the Site Admis-
sion Control test. Also, for the use case scenarios being considered
by us, each request requires only a single blade server. However, as
mentioned earlier, we allow resource sharing i.e there could be mul-
tiple remote desktop sessions allocated on the same blade server
simultaneously. A Best Fit algorithm for assigning blade servers to
remote desktop sessions would always try to pack up bins tightly
thus reducing the possible fragmentation. This would enable us to
assign more sessions onto the blade servers and should help in re-
ducing the wait time for the requests in the Pending Queue. We
therefore consider a Best Fit algorithm for resource assignment.
However, we have to consider multiple variables in the algorithm
- CPU, network bandwidth, and storage bandwidth. For a particu-
lar remote desktop session, one or more of these resources may be
a bottleneck resource. We introduce weight functions correspond-
ing to each of these fine grain resources and adjust the weight as-
signment accordingly for the bottleneck resource variables. For
example, for CAD design sessions, the CPU would be the bottle-
neck resource variable and we should give more weightage to CPU
utilization values for such sessions. Similarly for financial trans-
action applications, the storage bandwidth would be the bottleneck
resource variable, and for office applications, the network latency
would be the bottleneck resource variable. Further, the algorithm
determines the difference between the available and required re-
source utilizations, and assigns the weight functions as inversely
proportional to these delta values. Thus, it does weighted best fit-
ting along multiple dimensions. The weights are assigned for the
different parameters/variables as functions, and we pick the com-
pute node that has the highest aggregate weight across dimensions.
The resource and latency requirements used for the remote desk-
top sessions in the algorithm are those obtained from the remote
desktop session performance model described in Section 2.1.2.

2.2 Runtime System
Figure 7 shows the components of the runtime system. The

runtime system components are resident on the blade server and
are responsible for resource allocation at runtime. Unlike tradi-
tional batch applications, end-users can interactively start applica-

1Input Queue is the queue into which the requests are placed as they arrive into the
Utility System.
2Pending Queue is the wait queue into which requests go if all the eligible blade
servers for a request do not have enough available resources to satisfy the Site Admis-
sion Control performance criterion test.

1. For each compute node which satisfies the Site Admission Control test
 a. Determine the free CPU cycles, network bandwidth, and storage bandwidth available on
 this compute node for a users’ request.
 b. Determine the delta values between the available resources from step a., and the desired
 resources for the requested remote desktop session. These delta values are denoted as

Cdelta, Ndelta , Sdelta , NLdelta , SLdelta.
 c. We now assign the following weights:

WC = f(Cdelta, Compute Intensiveness)
WN = f(Ndelta, Average expected display data size)
WS = f(Sdelta, Data intensiveness)
WNL = f(NLdelta, Interactiveness)
WSL = f(SLdelta, Data intensiveness)

 The weights (WC, WN, WS, WNL, WSL) are inversely proportional to the first parameter
 (Cdelta, Ndelta , Sdelta , NLdelta , SLdelta) and directly proportional to the second parameter
 (Compute intensiveness, Average expected display data size, Data intensiveness,
 Interactiveness, Data intensiveness) respectively.
 d. The effective wieight of this compute node for the currently considered assignment is

Weffective = WC + WN + WS + WNL + WSL
2. Pick the compute node with the maximum assigned weight Weffective for this
 request. In case of equally ranked compute nodes, we pick the one with the least load
 where load is defined in terms of CPU utilization

Figure 6: Pseudo code for multi variable best fit algorithm for
resource assignment

Session
Admission

Control System

Monitoring

Closed Loop
Control System

Applications
running in the

remote desktop
session

COMPUTE NODE

Figure 7: Runtime system

tions throughout the lifecycle of the remote desktop session. This
requires the resource allocation service to also have runtime com-
ponents.

A Session Admission Control system exists at the blade server
for every executing remote desktop session. Once the remote desk-
top session is started, this system receives the middle level requests
from the end-user for starting new applications. It is then respon-
sible for determining if the resources allocated to a remote desktop
session can allow the starting of the new application while meet-
ing the resource and latency requirements of the new application
and without violating the resource requirements of existing run-
ning applications in the remote desktop session. The Site Admis-
sion Control system makes an admission decision for the remote
desktop session assuming the resource requirements specified in
the remote desktop session performance model described in Sec-
tion 2.1.1. However, once the remote desktop session is started on
the blade server, the end-user can interactively start the applications
in an execution order different from that considered while building
the remote desktop session performance model. She may also start
several instances of the applications. Hence, we need to perform a
Session Admission Control check at the blade server to check dy-
namically if there are enough resources available for the application
without violating the resource availability for currently running ap-
plications. If the execution order and application instances during
runtime are always as derived using the model in Section 2.1.1, then
the session admission control test would always succeed. However,
this may not happen in reality especially in the Mixed case in the
model, and hence the Session Admission Control system is needed
to enforce admission control during runtime.

Let A � �
A1 � A2 ������� � Ak � be the current set of applications running

in a remote desktop session. Let A �
k � 1 � be the application session

for which we are making an admission control decision. Then the
Session Admission Control decisions are:
Cdesktop � OC � ∑i � k � 1

i � 1 Ci,

Ndesktop � ON � ∑i � k � 1
i � 1 Ni,

Sdesktop � OS � ∑i � k � 1
i � 1 Si,

LNdesktop � LN � k � 1 � , LSdesktop � LS � k � 1 � ,
where OC, ON , OS are the CPU, network, and storage utilization
respectively due to other processes, eg. monitoring software etc.,
running within that remote desktop session. The expressions on the
left side of the comparison operator in the equations above repre-
sent the resource requirements for the remote desktop as captured
by the remote desktop session performance models. The expres-
sions on the right side of the comparison operator represent the
actual resource utilization by the current set of applications and the
requested new application. The admission check is thus to compare
that, if the given application is admitted, then the total resources al-
located for the remote desktop session can continue to satisfy the
resource requirements of all the currently running applications as
well as that of the requested application.

The Session Admission Control system makes the admission de-
cisions assuming the pre-determined application performance mod-
els. The system is complemented with a closed loop control sys-
tem which would obtain the monitored resource utilizations of the
applications and take appropriate enforcement actions in case of
violations from the consumption expected as per the application
performance model. Other existing research efforts and systems
like [14] are addressing this closed loop control system.

3. SIMULATION
We have built a simulation toolkit for the utility system that can

handle mixed(heterogeneous) batch and remote desktop session re-
quests, and have implemented our proposed resource allocation ser-
vice into the toolkit. We have not at the moment implemented the
session admission control system into the simulator and assume
that the application requests arrive during runtime in the same exe-
cution order as assumed at the Resource Management Server. Each
blade server is modeled as having two network interfaces - one
for the display traffic for interactive sessions to the end-user’s thin
client, and the other for storage traffic to file servers. We also model
the end-to-end network bandwidth and latency between the blade
server and the end-user submission nodes, as well as the end-to-
end storage bandwidth and latency between the blade servers and
the file servers. For both batch and interactive requests, we assume
in the current implementation that the requests are picked from the
Input Queues as First Come First Served (FCFS) semantics with
no priorities The batch requests are assigned blade servers using a
Least Loaded algorithm, and the requests for remote desktop ses-
sions are assigned blade servers using the Multi Variable Best Fit
algorithm as described in the earlier section. The site admission
control system implementation for a remote desktop session re-
quest checks for performance criterion described in Section 2.1.3.
For a batch request, we check if there is a minimum required thresh-
old CPU utilization available on a blade server. During the simu-
lation, the CPU utilization for a batch request is guaranteed atleast
the the minimum threshold and is allowed to exceed the minimum
threshold only in case of available CPU cycles. The resource uti-
lizations for the remote desktop sessions are always guaranteed to
be equal to that of the value decided through the resource require-
ment modeling of the remote desktop session.

Using our simulator, one can design and perform various in-
teresting experiments some of which are: (i) Evaluating the trade
offs of various resource sharing strategies among mixed workloads
(batch and remote desktop sessions): We can have experiments
comparing complete sharing of resources among mixed workloads,
with those that partition resources among the workloads, and with
those with no sharing at all, (ii) Evaluating the proposed resource
allocation strategy for interactive remote desktop session work-

Request type CPU Utilization

End-to-end
network

bandwidth for
display traffic

End-to-end
storage

bandwidth

Duration in wall
clock time

‘Heavy Remote
Desktop Session’

15% guaranteed on
a 2 GHz machine

15 Mbps 150 Mbps 6 hours

‘Light Remote
Desktop Session’

10% guaranteed on
a 2 GHz machine

10 Mbps 100 Mbps 1 hour

‘Heavy Batch Job’
Minimum threshold
of 35% on a 2 GHz

machine

0 Mbps 300 Mbps
4 hours at 35%

CPU Utilization on
a 2GHz machine

‘Light Batch Job’
Minimum threshold
of 5% on a 2 GHz

machine

0 Mbps 100 Mbps
3 hours at 5% CPU

Utilization on a 2
GHz machine

Figure 8: Application and Remote Desktop Session Perfor-
mance Models for the experiments

Experiment Type
Remote Desktop

Interactive
Session Requests

Batch Job
Requests

Arrival Rate for
Interactive

Session requests

Arrival Rate for
Batch Job
requests

Day Time Experiment
(12 hours)

 ‘Heavy Remote
Desktop Session’

requests only

‘Light Batch Job’
requests only

Poisson distribution; last
request

arrives at 6 hours into
the experiment

Poisson distribution;
requests arrive
throughout the

12 hour experiment

Night Time Experiment
(12 hours)

‘Light Remote
Desktop Session’

requests only

‘Heavy Batch Job’
requests only

Poisson distribution;
requests arrive

throughout the 12 hour
experiment

All requests arrive
in a batch at the

beginning of
experiment (Bursty

arrival at time 0 of the
experiment)

Figure 9: Request description

loads with naive solutions that don’t use performance models and/or
admission control, (iii) Evaluating the trade offs among various
weight assignments in the resource assignment system, (iv) Evalu-
ating the resource allocation strategies under inaccurate application
performance models, (v) Evaluating capacity planning strategies
through evaluation of system utilization under various workloads
and different resource allocation and sharing strategies.

We have performed some experiments for (i). We evaluated the
trade off of throughout and wait time for a mixed workload between
a completely shared resource sharing strategy for the batch and in-
teractive session workload, with a no sharing strategy. The applica-
tion performance model and request characteristics for the exper-
iments are shown in Figures 8,9. The results are summarized in
Figure 10, 11. Due to lack of space, we do not elaborate here much
on the details. In summary, the results in the Figures show that
for a reasonable set of requests, a single system of blade servers is
able to handle a particular class of mixed heterogeneous DayTime
and NightTime requests of batch and interactive session requests
without a very significant degradation in overall performance for
the system. Such a system would thus be more cost effective than
building separate grids for those batch jobs and interactive sessions
respectively. We would be conducting more experiments for other
classes of requests and more heterogeneous data centers to see the
performance effect.

4. CONCLUSIONS
Our proposed architecture is addressing the needs of supporting

remote desktop sessions in emerging Utility Grids. The architec-
ture serves as a conceptual guide for building resource allocation
services in such systems. The key features is that it enables virtu-
alization, uses application performance models, generates the re-
mote desktop session performance model dynamically as a compo-
sition of individual application performance models, uses dynamic
real-time utilization values for dynamic resource allocation, and
supports the resource allocation needs for remote desktop sessions
throughout its lifecycle including at runtime. We have also built a
simulation toolkit and implemented the resource allocation archi-
tecture into it. Various experiments are possible using the toolkit.
We showed some initial results on trade offs among resource shar-
ing strategies among mixed workload of batch and interactive re-
mote desktop sessions. As future work, we would be doing more

100 batch
jobs on

dedicated
100 nodes

200 batch
jobs on

dedicated
100 nodes

500 ‘Heavy’ Interactive
Remote Desktop Sessions

on dedicated 100 nodes

Throughput:
Finish Time in

minutes
728 730 716

Max Waiting time
(minutes) 0 0 0

100 batch jobs and 500
‘Heavy’ Interactive Remote

Desktop Sessions on
100 shared nodes

200 batch jobs and 500
‘Heavy’ Interactive Remote

Desktop Sessions on
100 shared nodes

Throughput:
Finish Time in

minutes

728 (Batch jobs) and
722 (Interactive Sessions)

730 (Batch Jobs) and
724 (Interactive Sessions)

Max Waiting
time (minutes) 6 11

Day Time experiment with
No Resource Sharing among mixed workloads

Day Time experiment with
Complete Resource Sharing among mixed workloads

Figure 10: Results for Day Time experiments

30 ‘Light’ Interactive
Remote Desktop Sessions

on dedicated 100 nodes

200 ‘Light’ Interactive
Remote Desktop

Sessions on dedicated
100 nodes

500 Batch Jobs
on dedicated

100 nodes

Throughput:
Finish Time in

minutes
65 779 622

Night Time experiment with
No Resource Sharing among mixed workloads

 30 ‘Light’ Interactive Remote
 Desktop Sessions and 500 batch
 jobs on 100 shared nodes

 200 ‘Light’ Interactive Remote
 Desktop Sessions and 500 batch
 jobs on 100 shared nodes

Throughput:
Finish Time in

minutes

65 (Interactive Sessions) and
660 (Batch Jobs)

779 (Interactive Sessions) and
688 (Batch Jobs)

Night Time experiment with
Complete Resource Sharing among mixed workloads

Figure 11: Results for Night Time experiments

experimental evaluation.

5. REFERENCES
[1] Citrix. http://www.citrix.com.
[2] Microsoft terminal servers.

http://www.microsoft.com/windowsserver2003/technologies/
terminalservices/default.mspx.

[3] VNC http://www.realvnc.com/
[4] J. Nabrzyski, J. Schopf, and J. Weglarz. Grid Resource

Management: State of the Art and Future Trends. Kluwer Academic
Publishers, 2003.

[5] J. Rolia, J. Pruyne, X. Zhu, and M. Arlitt. Grids for enterprise
applications. In Workshop on Job Scheduling Strategies for Parallel
Processing, June 2003.

[6] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and
application profiling in shared hosting platforms, OSDI 2002.

[7] H. Hlavacs and G. Kotsis. Modeling user behavior: A layered
approach, MASCOTS 1999.

[8] M. Friedrich et al. Stochastic resource prediction and admission for
interactive sessions on multimedia servers. In ACM Multimedia,
2000.

[9] G. Haring. On stochastic models of interactive workloads. In
PERFORMANCE ’83, 1983.

[10] J. Nieh, S. Yang, and N. Novik. Measuring thin-client performance
using slow-motion benchmarking. ACM Trans. Comput. Syst.,
21(1):87–115, 2003.

[11] A. Wong and M. Seltzer. Evaluating windows nt terminal server
performance. In Proceedings of the 3rd USENIX Windows NT
Symposium, July 1999.

[12] B. Schmidt et al. The interactive performance of slim: A stateless,
thin-client architecture. In SOSP, December 1999.

[13] Microsoft Corporation. Windows 2000 terminal services capacity
planning. Technical White Paper, 2000.

[14] HP Process Resource Manager.
http://http://h30081.www3.hp.com/products/prm/

