

Architecture and Environment for Enabling Interactive Grids

Vanish Talwar, Sujoy Basu, Raj Kumar
HP Laboratories Palo Alto
HPL-2004-217
November 24, 2004*

E-mail: firstname.lastname@hp.com

access control, data
management,
dynamic accounts,
Grid computing,
interactive
sessions, QoS,
resource
management

Traditional use of grid computing allows a user to submit batch jobs in a
grid environment. We believe, next generation grids will extend the
application domain to include interactive graphical sessions. We term
such grids Interactive Grids. In this paper, we describe some of the
challenges involved in building Interactive Grids. These include fine
grain access control, performance QoS guarantees, dynamic account
management, scheduling, and user data management. We present the key
architectural concepts in building Interactive Grids viz. hierarchical
sessions, hierarchical admission control, hierarchical agents, classes of
dynamic accounts, application profiling, user data management,
scheduling for interactive sessions, persistent environment settings, and
exporting remote desktop. We also describe IGENV, an environment for
enabling interactive grids. IGENV consists of GISH -'Grid Interactive
Shell', Controlled Desktop, SAC -'Session Admission Control' module,
GMMA -'Grid Monitoring and Management Agents', and Policy Engine.
We also present our testbed implementation for Interactive Grids using
and extending Globus Toolkit 2.0 for the Grid middleware infrastructure,
and VNC as the remote display technology.

* Internal Accession Date Only
 Published in the Journal of Grid Computing, volume 1, issue 3, pp 231-250, 2003
 Approved for External Publication
 Copyright 2004 Kluwer Academic Publishers

Journal of Grid Computing 1: 231–250, 2003.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

231

Architecture and Environment for Enabling Interactive Grids

Vanish Talwar, Sujoy Basu and Raj Kumar
Hewlett-Packard Labs, 1501 Page Mill Road, MS 1181, Palo Alto, CA 94304, USA
E-mail: {vanish.talwar,sujoy.basu,raj.kumar}@hp.com

Key words: access control, data management, dynamic accounts, Grid computing, interactive sessions, QoS,
resource management

Abstract

Traditional use of grid computing allows a user to submit batch jobs in a grid environment. We believe, next
generation grids will extend the application domain to include interactive graphical sessions. We term such grids
Interactive Grids. In this paper, we describe some of the challenges involved in building Interactive Grids. These
include fine grain access control, performance QoS guarantees, dynamic account management, scheduling, and
user data management. We present the key architectural concepts in building Interactive Grids viz. hierarchical
sessions, hierarchical admission control, hierarchical agents, classes of dynamic accounts, application profiling,
user data management, scheduling for interactive sessions, persistent environment settings, and exporting remote
desktop. We also describe IGENV, an environment for enabling interactive grids. IGENV consists of GISH – ‘Grid
Interactive Shell’, Controlled Desktop, SAC – ‘Session Admission Control’ module, GMMA – ‘Grid Monitoring
and Management Agents’, and Policy Engine. We also present our testbed implementation for Interactive Grids
using and extending Globus Toolkit 2.0 for the Grid middleware infrastructure, and VNC as the remote display
technology.

1. Introduction

Grid Computing [1, 2] envisions a future where het-
erogeneous resources could be shared by users across
geographical and administrative boundaries, and as a
utility. Several efforts [3–7] are underway to archi-
tect and deploy a middleware infrastructure for Grid
Computing. Commercial acceptance of Grid Comput-
ing technology is also steadily increasing. Traditional
use of Grid Computing has been for the execution
of batch jobs in the scientific and academic commu-
nity. We believe that next generation grids will extend
the application domain to include interactive sessions.
Such sessions would allow the end-user to interac-
tively submit interactive jobs to remote nodes in a
Grid. The end-user will also be able to view the graph-
ical and interactive output of the submitted jobs and
applications through such interactive sessions. Exam-
ple use cases for such interactive sessions could be

for, but not limited to, graphics visualization appli-
cations, engineering applications like CAD/MCAD,
digital content creation, financial applications, office
applications, e-mail applications, software develop-
ment, command line interactions, streaming media,
video games. We consider such Grids in an enterprise
environment provided either by Application Service
Providers (ASPs) [8] or by in-house IT departments.
In [8], we extended the ASP model to provide cus-
tomers access to a remote computer’s desktop for
interactive use as a service. Some of the new require-
ments for the design of such grids are: fine grain
access control, performance QoS, dynamic account
management, scheduling, user data management.

Most of the early work on Grids has been for batch
jobs. Other work like [9] does not focus on providing
interactive job submission ‘sessions’, and [10] does
not address the needs for graphical and multimedia
sessions. Existing thin client architectures [11, 12] use
remote display technologies but they do not have an

232

architecture in the context of Grids. Neither do the
other related works provide a comprehensive frame-
work for access control, QoS, scheduling, account
management, and user data management for graphical
interactive sessions in a Grid Computing environment.
In this paper, we introduce Interactive Grids and de-
scribe the architecture and runtime environment for
enabling such Grids. The user of an Interactive Grid is
given an execution node in the Grid for interactive use.
Keyboard and mouse events are sent from the users’
submission node to the remote execution node in the
Grid, and the output of the applications is viewed by
the end-user using remote display technologies like
VNC [13]. Our key contributions are:
1. Key architectural concepts for Interactive Grids

consisting of:
(a) Hierarchical sessions,
(b) Hierarchical admission control,
(c) Hierarchical agents,
(d) Classes of dynamic accounts,
(e) Application profiling,
(f) User data management,
(g) Scheduling for interactive sessions in the Grid,
(h) Persistent environment settings,
(i) Exporting remote desktop.

2. A runtime environment for enabling interactive
grids providing for fine grain access control and
QoS for graphical interactive sessions in a Grid,
consisting of the following components:
(a) GISH – a ‘Grid Interactive Shell’
(b) Controlled Desktop
(c) SAC – a ‘Session Admission Control’ module
(d) GMMA – ‘Grid Monitoring and Management

Agents’
(e) Policy Engine.
The above components are tightly coupled to each

other, and are designed with grid-enabled features.
Our architecture is proposed as an extension to

the existing Grid middleware infrastructure. Our im-
plementation uses Globus Toolkit 2.0 [3] as this Grid
middleware infrastructure. Our design is modular and
policy based allowing for easy extensibility and easy
manageability.

The rest of the paper is organized as follows. In
Section 2, we present the requirements and issues
for building Interactive Grids. Section 3 presents the
overall system architecture. In Section 4, we describe
our runtime environment IGENV in detail. Sections 5
and 6 describe our hierarchical agents and dynamic
accounts framework respectively. In Section 7, we

describe the data access and data affinity scheduling
algorithm. Section 8 presents discussion and analysis.
In Section 9, we describe our implementation. Sec-
tion 10 presents Related Work and we conclude in
Section 11.

2. Requirements and Issues

In this section, we present below the requirements
and issues in architecting Grids enabled for interactive
sessions.

Fine Grain Access Control. Interactive sessions al-
low a malicious user to submit unauthorized jobs to the
remote node and permit end-users unspecified time of
access to the remote node. Further, interactive sessions
allow a malicious user to probe for vulnerabilities in
the Grid system, and launch attacks against other re-
mote nodes in the Grid system. A fine grain access
control in the Grid context is needed.

Performance QoS. Interactive Grids permit end-
users to request and launch interactive applications.
Such applications are sensitive to response time and
real time performance requirements. There is a need
to guarantee quality of service for such applications.

Dynamic Account Management. Interactive Grids
pose a challenge in terms of account management for
arbitrary end-users of the grid.

Scheduling. Interactive Grids require a wide area
scheduling system that can perform (a) discovery of
resources, (b) matching of resources to user require-
ments for graphical interactive sessions, (c) global
admission control before the launching of graphical
interactive sessions, (d) reservation of resources for
the desired usage time, as well as fine grained reser-
vations like CPU, network bandwidth reservations,
(e) resource assignment, (f) job dispatching, (g) global
session state management.

User Data Management. There is a need to provide
persistent storage for the user’s data. The data needs
to be made available to the user on being allocated a
session with ownership given to the dynamic account
assigned to him.

3. Overall System Architecture

Figure 1 shows the conceptual overview of an Inter-
active Grid computing system that we are consider-
ing. The system consists of heterogeneous execution
nodes distributed across multiple administrative do-
mains. These nodes are managed by a Grid Distributed

233

Figure 1. Conceptual overview of the Interactive Grid computing system.

Resource Management system (DRM). An end-user
submits a request through a submission node to the
Grid DRM to obtain a remote execution node for in-
teractive use. On receiving the request from the user,
the Grid DRM selects a remote execution node based
on the session requirements, and reserves this node for
the requested duration of the session. The Grid DRM
also performs a reservation of fine grained resources
like CPU, network bandwidth and storage bandwidth,
for the users’ session. At the requested time, the DRM
would use remote display technologies like VNC [13]
to establish an interactive desktop session between
this remote execution node and the end-user’s sub-
mission node. The end-user then interacts directly
with this remote node,1 through the established ses-
sion. During this session, the user can submit requests
directly to the remote node, to launch multiple appli-
cations. These interactions could either be graphical
or text-based. We are more interested in addressing
the problem for graphical interactive sessions to re-
mote nodes. However, the solutions being proposed
and developed by us are also applicable for text-only
interactive sessions, as a special case. The interaction
of the end-user with the remote node involves the exe-
cution of both installed applications and user specified
binaries. It is also assumed that the user does not have
a local account with the remote node apriori.

We propose hierarchical sessions in such an Inter-
active Grid computing system consisting of global in-
teractive sessions and per-application interactive ses-
sions. A global interactive session constitutes a remote
desktop session using remote display technologies
like VNC [13]. A global session consists of many

1 The terms ‘remote node’ and ‘remote execution node’ are used
interchangeably in this paper.

per-application sessions. A per-application interac-
tive session constitutes the direct interaction between
the end-user and the application executing on the re-
mote execution node. A per-application interactive
session occurs in the context of a global interactive
session. We are most interested in graphical applica-
tion sessions. All the per-application sessions share
the resources allocated to the global session in which
they execute. The display for the application session
is sent to the user’s submission nodes. The data for
the application session is accessed from the remote
data nodes. Such a hierarchical classification of global
and per-application sessions simplifies the manage-
ment of remote display interactive applications in the
Grid.2 Corresponding to global and per-application
interactive sessions, we introduce the notion of hierar-
chical admission control in our framework consisting
of a global admission control module at the Grid
DRM node, and a per-application session admission
control module at the execution node. The global
and per-application session admission control modules
make admission control decisions for global and per-
application sessions respectively. For simplicity, we
refer to the ‘per-application session admission control
module’ as just ‘session admission control module’.
The following is the sequence of steps in such a
proposed system:

1. The end-user creates a job request template for a
new global interactive session, specifying the sta-
tic resource requirements, session requirements,
and the de sired list of applications to be launched
during the global session. The user could also

2 The terms ‘global session’ and ‘global interactive session’,
‘per-application session’ and ‘per-application interactive session’,
are used interchangeably in the remainder of the paper.

234

specify the desired QoS requirements for the re-
quested applications. The job request is submitted
to the Grid DRM node.

2. The request is received by a Grid Scheduler run-
ning on the Grid DRM node. In the first pass, the
Grid Scheduler performs a matching of resources
in the Grid to satisfy the coarse requirements of
the user, for example, matching of the hardware
requirements of the user. The Grid middleware
provides a distributed repository (like MDS [14]),
where various resources can publish their ser-
vices. The scheduler queries this repository to
discover resources that match with the user’s job
needs.

3. In the next pass, the Grid Scheduler interfaces
with the Global Admission Control system, which
performs the admission check for the requested
global interactive session [15]. Application pro-
files determined through historical logs is used to
guide the admission control process.

4. In the final pass, the Grid Scheduler selects the
best execution node for the global interactive ses-
sion based on a resource assignment policy. In
this pass, it only considers the nodes that satisfy
the Global Admission Control test in step 3. The
resource assignment tables are updated to reflect
the current assignment of the users’ request to the
selected execution node.

5. At the requested time, the selected execution node
is allocated to the end-user, and the job dispatcher
sends the request for the new global interactive
session to the allocated execution node along with
the SLA for the session.

6. A dynamic account is created by the Dynamic Ac-
count Manager for the new global interactive ses-
sion. The Dynamic Account Manager maintains
pools of dynamic accounts on each resource. Un-
like normal user accounts which remain perma-
nently assigned to the same real-world user, a dy-
namic account is assigned to a user temporarily.

7. Appropriate reservations are made on the execu-
tion node for the fine grained resources like CPU,
network bandwidth, etc., as specified in the SLA
for the global session.

8. A configuration process configures the system for
the user before launching the global interactive
session. This involves, for example, setting up the
applications desired by the user, and customizing
the user’s desktop environment in accordance with
the policies for this user.

9. The users’s data is now retrieved from persis-
tent storage and setup for the global session with
owner-ship given to the dynamic account assigned
to him. We also retrieve the users’ environment
settings, e.g., shell environment settings from the
persistent repos itory and set it up appropriately.

10. We then start a remote display server (a VNC
server in our testbed) to export the remote desk-
top to the end-user. A global interactive session
is now initiated between the allocated execution
node and the end-users’ submission node. Session
specific monitoring and management agents are
also started.

11. The end-user can now request for new per-appli-
cation interactive sessions directly through the
started global interactive session.

12. The requests for per-application interactive ses-
sions are verified by the runtime components Grid
Interactive Shell (GISH) and Controlled Desk-
top for access control checks, and if successful
are passed onto the Session Admission Control
system on the execution node.

13. The Session Admission Control system performs
an admission control check to determine if the re-
quested per application session can be admitted
into the global interactive session. If not, the re-
quest for new per-application session is denied.
Else, the per-application session is started.

14. The Resource Management Monitoring Agents
monitor the global interactive session and per-
application session utilization values. The mon-
itored data is aggregated by Aggregator Agents.
This aggregation is done, for example, based on
application, or based on session. This is explained
in more detail in Section 5. Enforcement Agents
use this data to enforce the SLA and QoS require-
ments. An Application Predictor system uses the
aggregated data to predict the application behavior
which is reflected back in the application profiles
used by the Grid DRM.

15. The Enforcement Agents end the global interac-
tive session at the SLA specified time. The users’
data and environment settings is copied back to
the persistent storage.

16. The execution node is now freed up to execute a
new global interactive session if scheduled by the
Grid Scheduler.

From the above description, we summarize the
key architectural concepts as (1) hierarchical ses-
sions, (2) hierarchical admission control, (3) hier-
archical agents, (4) classes of dynamic accounts,

235

(5) application profiles, (6) user data management,
(7) scheduling for interactive sessions, (8) persistent
environment settings, (9) exporting remote desktop.
In addition, there are runtime components provided
to the end-user once the session starts. In this paper,
we describe in more detail IGENV – the Interac-
tive Grid runtime environment, hierarchical agents,
classes of dynamic accounts, and user data manage-
ment. More details on global admission control and
scheduling for interactive sessions is currently a work
in progress.

4. IGENV: Interactive Grid Environment

We propose IGENV: a runtime environment for graph-
ical interactive sessions, in our proposed Interactive
Grid Computing system. IGENV consists of the fol-
lowing components:
1. Controlled Shell: GISH – ‘Grid Interactive Shell’.
2. Controlled Desktop.
3. SAC – ‘Session Admission Control’ module.
4. GMMA – ‘Grid Monitoring and Management

Agents’.
5. Policy Engine.

These components provide at runtime fine grain
access control, and QoS in interactive grids. Figure 2
shows the interaction of IGENV components in the
context of a dynamic account created by the Dynamic
Account Manager. In the next few sections, we de-
scribe GISH, Controlled Desktop, GMMA, SAC, and
Policy Engine.

Figure 2. Interaction among IGENV components.

4.1. Controlled Shell

A controlled shell provides a restricted interface to the
end-user to submit requests for executing applications
and commands to the remote node interactively. We
have designed a controlled shell called GISH – ‘Grid
interactive shell’. GISH accepts requests to execute
two kinds of commands/applications:
1. Commands and applications that are already in-

stalled on the remote node by the system admin-
istrator.

2. Commands and applications that are NOT already
installed on the remote node, and is a user specified
binary file.
GISH allows grid-users to be logged on to the

remote node through two kinds of user accounts:
1. Controlled normal user accounts. This corresponds

to a normal user account given by the underlying
operating system, restricted by the access control
policy files.

2. Controlled super user accounts. This corresponds
to a super user account given by the underlying
operating system, restricted by the access control
policy files.
Figure 3 shows the design of GISH. It consists of

a command interpreter interfaced to an access con-
trol subsystem. The access control subsystem consists
of access control modules described in detail below.
The user submits a request to start a command or
application to GISH. The command is first parsed
by the command interpreter, and then passed onto
the access control modules. Each of the access con-
trol modules performs an access control check. If
the access control check fails for any of the mod-
ules, a failure message is returned back to the user
and the request to start the application/command is
denied. If the access control check succeeds for all
the modules, then the command or application is
started by GISH and the graphical output, if any, can
be viewed through the remote graphical display. We
describe briefly some of these access control mod-
ules below. In order to make the design modular,
we choose to interface GISH with a Session Ad-
mission Control system (SAC). SAC is responsible
for making admission control decisions for session
parameters.

4.1.1. EAM: Executables and Files Access Control
Module

This module is responsible for verifying that the re-
quested command/application (i) belongs to the list of

236

Figure 3. GISH design.

allowed executables, (ii) is invoked with a list of al-
lowed arguments/options, (iii) only accesses allowed
files and directories. This verification is enforced
through a policy file which enumerates the list of
allowed executables, allowed executable arguments,
allowed files and directories for the user. The policy
files used by EAM is categorized based on whether
the user is logged on as a controlled normal user
or as a controlled superuser. For allowed executa-
bles, EAM would not be able to determine all of the
files and directories that an application would access.
In order to restrict the applications from accessing
only the allowed files and directories at run-time, we
supplement GISH, based on a policy decision, with
systems like [16, 17] which compartmentalize the ex-
ecution of processes, or with virtual machine sandbox
environments like [18].

4.1.2. UbAM: User Binaries Access Control Module
This module is responsible for verifying the signature
for user specified binaries. We assume that there exists
trusted services in our grid computing environment
that checks user specified binaries and signs non-
malicious binaries. UbAM verifies such signatures. If
such trusted services are unavailable to the user, we
provide based on a policy decision, a virtual machine
environment [18] for executing the users’s binaries,
or supplement the system with runtime system-call
monitoring systems [10].

4.1.3. SAM: Session Access Control Module
This module interfaces with SAC – ‘Session Admis-
sion Control’ module, for verifying session specific
parameters. SAC is explained in detail in Section 4.3.

SAM passes the requested command to the SAC. SAC
replies back with an ‘Allow’ or ‘Deny’ decision for the
requested command/application.

The GISH design shown in Figure 3 could be ex-
tended with other access control modules as seemed
appropriate for a particular implementation. We have
presented a few access control modules that we en-
vision to be necessary in a Grid environment for
graphical interactive sessions.

4.2. Controlled Desktop

The controlled desktop has to be identical to GISH in
terms of the policies enforced. The desktop’s menus
and icons is customized by a desktop configuration file
that enforces these policies. At the time of initializa-
tion of the session, this file is read in for customizing
the desktop. The user is not given permission to mod-
ify this file, or to add or modify menu items or icons.
Only the allowed executables with allowed arguments,
and allowed files for the user is accessible through the
controlled desktop.

4.3. SAC

SAC stands for Session Admission Control module.
This module is responsible for making an admission
control decision for a requested application, based on
Service Level Agreements (SLAs), and session poli-
cies. Figure 4 shows the inputs to a SAC system. These
are explained below:
(1) Requested application. The graphics application

which the user is requesting to be launched. This
is provided to SAC by GISH through the SAM
module.

237

Figure 4. SAC design.

(2) SLA. The Service Level Agreement for the session
in progress. The SLA is determined prior to the
start of the session.

(3) Application profiles. The application profiles con-
tain the estimated CPU and bandwidth required
for various classes of applications to meet their
acceptable performance levels. Example classes
of applications are engineering applications, vi-
sualization applications, video games, etc. Such
application profiles are determined by a system
administrator, and refined by an application pre-
dictor system.

(4) Data from GMMA agents. The resource usage
data gathered by GMMA monitoring agents. The
GMMA monitoring agents are explained in Sec-
tion 4.4.

(5) Policies. The session policies in place for the
session.
Given these inputs, SAC checks the session para-

meters to verify availability of resources in compliance
to SLAs. These session parameters are:
(1) Number of processes launched during a session.
(2) Usage time for a session.
(3) Disk quota usage for a session.
(4) CPU utilization percentage for a session.
(5) Network bandwidth utilization percentage for a

session.
SAC compares the current values for these session

parameters with the limiting values agreed upon in the
SLA. If there is a violation, or if a violation would
occur upon executing the application, SAC decides
on a ‘Deny’ decision for executing the application.
Otherwise, an ‘Allow’ decision is made for the appli-
cation by SAC. Figure 5 shows an algorithm for SAC
to make an admission control decision, based on the
CPU and network bandwidth utilization parameters
for a session.

SAC could be extended to support other session
parameters as seemed appropriate for a particular im-
plementation. We have presented a few session pa-
rameters that we envision to be necessary in a Grid
environment for graphical, interactive sessions.

Figure 5. An algorithm for SAC with CPU and network bandwidth
utilization as the session parameters.

4.4. GMMA

GMMA stands for ‘Grid Monitoring and Management
Agents’. The monitoring agents collect dynamic mon-
itoring data, which is used by the management agents
to enforce session SLAs, QoS for applications, in-
trusion protection, and access control policies. Some
of the GMMA agents are associated with a specific
session, while some others are system wide agents
that monitor all the sessions started through the Inter-
active Grid environment. The monitoring agents log
their information in log files,3 interface with other
peer agents, other monitoring systems, as needed. The
management agents use the data gathered by monitor-
ing agents for enforcement purposes. Figure 6 shows
the design of GMMA. The figure shows a few cate-
gories of these agents based on the functionality to be
provided by these agents in the context of Interactive
Grids. For example, some of the functionality is to
monitor and manage (i) session specific parameters
like usage time for the session, number of processes
spawned during the session, number of socket con-
nections opened during the session, disk quota usage
for the session, etc.; (ii) QoS parameters like CPU
utilization, network bandwidth utilization, etc., for

3 This logged data is used only for session and Grid management
purposes. Any privacy issues regarding this information would be
agreed upon as an agreement prior to the start of the session.

238

Figure 6. GMMA design.

Figure 7. Taxonomy of IGENV system policies.

the applications; (iii) security parameters for intrusion
detection and access control like IP addresses of in-
coming and outgoing connections, system calls made
by applications, etc.

The GMMA design presented in Figure 6 could
be extended with other monitoring and management
agents as seemed appropriate for a particular imple-
mentation. As for GISH and SAC, we have presented a
few categories of monitoring and management agents
that we envision to be necessary in a Grid environment
for graphical interactive sessions. However, the design
can be extended with other categories of monitoring
and management agents as well. In Section 5, we de-
scribe the architectural aspects for the monitoring and
management agents in more detail.

4.5. Policy Engine

Policy files are needed for SLA enforcement and se-
curity issues. We also need rules covering different
scenarios. Thus, a process violating its SLA can be run
with a lower priority or be killed under different cir-
cumstances, as dictated by policy. Instead of allowing
policy-based decisions to be internal to other modules
such as GISH, SAC and GMMA, we follow a modular
design. The policy engine is driven by rules and can
take decision based on configuration parameters in the
policy files and information collected by monitoring
agents. These decisions are taken when requested, for
example, by SAC or management agents. The system
policies can be classified into the following categories
also shown in Figure 7:

239

Figure 8. Example system policy files.

(1) Session policies. These specify policy information
for each session. Examples of such policies are
accounting and pricing policies, CPU and process
usage policies, file system and disk quota usage
policies. The policies specify the default action to
be taken on a violation of the system parameters.

(2) Account policies. These specify policy informa-
tion associated with account pools. There are
separate policies for controlled normal users and
controlled superusers. Examples of such policies
are the authorization polices for executables and
files for a user of the account pool.

(3) Application policies. These specify policy infor-
mation for applications that are started by IGENV.
There are two kinds of applications: installed
applications, and user specified binaries. The ex-
ecution of these applications could take place
in a secure environment using systems like Pit-
Bull [16], HP-LX [17], or virtual machine en-
vironments [18]. Such systems have their own
policies.

(4) QoS policies. These specify policy information
for QoS metrics. Example policies are the QoS
enforcement policies on violation of QoS metrics
specified in the application profiles.

Each of the above policies are customized for a
given grid-user of the system. Figure 8 shows exam-
ples of some system policy files.

4.6. Discussion for IGENV

Figure 2 shows the interaction among the compo-
nents of IGENV. As shown in the figure, there is a
tight coupling among the components. These com-
ponents exist in the context of a dynamic account

created by a Dynamic Account Manager. Together, the
IGENV components achieve access control, QoS, and
Manageability. We explain this below.

4.6.1. Access Control through IGENV

Access control for a grid-user is achieved through a
combination of GISH, Controlled Desktop, GMMA,
SAC, and system policies. Using these components,
we can control the access of the user to (i) executa-
bles, (ii) files, (iii) network interfaces, (iv) network
connections, (v) resource usages decided in SLA.

4.6.2. QoS through IGENV

QoS in IGENV is achieved through a combination of
SAC, GMMA, and system policy files. We assume
that the the Grid middleware would have made CPU
and network bandwidth reservation, before the ses-
sion is launched on the remote node. We also assume
the existence of application profiles which contain the
estimated CPU and network bandwidth required for
various classes of applications to meet acceptable per-
formance levels. GMMA monitoring agents monitor
the actual usage values of the CPU and network band-
width utilization of applications. This data is used to
enforce QoS for each application as specified in the
application profiles. The data gathered by GMMA
monitoring agents is also used by the GMMA man-
agement agents for enforcing the reservation limits for
sessions stated in the SLA (policing). Further, before
a new application is launched, the Session Admis-
sion Control System (SAC) verifies that the requested
application would consume resources within the reser-
vation limits agreed upon for the session. This check
ensures that the SLA and QoS guarantees for currently

240

Figure 9. Agents on the execution node.

Figure 10. High level overview of the coordination model for components on the execution node.

executing applications, would not be violated upon
launching the application.4

4.6.3. Manageability through IGENV

The system policy files are associated with a pool of
dynamic user accounts. A grid user is mapped to one
of these pools of dynamic accounts based on a VO-
wide policy. The user is then dynamically allocated
one of the accounts from the mapped account pool.
The user is subject to the system policies associated
with that account pool. After the session for the user
expires, the dynamic account is returned back to the
pool. Such a design coupled with the access control
and monitoring agents system provides for easy man-
ageability through the proposed Grid Environment,
IGENV.

4 Even if the SAC were not to perform this admission control
check, the monitoring agents would detect the violation and an ap-
propriate enforcement action would be taken. However, there would
be a time delay before such an action can take place. Performing a
check at the SAC itself ensures no violation of SLA even for this
time delay period.

5. Hierarchical Agents

We introduced the GMMA agents as part of the run-
time environment, IGENV, in Section 4.4. In this
section, we describe the architectural concepts for the
agents. Figure 9 shows the agents on the execution
node. We assume a master agent that is responsible
for all of the agents on the execution node. Figure 10
shows how some of the agents coordinate and in-
teract with each other. This coordination model is
based on the producer-consumer paradigm [19]. In
Figure 10, some of the components act as both pro-
ducers and consumers. The source data is provided
by Sensor Agents like CPU sensors, memory sen-
sors, network bandwidth sensors, and storage sensors.
Monitoring Agents interface to these Sensor Agents,
and act as a ‘Producer’ to consumers – Aggrega-
tor Agents, Registration Agents, and other archival
agents. The Aggregator Agents themselves serve as
producers to an Application Predictor system, En-
forcement Agents, and Session Admission Control
System. The agent implementations could follow open
standards like FIPA [20, 21]. The system can be ex-
tended to support a registry service, which would

241

aid in supporting information publication about com-
ponents, and discovery of components. Figure 10
shows these components residing on a single node. We
describe the agents below.

5.1. Startup and Configuration Agent

This agent is responsible for launching a new global
interactive session on the execution node. This agent is
also responsible for configuring the system appropri-
ately for the launched global interactive session. For
example, in our implementation, this agent configures
the KDE desktop environment based on the system
policy files corresponding to the allocated dynamic
account. Our implemented Startup Agent also starts
up a VNC server and connects to the end users’ VNC
client thus establishing a graphical, global interactive
session.

5.2. Sensor Agents

The Sensor Agents collect resource information in real
time on a continuous basis. These Sensor Agents are
off-the-shelf sensors like CPU sensors, memory sen-
sors, network bandwidth sensors, and storage sensors.
The Monitoring Agent interfaces with these sensors to
obtain this resource information.

5.3. Monitoring Agent

The Monitoring Agent acts as a ‘Producer’ and makes
resource usage data available to other components.
It itself obtains the resource usage data from Sen-
sor Agents. The Monitoring Agent uses the producer
interface as being defined in the Grid Monitoring Ar-
chitecture [19] to send events to a consumer. The
event data is the overall and per-application resource
usage data (CPU, network, memory, storage) ob-
tained from the Sensor Agents. The Monitoring Agent
could also apply a prediction model on the gathered
data and supply the forecasted resource load values
to the consumers, for example, the predicted CPU
load assuming current set of processes. Based on
implementation choice, separate Producer interfaces
and interaction channels may be required for each re-
source type like CPU, memory, network bandwidth,
etc. The consumers for the Monitoring Agent in our
framework are Aggregator Agents, and Registration
Agents. These consumers subscribe to the event data
made available by the Monitoring Agent using pub-
lish/subscribe model. The Monitoring Agent sends

the event data to these consumers at periodic inter-
vals agreed upon in the subscription. Other interaction
models may also be considered based on implementa-
tion choice. Other consumers of the Monitoring Agent
data could be archival agents for storing the history of
resource usage information, fault detectors to detect
resource aliveness. Based on implementation choice,
the event data could be sent as messages to the con-
sumers, or could be communicated via shared memory
paradigm. The exact protocols and data formats to be
used are implementation dependent.

5.4. Aggregator Agent

The Monitoring Agent provides raw resource data
from the Sensor Agents. However, we need a frame-
work to support the aggregation of this data. Aggrega-
tion is the process of consolidating the resource data
obtained from lower level Monitoring Agents. Aggre-
gation allows compaction of data to minimize storage,
application of filtering for interpreting data at various
granularities, and re-organization of data for comput-
ing statistics and inferring events. The Aggregator
Agent behaves as a compound Producer/Consumer.
It acts as a Consumer to subscribe to per-application
resource usage data from the Monitoring Agent. The
interval for receiving the event data is determined
through policies, and is agreed upon in the subscrip-
tion. The Aggregator Agent aggregates this received
data based on an aggregation function and policies.
Some examples of this aggregation are: (i) aggregation
by time: all the processes running at a particular point
in time are aggregated together. This helps in inferring
the load on the system at a particular time; (ii) ag-
gregation by application: for a given application, we
aggregate the statistics of the application at multiple
points in time. This helps in inferring the behavior of
applications; (iii) aggregation by session: for a given
session, we aggregate the statistics of the applications
belonging to the session, for total session resource
usage values like total number of processes launched
during the session; the total session wall-clock usage
time; total session CPU, network bandwidth, storage
utilization. We also obtain information about the av-
erage, minimum, and peak resource utilization values
for a session. Aggregating data based on session helps
in inferring the session behavior, and the conformance
to SLAs.

The Aggregator Agents can also apply sampling
to the data obtained from the Monitoring Agents at
a coarser time interval, thus filtering out some data

242

Figure 11. Hierarchical Aggregator nodes.

and reducing the data set. The aggregated data is
also archived into persistent storage. Prediction mod-
els could also be run on the aggregated data to obtain
the forecasted resource utilization per application, or
per global session, assuming current set of processes.
The Aggregator Agent acts as a ‘Producer’ for the ag-
gregated data to consumers. Some of the consumers
we have identified are Application Predictor system,
Enforcement Agents, and Session Admission Con-
trol System. The interaction between the Aggregator
Agent and consumers is based on publish/subscribe or
query-response model. Similar to Monitoring Agent,
the Aggregator Agent uses the producer and consumer
interface as defined in the Grid Monitoring Architec-
ture [19]. The event data format, and communication
paradigm is implementation dependent. The Aggrega-
tor nodes host the Aggregator Agents. Figure 11 shows
a hierarchy of Aggregator nodes. The lowest level cor-
responds to execution nodes. In addition to sending
the aggregated data to the consumers on the execution
node, the Aggregator Agents on the execution nodes
also send their aggregated data to the intra-cluster Ag-
gregator node. The intra-cluster Aggregator nodes in
turn send their aggregated data to inter-cluster Aggre-
gator node, thus forming a hierarchy. The Aggregator
Agents on each of these hierarchical Aggregator nodes
execute different aggregation functions.

5.5. Enforcement Agent

The Enforcement Agent is responsible for enforcing
Service Level Agreements (SLAs) for global sessions,
and providing guaranteed QoS for graphics applica-
tions. The Enforcement Agent behaves as a ‘Con-
sumer’ to receive aggregated resource usage data from

Aggregator Agent. The interval for receiving the data
is determined through policies, and is agreed upon in
the subscription. These agents take as input the data
from the Aggregator Agents, the SLAs for the global
sessions, the application profiles, and policies. Us-
ing these inputs, it checks for violation of the SLAs
or QoS guarantees. Once a violation is detected, an
enforcement action is taken. For example, this en-
forcement action could be one or combination of the
following: (i) decrease the priority of applications that
exceed their resource utilization levels; (ii) increase
the priority of applications falling below their desired
resource utilization levels; (iii) kill applications that
have violated their resource utilization levels by a large
amount. The enforcement process is controlled by
policies.

6. Dynamic Accounts

We propose dynamic or template accounts in Inter-
active Grids to make the resource virtualization more
appropriate for grids. The scalability and manageabil-
ity of the system are enhanced if we do not require
grid users to have their personal user accounts on all
the machines that are part of the grid. Instead the
system administrator has to add the user once to a
directory maintained by the virtual organization in
which the user has obtained membership. Any site
that participates in that virtual organization (VO) will
check the user’s membership with the directory during
authentication, and authorize the user as a dynamic
account if he does not have a static account. The dy-
namic account is chosen from the pool of dynamic

243

Figure 12. Flowchart describing the process of account allocation,
access control and session management.

accounts maintained for that VO. Each dynamic ac-
count is a full-fledged Unix account created on the
execution node, but without a permanent real-world
user associated with it.

Each pool is associated with a set of policy files,
customized to the target users of that pool. Unlike
normal user accounts that belong permanently to their
real-world owners, a dynamic account is bound to a
user temporarily. The selection of a pool and the bind-
ing of the user to an available dynamic account from
that pool are based on the Grid credentials presented.
After the successful selection and binding of user to
a dynamic account, the graphical interactive session
is started. The window manager, terminal windows
running the GISH shell, and other programs specified
in the window manager’s startup files are all started
as processes owned by the allocated dynamic account.
The entire process can be described by a flowchart
shown in Figure 12. The dynamic account is freed at
the termination time agreed upon for the session that
is using the dynamic account. At the termination time,
the management agents kill the processes still running

with this account as owner, and delete all files owned
by the account. The account is then returned to the
pool. We could also choose to archive the files created
by the user as against deleting it, on a server main-
tained by the VO. Subsequent sessions for this user
retrieve the files from the archive. Section 7 describes
more about the data management aspects.

We organize the dynamic accounts into classes to
simplify the work of the system administrator. The
system administrator may have to add a new class or
modify the attributes of an existing class occasionally,
however these activities will not be frequent and the
time required will be much less than managing the
policy files separately for each user or group or users.
Each class can correspond to a role in the real world.
Thus, members of the finance department can be as-
signed to one class, while members of the engineering
department can have another class. In our scheme,
each class of dynamic accounts is associated with its
set of policy files. This set includes, among others,
a policy file for resource usage. This can specify the
minimum and maximum CPU and network bandwidth
utilization by the user’s session. Another policy file
lists the commands the user is allowed to execute. Yet
another policy file lists the directories and files the user
is allowed to access.

The different classes of dynamic accounts are
arranged in a hierarchy for ease of administration. We
illustrate this hierarchy by considering the functions
of system administrators. Common functions such as
testing and releasing OS patches, restoring files from
backup and monitoring and enforcing resource usage
limits can be placed in a base class so that all sys-
tem administrators can perform these functions when
needed. Beyond that, there can be groups of system
administrators who are responsible for installing and
maintaining certain groups of applications. We keep
a class of dynamic accounts for each of these appli-
cation groups. The list of commands and applications
allowed for these classes and the directories and files
they are allowed to modify are specific to their applica-
tion group. When a system administrator connects to
a grid computing resource and is allocated a dynamic
account, the set of policy files governing that account
is created by the combination of policies appropriate
to this administrator’s roles. Thus, if he is responsible
for application groups A and B, his policy files will
be obtained by merging the basic privileges of system
administrators and the privileges of application groups
A and B obtained from their respective policy files.
By organizing the classes in a hierarchy, we ensure

244

that each class inherits the policy files of its parent
classes. Conflict resolution rules are used to determine
the value of an attribute inherited from multiple par-
ents. A class can add commands and applications to
those its parent classes allow to be executed. It can
also override inherited attributes.

7. Data Management

In this section, we describe the architectural features
for data management in Interactive Grids. Once an
execution node has been assigned for the user, the
Grid middleware needs to ensure that the user’s files
are present on a filesystem accessible from the execu-
tion node assigned to him. Furthermore, access rights
for the user’s files have to be given to the dynamic
account assigned to him. We assume that the users’
files are archived in a Grid Storage Service (GSS).
For interactive sessions on an execution node allocated
by the Grid DRM, the user’s files containing his ses-
sion state will have to be restored at the beginning of
every interactive session and saved at the end of the
session since the dynamic account is associated with
the user only for the duration of the session. The Grid
Storage Service is used to store the users’ files at the
end of the session, and the files are then transferred to
the appropriate execution node at the beginning of a
new interactive session. To minimize the time taken to
transfer files at the beginning of an interactive session,
it makes sense (i) to cache the users’ data on the exe-
cution node at the end of the interactive session instead
of deleting it; (ii) for the DRM to schedule interactive
sessions with affinity to the execution node used during
the previous interactive sessions by the same user. As-
suming that the execution node selected was used in a
previous session by the user, there is still no guarantee
that the files cached locally will be the latest version
since the user might have been assigned a session at
another site by the grid middleware between two con-
secutive sessions on the resource selected. During the
session at the other site, he might have modified the
files. Hence the middleware should verify whether any
of the files cached locally are stale, and if so, invalidate
them or get their updated versions, in the background,
from GSS.

7.1. Data Affinity Scheduling Algorithm

The steps involved in the data affinity scheduling algo-
rithm for allocation of an execution node with dynamic

account, in response to a user’s request for allocation
sent to the grid middleware, are illustrated in a flow-
chart in Figure 13. Affinity scheduling is possible only
for frequent users for whom an execution node has
been allocated at this site previously and is available.
This is shown in step F. All other users are assigned
execution nodes in step E. This involves checking the
resource, application and session requirements speci-
fied by the user in his job template when requesting
an interactive session. For frequent users, this also
involves checking history of previous sessions. If the
user frequently requested interactive sessions during
certain time periods, it is best to assign execution
nodes that are expected to be available during those
time periods. After selection of the execution node,
a check is done on the execution node for the ex-
istence of a home directory named by mapping the
user’s grid credentials. If a directory exists and is
owned by a reserved dynamic account, the dynamic
account is assigned to the user in step K. If a non-
reserved dynamic account is assigned, ownership of
the user’s home directory tree, if it exists, is given
to the dynamic account. The user is logged in with
his user ID being the dynamic account assigned. He
finds his shell and desktop customized according to
the policies being enforced. Files that are stale will be
temporarily unavailable while they are updated in the
background from the grid storage service. At the end
of the interactive session, all files that have been mod-
ified during the session are updated in the grid storage
system using the user’s grid credentials. Also, the
user’s dynamic account is put in a reserved pool if he
is a frequent user. If he returns for another interactive
session before the account is reused, the ownership of
the files do not have to change.

8. Analysis

We now provide an analysis of our solutions as de-
scribed in the previous sections. While designing the
system, we came up with a list of requirements for
our solutions to satisfy. These were: (1) be applicable
across heterogeneous platforms, (2) extend existing
general purpose tools, (3) require minimal changes
to the existing system software, (4) be extensible and
modular, (5) address needs of graphics and multimedia
applications, (6) support self-managing capabilities,
(7) work for all application types, (8) be flexible
to interface and interoperate with other complemen-
tary and grid solutions, (9) be driven by policies,
(10) scalability.

245

Figure 13. Flowchart describing data affinity scheduling algorithm.

Towards this end, we avoided as far as possible,
designing solutions specific to an OS, or in-kernel so-
lutions, or solutions requiring drastically new tools.
This is reflected in our design, for example, through
GISH, which was implemented by extending existing
popular bash shell. In order to make the design self-
managing, we propose monitoring and management
agents, which gather run-time information, and en-
force appropriate enforcement actions to honor SLAs
and access control policies. We also took a two-level
approach of (1) filtering commands before execution
to verify for access and admission control, and then
(2) monitoring and managing the behavior of the sys-
tem at run-time. In such a two-level approach, we
introduce tight feedback loops from the monitoring

agents to policy engine and session admission con-
trol module, so that dynamic run-time information
gathered can be used for subsequent admission and
access control decisions. This helps in making the
system self-learning and self-managing. The two-level
approach is also expected to provide performance
benefits by eliminating some of the non-compliant
application requests at the shell itself. Since we de-
sired to design the system to work for any application,
we avoided QoS solutions like QuO [22] from the
Quorum project [23], that specifically address needs
of distributed object systems built over CORBA-like
middleware infrastructures. Rather, in order to provide
QoS management we provide (1) functionality in the
Interactive Grid DRM to allocate the most appropri-

246

ate available resource(s) that would satisfy the QoS
requirement of the application, (2) monitoring and
enforcement framework to adjust fine-grain resource
allocations of applications at run-time to enforce QoS
guarantees.

Our solution for the runtime components in
IGENV is believed to be efficient as it proposes an
integrated set of components to together solve the
problems of fine grain access control, QoS, and man-
ageability, compared to providing separate solutions to
each of these problems.

In terms of runtime performance analysis, we are
interested in reducing the overhead caused during an
interactive session in an interactive grid computing
system. The overhead caused by Dynamic Account
Manager is only at the beginning of a session, and
is expected to be minimal since it would primarily
involve accessing the gridmapfile, and executing a
simple logic to map the user to the appropriate ac-
count. The overheads caused by the Controlled Shell
– GISH, and Session Admission Control module –
SAC, is also expected to be insignificant compared
to the high human response time expected while the
user is interactively submitting commands. The over-
head caused by monitoring and management agents
would incur in terms of filesystem read access, agent-
agent communication, enforcement algorithms. These
can be addressed through appropriate implementation
techniques and as future work, we are designing the
monitoring and management agents taking these fac-
tors into consideration, so as to not limit the usefulness
of the system due to these overheads.

9. Implementation

We have a working prototype implementation for In-
teractive Grids. Our implementation environment con-
sists of Intel x86 machines running Red Hat Linux 7.3,
as the remote nodes. The end-user can request for one
of these remote nodes for interactive use from any
machine supporting a web browser. We use Globus
Toolkit 2.0 [3] as the Grid middleware platform, and
VNC [13] as the remote display technology for remote
graphical sessions. GPDK [24] is used to provide a
web portal to the end-user for submitting job requests.
We have extended the functionality of Globus, so that
it can also be used for submitting requests for starting
a graphical interactive session to the remote nodes.
Globus GSI certificates are used for authentication.
We have an implementation of a Scheduler that de-
termines the appropriate node to be allocated for a

users’ request. Figure 14 in the Appendix shows the
job submission process. Once a node is determined
for the users’ request, the appropriate account pool
for the user is determined. A set of policy files is as-
sociated with this account pool. A dynamic account
from this pool is then allocated for this user. We then
start a VNC server and GMMA agents for this session.
On a successful VNC authentication, the user is pre-
sented with a controlled KDE Desktop environment
containing only the applications and menus the user
is allowed to access. The KDE desktop environment
is pre-configured by the system administrator for each
pool of accounts.

The session starts with default startup applications,
including a GISH shell. The GISH shell has been
implemented as an extension to the popular GNU
bash shell for Linux and Windows. The shell source
code was modified so as to include the access control
modules. GISH currently checks for list of allowed
executables from a file, before executing commands.
The GMMA Agents started at the beginning of the
session, run with super–user privileges. They record
the session and system information and store them
in predetermined files. Currently, the GMMA agents
check for the usage time for the session, number of
spawned processes. The system policy files contain
information about the session usage time, number of
allowed processes, etc., along with their maximum
allowed values, and actions to be taken on violation
of these policies. The current default action is to kill
all the processes and end the session, on violation of
the session policies. Implementation for other mod-
ules and agents for GISH and GMMA is a work in
progress. Figure 15 shows some interaction exam-
ples within GISH during a session in progress, and
Figure 16 shows the session screen on termination.

To support dynamic accounts, we modified
globus_gatekeeper and GSI-SSH daemon from Globus
Toolkit 2.0 by linking them with a modified library
for reading the gridmapfile. Normally the gridmap-
file contains entries mapping the distinguished name
(DN) of the user to the local Unix account. As
a first step, we modified the gridmapfile to re-
place the local Unix account name with a prede-
fined string for the user’s VO, indicating that a dy-
namic account from the VO’s pool should be used
for this user. To get our modified library for read-
ing the gridmapfile, we started with a patch to the
globus_gss_assist package, distributed by the Grid for
UK Particle Physics, obtained from [25]. As a sec-
ond step, we extend this library further to remove

247

the requirement of having an entry in the gridmap-
file. When the user authenticates himself, the DN
obtained from his certificate will be queried against
the directory maintained by the VO for member-
ship. If the user is a member, he will be assigned
a dynamic account from the pool customized for
that VO.

10. Related Work

Majority of the work in the area of grid computing
has been for batch jobs and hence do not address
the problems as outlined in the paper. The same
holds with recent projects on interactive applications
like CrossGrid [9]. Solutions developed in Punch
project [10] do not address graphical and multimedia
sessions, gsissh [26] provides for encryption of inter-
active sessions and can be used with our solution. QoS
solutions provided through Quorum project [23, 22]
address the needs of distributed object systems and
provide QoS support in underlying middleware in-
frastructure like CORBA. We propose QoS support for
applications through appropriate initial resource allo-
cation and subsequent monitoring and adjustment of
resource allocations by the Grid resource management
framework. We do not assume any available support
for application adaptation through multiple applica-
tion behaviors. Several thin client system architectures
have been proposed including Citrix Metaframe [11]
and SunRay systems [12]. However, to our knowl-
edge, none of these systems have been considered in
the context of Grids. Our solution extends the scope
of thin client architectures to become part of Grids.
Most of the other related work for access control
and QoS are in the non-grid context do not com-
pletely satisfy the requirements for Grid. For example,
traditional OS access control mechanisms do not al-
low to easily enforce fine grain access control for
arbitrary end-users. Sudo [27] is not a replacement
for shell and does not provide a complete solution
for all our needs in Grid context. Our solution pro-
vides for an integrated and comprehensive solution
for problems of access control, QoS, and account
management in the context of graphical interactive
sessions in Grids. Our solution is not specific to any
remote display technology and can be used with sys-
tems like [13, 28]. Our architecture for hierarchical
agents leverages the architectural framework being
defined in the Grid Monitoring Architecture [19]. Un-
like the Grid Monitoring systems being developed

[29–31], our monitoring infrastructure addresses the
goal of providing QoS guarantees for graphical ap-
plications. We plan to leverage the existing low level
hardware and software sensors to collect CPU, mem-
ory, network bandwidth measurement data. Dynamic
account management has been described in [32, 33].
However, we differ from the prior work in using the
dynamic account as a component of our customizable
grid environment, by associating each pool of dy-
namic accounts with its set of policy files that IGENV
enforces.

11. Conclusions

In this paper, we introduced Interactive Grids which
allow end-users access to remote execution nodes
belonging to a Grid, for graphical interactive use.
Interactive Grids extend the application domain for
Grid computing systems from traditional batch jobs
to graphical, interactive sessions. We described some
of the problems posed for the design of interactive
grids, namely that of fine grain access control, perfor-
mance QoS, dynamic account management, schedul-
ing, and user data management. In this paper, we
have presented key architectural concepts in designing
Interactive Grids. They are hierarchical sessions, hier-
archical admission control, hierarchical agents, classes
of dynamic accounts, application profiling, user data
management, wide area grid scheduling for interactive
sessions, persistent environment settings, and export-
ing remote desktop. We also presented IGENV: a
runtime environment for enabling interactive grids.
Our approach has been in building a set of compo-
nents addressing the issues of fine grain access control,
QoS, and manageability, in an integrated but modular
manner. We believe this leads to more efficiency. The
components are GISH – ‘Grid Interactive Shell’, Con-
trolled Desktop, SAC – ‘Session Admission Control’
system, GMMA – ‘Grid Monitoring and Management
Agents’, Policy Engine. While designing the system,
we realized the need to satisfy important requirements
of heterogeneous platforms, easy extensibility, modu-
larity, and self-managing capability. We identified the
areas of overheads that would occur with a deployment
of our solution, which would be considered for op-
timization in the future work. We also described our
implementation of the system on Linux x86 machines,
using and extending Globus Toolkit 2.0 for the base
grid middleware infrastructure and VNC as the remote
display technology.

248

Appendix

Figure 14. Job submission screen for a graphical interactive session in an Interactive Grid computing system.

Figure 15. Screen during an interactive session in progress.

249

Figure 16. Screen at a session logout.

References

1. I. Foster and C. Kesselman (eds.), The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kauffman Publishers,
1999.

2. I. Foster, C. Kesselman and S. Tuecke, “The Anatomy of the
Grid: Enabling Scalable Virtual Organizations”, International
Journal of SuperComputing Applications, Vol. 15, No. 3,
2001.

3. I. Foster and C. Kesselman, “Globus: A Metacomputing In-
frastructure Toolkit”, International Journal of SuperComput-
ing Applications, Vol. 11, No. 2, pp. 115–128, Summer 1997.

4. Nasa ipg. http://www.ipg.nasa.gov.
5. Teragrid project. http://www.teragrid.org.
6. Eurogrid project. http://www.eurogrid.org.
7. Entropia. http://www.entropia.com.
8. S. Basu, V. Talwar, B. Agarwalla and R. Kumar, “Interac-

tive Grid Architecture for Application Service Providers”, in
Proceedings of the International Conference on Web Services
(ICWS), June 2003.

9. Crossgrid. http://www.crossgrid.org.
10. A.R. Butt, S. Adabala, N. Kapadia, R. Figueiredo and

J.A.B. Fortes, “Fine-grain Access Control for Securing Shared
Resources in Computational Grids”, in IPDPS, April 2002.

11. http://www.citrix.com.
12. http://wwws.sun.com/sunray/sunrayl/.
13. T. Richardson, Q. Stafford-Fraser, K.R. Wood and A. Hop-

per, “Virtual Network Computing”, IEEE Internet Computing,
Vol. 2, No. 1, pp. 33–38, 1998.

14. Globus mds. http://www.globus.org/mds.

15. P. Mundur, R. Simon and A. Sood, “Integrated Admission
Control in Hierarchical Video-on-demand Systems”, in Pro-
ceedings of the IEEE International Conference on Multimedia
Computing and Systems, June 1999, pp. 220–225.

16. Pitbull lx white papers. http://www.argus-systems.com.
17. N. Edwards, J. Berger and T.H. Choo, “A Secure Linux

Platform”, in 5th Annual Linux Showcase and Conference,
November 2001.

18. E. Bugnion, S. Devine, K. Govil and M. Rosenblum,
“Disco: Running Commodity Operating Systems on Scalable
Multiprocessors”, ACM Transactions on Computer Systems,
Vol. 15, No. 4, pp. 412–447, 1997.

19. R. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Tay-
lor and R. Wolski, “A Grid Monitoring Architecture”, GGF
Document Series available from http://www.gridforum.org.

20. Fipa. http://www.fipa.org/repository/index.html.
21. Bigus and Bigus, Constructing Intelligent Agents Using Java,

2nd edn, John Wiley, 2001.
22. J. Zinky, D. Bakken and R. Scantz, “Architectural Support for

Quality of Service for Corba Objects”, Theory and Practice of
Object Systems, Vol. 3, No. 1, 1997.

23. Quorum. http://www.dist-systems.bbn.com/projects/QuOIN/.
24. J. Novotny, “The Grid Portal Development Toolkit”,

Concurrency-Practice and Experience, 2000.
25. http://www.gridpp.ac.uk/gridmapdir.
26. Gsi-ssh. http://www.ncsa.uiuc.edu/Divisions/ACES/GSI/

openssh/.
27. Sudo. http://www.courtesan.com/sudo/.
28. Sgi opengl vizserver. http://www.sgi.com/software/vizserver.

250

29. B. Tierney, B. Crowley, D. Gunter, M. Holding, J. Lee
and M. Thompson, “A Monitoring Sensor Management Sys-
tem for Grid environments”, in Proceedings of the Ninth
IEEE International Symposium on High Performance Distrib-
uted Computing, IEEE Computer Society, Washington, DC,
pp. 97–104, August 2000.

30. A. Waheed, W. Smith, J. George and J. Yan, “An Infrastructure
for Monitoring and Management in Computational Grids”,
in Selected Papers from the 5th International Workshop on
Languages, Computers, and Run-time Systems for Scalable
Computers, Springer-Verlag, London, pp. 235–245, 2000.

31. R. Wolski, N. Spring and J. Hayes, “The Network Weather
Service: A Distributed Performance Forecasting Service
for Metacomputing”, Future Generation Computer Systems,
Vol. 15, Nos. 5–6, pp. 757–768, 1999.

32. T.J. Hacker and B.D. Athey, “A Methodology for Account
Management in Grid Computing Environments”, in 2nd In-
ternational Workshop on Grid Computing, November 2001,
Springer-Verlag.

33. “An Accounting System for the Datagrid Project Version
3.0”. http://server11.infn.it/workload-grid/docs/DataGrid-01-
TED-0115-3_0.pdf.

