

A Conceptual Architecture for Semantic Web Services
(ISWC version)♦

Chris Preist
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2004-214
November 26, 2004*

semantic web, web
services,
architecture,
agents

In this paper, we present an abstract conceptual architecture for semantic
web services. We define requirements on the architecture by analyzing a
set of case studies developed as part of the EU Semantic Web-enabled
Web Services project. The architecture is developed as a refinement and
extension of the W3C Web Services Architecture. We assess our
architecture against the requirements, and provide an analysis of OWL-S.

* Internal Accession Date Only
♦ISWC, International Semantic Web Conference, 8-11 November 2004, Hiroshima, Japan
 Approved for External Publication
 Copyright Hewlett-Packard Company 2004

A Conceptual Architecture for Semantic Web Services

Chris Preist1

HP Labs, Filton Rd, Stoke Gifford, Bristol BS32 8QZ, UK
chris.preist@hp.com

Abstract. In this paper, we present an abstract conceptual architecture for
semantic web services. We define requirements on the architecture by
analyzing a set of case studies developed as part of the EU Semantic Web-
enabled Web Services project. The architecture is developed as a refinement
and extension of the W3C Web Services Architecture. We assess our
architecture against the requirements, and provide an analysis of OWL-S.

1. Motivation

In this paper, we present an abstract conceptual architecture for semantic web
services. The motivation behind this is (i) To provide a conceptual model to aid in the
principled design and implementation of semantic web service applications; (ii) To
allow the principled application of existing semantic web service ontologies such as
OWL-S and WSMO; (iii) To contribute to the evolution of such languages, or the
design of new ones, through the identification of appropriate features such a language
needs; (iv) To motivate the development of appropriate infrastructure to support a
variety of semantic web service applications. The main impetus behind this work has
been provided by the European Union Semantic Web–enabled Web Services project
(SWWS). This project aims to develop appropriate Semantic Web Services
infrastructure to support four case-studies, inspired by the design principles proposed
in the Web Services Modeling Framework [2]. Although these four case studies
provide the primary source of requirements on our architecture, to encourage
generality, we also consider a variety of other applications of SWS described in the
literature.

We take the W3C Web Services Architecture (WSA) [14] as an important input.
This provides a conceptual model for understanding web service technology and its
relationship with other components. In particular, it adopts the view that the semantics
of a service is provided by a contract (agreeing what the service does) between the
service provider and service requestor. Such a contract can be explicit or implicit, and
can be agreed in a variety of ways.

1 The following people have contributed to this work through discussion and/or feedback: The
HP Semantic Web Services team; the EU Semantic Web-enabled Web Services team, Dieter
Fensel, Mark Burstein, Ian Dickinson, Terry Payne, Bijan Parsia and the ISWC reviewers.

2 Chris Preist

The potential role of contracts in supporting web service interactions is becoming
increasingly recognised. The use of contracts in supporting interactions between
agents in open systems has long been recognised by the agent community (e.g. [5]).
Proposals have been made to use contracts in semantic web services [3]. The adoption
of contracts as representing semantics in the WSA is further evidence of this trend.

Though the WSA adopts the contractual view, the implications of this are not
explored as fully as is required if the semantics are to be made explicit. Specifically, it
does not make a clear separation between the semantics of a service provider agent
and the semantics of a particular performance of a service. Furthermore, it does not
provide a model to show the activities involved in agreeing the ‘semantics’ of a
particular service interaction (though it does informally discuss this process.) The
conceptual architecture we present builds on the WSA to provide appropriate
separation of concepts and additional constructs.

The WSA presents four different views on the architecture, focused around
different core concepts; message, service, resource and policy. Our focus is primarily
on the service-oriented view. In particular, we do not consider policy, security or
reliability issues and how these are affected by the addition of explicit semantics. To
do so requires additional analysis beyond the scope of this paper.

The paper is structured as follows. Firstly, we discuss the semantics of the word
‘service’, and consider the different ways it can be used. Next, we briefly describe the
SWWS case studies, and refer to additional applications discussed in the literature.
We then present a set of requirements on a semantic web services architecture,
derived from analysis of this set of applications. Next, we briefly summarise the
service oriented model of the WSA, and present our conceptual architecture as an
extension of this. We assess the architecture against our requirements, present an
analysis of OWL-S and conclude.

2. What is a ‘Service’?

The word ‘service’ can be used in several different ways. If a clear conceptual
architecture is to be developed for semantic web services, we believe that it is
necessary to make these different uses explicit.
1. ‘Service’ as provision of value in some domain
In the economy nowadays, a great variety of different services are traded; provision
of stock quotes, shipment of crates, translation of documents, provision of a
broadband connection etc. In each case, the customer receives something of value to
them in return for a payment to the supplier. The service received can be described in
terms of the domain of application. Such a description does not need to refer to the
way in which the supplier and customer interact. This is what an economist or
businessperson would refer to as a service.

On the internet, services can be provided which involve a payment, and so
correspond closely to the above perspective. We can broaden this view of service
without losing what is essential. A service can be provided without any payment, and
the value the service provides need only be ‘in the eyes of the requestor’, not
necessarily something with monetary value in the commercial world. For example,

A Conceptual Architecture for Semantic Web Services 3

the provision of a specific piece of information from a database or the provision of a
plan to achieve some goal. Hence, a service is the provision of something of value, in
the context of some domain of application, by one party to another.

We also need to distinguish between a particular provision of value from the
general capability to provide. We refer to the former as a concrete service, and the
latter as an abstract service. Hence an abstract service is defined as the capacity to
perform something of value, in the context of some domain of application.
2. ‘Service’ as a software entity able to provide something of value
This usage is common in the computer science and IT community. Papers often speak
of sending messages to services, receiving results from services, executing services
etc. While this is clearly appropriate in the context of web services and service
oriented architectures, it can cause some confusion when mixing usage of this
definition with the definitions above. For that reason, we believe that it is more
accurate to speak of such an entity as being (part of) a service provider agent (SPA).
We also use the term ‘web service’ to refer to a specific application with a
WSDL/SOAP interface.
3. ‘Service’ as a means of interacting online with a service provider
A common example of this usage is ‘negotiation service’; A negotiation service
provides the means to interact (negotiate) with a given actor. This usage is clearly
different from usage 1, in that negotiation in itself does not provide something of
value. However, the outcome of the negotiation may do so (and hence may be a
service in the first sense.) For this reason, we refer to this as the provision of a
negotiation ‘protocol’ or ‘choreography’.2

All three of these aspects of service provision are essential; the ‘value’ in some
domain, the interactions involved, and the implementation of the entity able to deliver
what is needed. However, we believe that for conceptual reasons it is best to make
clear distinctions between them.

3. Example Scenarios

In the interests of space, we present very brief overviews of five of the example
scenarios used. Fuller descriptions are available in an extended version of this paper.
Of these, scenarios 2, 3 and 5 are from case studies in the SWWS project.
Example A: Currency Conversion quotation 3

A simple service provider, providing a currency quotation for the conversion of a
given amount of one currency into another currency, at a given time.
Example B: Design of a SPA to proactively manage Virtual ISP problems
A system designer develops a complex service provider agent for managing faults.
This requires the coordination of several internal applications, including a workforce
management system (to timetable an engineer to fix the problem) and a customer
relationship management system (to inform the customer). These applications have

2 A ‘negotiation service’ can exist in the first sense; this is a service where you ‘subcontract’

some negotiation problem to a service provider, and they negotiate on your behalf.
3 By Terry Payne: http://www.daml.ecs.soton.ac.uk/services/SotonCurrencyConverter.html

4 Chris Preist

web service interfaces. The system designer develops a complex process out of these
and ‘wraps’ the resulting system with a service provider agent front-end.
Example C: Discovery, selection and execution of a customer notification service
A service requestor, OAS, needs to send a message to one of their customers. It does
to by dynamically discovering a set of notification services, interacting with them to
see if they can contact the specific person, selecting one based on functionality and
cost, and interacting with it to send the message and provide payment.
Example D: ‘Smart’ book buying from several online book suppliers
A purchasing agent requiring several books locates several book sale SPAs, and
interacts with them all simultaneously using their ‘shopping cart’ conversations to get
quotes for purchase and delivery. It calculates the best SPA (or possibly set of SPAs)
to use and ‘checks out’ an appropriate set of books, confirming the purchase. It
monitors progress by using an ‘order progress’ conversation with the SPA.
Example E: Provision of a logistics supply chain [1]
A company has a ‘broken link’ in a logistics supply chain and must rapidly locate a
new shipping service between two ports. It makes a complex service request to a
discovery service, and locates possible providers. It negotiates with them about the
exact terms and conditions, and selects one. As the shipment takes place, it is
accompanied by a complex exchange of messages between service provider and
service requestor. This scenario requires two forms of ‘service composition’. Firstly,
the shipment service must ‘slot in’ with the other services in the logistics chain
(arriving at the right time, etc). Secondly, the conversations with the service provider
must be coordinated with conversations with other service providers in the chain.

4. Requirements Analysis

Based on the above case studies (and others) we identify requirements on a
conceptual architecture (CA) for semantic web-enabled web services4:
1. The architecture should define the functionality of service discovery, but should

not constrain the way in which it is enacted.
2. Discovery should be possible either using an explicit description of a required

capability (E) or an implicit description through 'service provider type'.
3. Discovery identifies a set of SPAs which may meet the requestor's need. (C,D)
4. It should be possible to do discovery through informal browsing by a user (B).
5. Discovery should be symmetric; the functionality should not restrict a provider to

advertise and a requestor to actively discover.
6. After the discovery process, there may (D) or may not (A) be a need for a contract

agreement conversation to define the exact service to be provided.
7. The initiator should know prior to contacting them whether a conversation is

necessary with the discovered agents to define the service.
8. A contract agreement conversation may involve negotiation of service parameters,

selection of parameters from a set of possibilities (E), or a 'constructive' process
such as the 'shopping trolley' metaphor (D).

4 The letters in brackets give the examples in section 2 which generate the requirement.

A Conceptual Architecture for Semantic Web Services 5

9. A CA should enable negotiation to take place, but not place any requirements on
either the structure of the contract agreement conversation required or on the
negotiation strategies any participant may use

10. At the end of a contract agreement conversation, there will be an explicit contract
which is identifiable as the 'semantics' (at the application level) of the agreed
service. If there is no such conversation, then the discovery process should provide
something identifiable as an explicit contract.

11. A service may be delivered directly as an output of an interaction with a Service
Provider Agent (A), immediately as the effect of an interaction with a SPA (C), or
as a later event or sequence of events after the defining interaction (E).

12. A post-agreement conversation may be directly linked to the execution/delivery of
a service (E) or may simply monitor progress without directly affecting it (D).

13. A conversation about a service may be a simple request-respond pair(A), or may
be a more complex interaction(D).

14. Conversations about a service may be initiated by the requestor(A), by the
provider(E), or by either party (C)

15. A conversation may involve an asynchronous exchange of messages (E)
16. The semantics of a post-agreement conversation should be conceptually different

from the domain-level semantics of the agreed service itself. However, there
should be a means of linking the conversation with its domain level effect (E).

17. A service provider agent may in turn act as a service requestor agent to 'outsource'
parts of the functionality it needs to deliver its service (B,C,D,E).

18. Some SPAs may achieve this outsourcing by executing processes of more simple
elements created statically or dynamically using an internal planner (B); other
SPAs may use very different reasoning methods (D).

19. It may be necessary to 'compose' service instances either to enable them connect
in some way (E) or to provide a 'service bundle' that meets some need (D).

20.It may be necessary to 'compose'/coordinate conversations about services, to allow
two services to interact appropriately (E).

21.Parts of the functionality required to support a conversation may themselves be
treated as component services (D).

5. The Conceptual Architecture

In this section, we present a conceptual architecture (CA) which aims to meet the
requirements listed in section 4. We now give a brief overview of the WSA service-
oriented model [14] upon which our CA is based. The concept of a service is core,
which is defined as an abstract resource representing a capability to perform some
coherent set of tasks. The performance of a given task involves some exchange of
messages between the requestor and provider agents. A choreography defines a
pattern of possible message exchanges (i.e. conversations). The WSA associates a
choreography with a task’s performance. The task may also have effects in the virtual
or real world. Such effects may be publicly observable, but will often be private (such
as a database update). The success or otherwise of a given task (from the perspective

6 Chris Preist

of one party) can be assessed by whether some goal state has been achieved. Such a
goal state can be defined formally or informally.

As Sycara et al observe [10], tasks can be defined in three ways. They can be
represented explicitly, using name labels with a well defined semantics in some
ontology of tasks. They can be represented implicitly, using a language of
preconditions and effects of a task. Or they can be defined using a combination of
these two approaches. The WSA makes no commitment as to which approach is used.

A service has a description, which specifies its interface and messages in a
machine-processable way. This may also include a description of the service’s
semantics. The semantics specifies (formally, informally or implicitly) the intended
effect of using the service: specifically, the tasks that constitute it. The WSA views
this semantics as ‘a contract between the requestor entity and provider entity
concerning the effects and requirements pertaining to the use of a service.’ We adopt
the majority of this model unchanged. The two changes we make are:
1. Distinction between abstract service, agreed service and concrete service
In the WSA, a service has a semantics which can be described, advertised and
discovered by a service requestor. However, the service semantics is defined as the
contract between the provider entity and requestor entity. This creates a problem:
How can something which is defined as an agreement between the two entities be
advertised prior to the two entities communicating? We believe this can be solved by
making a distinction in the model between the abstract service a provider entity offers
and the agreed service which appears within a contract, and assigning semantics to
each. Additionally, (as outlined in section 2) we introduce the concrete service which
is the performance of a specific service at a particular time. We give more complete
definitions and examples of these concepts below. Similarly, we consider abstract
tasks, agreed tasks and concrete tasks.
2. Distinction between service and service provider agent
The WSA specifies that a Service Provider Agent realises a service. The word
‘realises’ (and the explanation in WSA) implies that the provider agent is an
embodiment of the service. We believe that this confuses a service as the capability to
provide something of value with the entity or software implementation which has the
capability. For this reason, we say that a provider agent provides an abstract or agreed
service, and performs a concrete service.

We now present our conceptual architecture(CA). Firstly, we present definitions of
the concepts we introduce. Then we present and explain the architecture. For clarity,
we separate it into three diagrams, representing the entities and relationships involved
in discovery, service definition and service execution. We omit the entities and
relationships which appear in the WSA if they remain unchanged in our model and
are not relevant to the discussion of service semantics.
Firstly, we define the concept of a concrete service. This is the core ‘building block’
with which to define the semantics of more abstract descriptions of services.

Definition: A Concrete Service is an actual or possible performance of a set of tasks
that represent a coherent functionality (and therefore deliver some value) within some
domain of interest to its associated requestor and provider entities.
A concrete service: has a set of one or more concrete tasks; has a set of messages; has
a service provider and service requestor; has one or more post-agreement
choreographies associated with it; has a service provider interface and/or a service

A Conceptual Architecture for Semantic Web Services 7

requestor interface which are used by the choreographies; may have a service
description.

A concrete service is effectively a (possible or actual) specific and detailed set of
tasks carried out at a given time, and the messages exchanged in association with this.
The messages are exchanged between a specific provider and requestor, according to
certain choreographies and using certain interfaces. A service provider, however, does
not offer a specific concrete service. Rather, they are able to provide many different
possible concrete services. Similarly, a requestor is rarely after a specific concrete
service; they are interested in many possible services which meet their needs. For that
reason, we define the concept of abstract service:

Definition: An Abstract Service is some set of concrete services. A concrete service
is said to be a realization of an abstract service if it appears in this set.

Definition: An Abstract Service Description is some machine-processable description
D which has, as its model, an abstract service C. (We write Model(D) = C)

An Abstract Service Description is some specification of a set of services. The format
of this description is not specified as part of this architecture. There are several
possibilities: (1) An extensional listing of concrete services. (2) A label representing
the name of some abstract service in some ontology of services. (3) A template or
formal description in some knowledge representation language.

Option one is the most conceptually straightforward, but in practice will be
infeasible except in the simplest of cases. In option two, the semantics of the label is
defined as the (possibly infinite) set of concrete services which correspond to that
label within the ontology. This correspondence may be well-defined and explicit, with
a service specification or contract template associated with the label. Often, however,
the correspondence will be more informal. For example, a label ‘bookselling’ may
have as its semantics the set containing any possible concrete services where books
(and only books) are being sold. The third option specifies the set of concrete services
by explicitly and formally defining an abstract service using some knowledge
representation (KR) language such as OWL or F-logic. This may involve explicit
descriptions of abstract tasks, possibly including parameters. The set-theoretic
semantics of the KR language then defines the set of concrete services to be those
which formally satisfy the concept description.

A resource representing an abstract service will have an abstract service description
associated with it. In addition, it may be associated with: (i) a contract agreement
choreography (ii) a service provider, and an associated service provider interface
(iii) a service requestor, and an associated service requestor interface.

Whereas a concrete service is always associated with a specific requestor and
provider, an abstract service may have one or both of these undefined. Similarly, an
abstract task may be less completely defined than a concrete task is.

An abstract service, as we shall see below, can be used for advertising or
requesting. However, it is not precise enough to define what a requestor and provider
agree. For that we define the following;

Definition: An Agreed Service is an abstract service agreed between two parties
Hence it is associated with a specific service provider and service requestor, together

8 Chris Preist

with their associated interfaces. It also has specific post-agreement choreographies
associated with it. Its definition is such that: (i) any further decisions necessary to
select a realization will occur as choices made during a post-agreement choreography.
(ii) Any choice made by one party during the post-agreement choreography is such
that the other party is indifferent to how that choice is made. The agreed service forms
the core of the service contract between two parties, which defines the semantics of
their interaction:

Definition: A Service Contract is an agreement between a service provider and
requestor that the provider will supply an agreed service to the requestor. The
contract: has a service provider; has a service requestor; has an agreed service
description; has an association between the tasks involved in the agreed service
description and choreographies and message interfaces which will be used to have
conversations about the tasks; may have information about who is responsible and
what compensation may occur in the case that a service is not delivered correctly;
may have additional legal terms and conditions.

Fig. 1. Discovery Model of Conceptual Architecture

The agreed service description will be (explicitly or implicitly) in terms of the
tasks to be performed. It may include tasks to be performed by the requestor (e.g.
payment transfer in the case of e-commerce applications.) The task/choreography
association defines how the interaction between the parties can take place during
delivery of the agreed service. This may be done by including the choreographies
explicitly in the contract. This is appropriate where a choreography may vary and
require agreement between two parties. Alternatively, it may be done by referencing a
choreography definition elsewhere. This is appropriate when the service provider
agent offers a specific choreography and is not able or willing to alter it, or provides a
choice between a small number of choreographies, or the parties use some standard
choreography defined elsewhere.
Fig. 1 illustrates the concepts involved in discovery. A requestor agent requires one of
a class of abstract service; to this end, they publish a description of their requirements.

A Conceptual Architecture for Semantic Web Services 9

Similarly, a provider agent is able to provide services within a certain class of abstract
service. It publishes a description of the services it can provide.

Ideally, in each case, the description of the abstract service will correspond exactly
to the actual abstract service which is required or offered. However, in practice, this
may not be possible. For this reason, we define correctness and completeness of
descriptions:
Definition: A description D of an abstract service C is said to be correct if any
element in the model of D also appears in C. i.e. Model(D)⊆ C.
Definition: A description D of an abstract service C is said to be complete if any
element of C also appears in the model of D. i.e. C⊆ Model(D).

Often, it is possible to achieve completeness but not correctness in service
descriptions. For example, a bookseller can state ‘I sell books’ in an advert, but
cannot guarantee that every title is in stock. The role of the discovery process is to
determine if a given service provider may be able to meet the needs of a given service
requestor, and to inform one or both parties of this. As the WSA discusses, discovery
can be achieved in several different ways, including the use of a discovery service.
Note that we say that both the requestor and the provider publish a service
description. Such a publication may be as an entry into some discovery service, as a
query to such a service, or as a local advertisement or request in a peer-to-peer system
[2]. Following requirement 5, we make no commitment as to which party advertises
and which party queries. In general, we would anticipate that providers would
advertise and requestors would query the advertisements; however, there are
exceptions such as when a requestor issues a public Request For Quotes describing
the kind of service it requires.

Assuming that descriptions of service requirements and service offers are complete
but not correct, then the minimal functionality required of the discovery system is to
determine if the two abstract service descriptions intersect [11]. If this is the case, an
agreement between the two parties may be possible. Paolucci et. al. [8] describe a
more sophisticated matchmaker which uses a hierarchy of different definitions of
matching to determine which matches are more likely to be fruitful.

Following discovery, two parties need to determine if they can agree on a service
instance which the provider will supply to the requestor. This is done through the
contract agreement phase. In some cases, this phase will be unnecessary and the
results from the discovery phase will be enough. This is the case if the following
criteria are satisfied; (i) The published service offer description is correct (but not
necessarily complete). (ii) The offer description provides a complete and explicit
service description which includes post-agreement choreographies. (iii) Any aspect of
the offer description which has variability (for example, a parameter which is not
defined) is such that the provider is indifferent with regard to the choice.(iv) The
delivery choreography (see below) is structured such that choices within this
variability (such as a parameter instantiation) can be input through it.
If all four of these criteria hold5, then the contract agreement phase is unnecessary.
The service offer description defines a set of concrete services, and the provider

5 This is phrased assuming the provider advertises and the requestor queries and selects.
However, it is equally possible (though a lot rarer) that the requestor is indifferent, and the
provider makes the selection using the requestor’s delivery choreography.

10 Chris Preist

doesn’t care which is selected. The delivery choreography allows the selection of a
concrete service to be made by inputting parameter values chosen by the requestor.
We call a service which has an abstract service description satisfying these criteria a
basic service.

If the published abstract service description does not satisfy the criteria, but the
service provider agent is able to give a abstract service description which does, then
the contract agreement phase becomes a straightforward ‘take-it-or-leave-it’ process.
The contract agreement choreography simply consists of the requestor accessing the
description. It then goes on to execute the delivery choreography if it chooses to use
this service provider, and does nothing otherwise.

Contract
Agreement

Choreography

participates in participates in

about

specialisation of results in

contains Service ContractAgreed Service
Description

Abstract Service
Description

Provider Agent Requestor Agent

Fig. 2. Contract Agreement Model of Conceptual Architecture

In general, the contract agreement phase can be more complex than this. Fig. 2
illustrates the concepts it involves. At least one provider and at least one requestor
agent participate in a choreography to agree a contract between them. The
choreography involves discussing some abstract service, and may explicitly involve
the manipulation of a description of it. If the choreography terminates successfully, it
results in a service contract agreed between two parties; this contract contains a
description of an agreed service which specifies the concrete service to be delivered.
The agreed service will be a specialization of the abstract service found during
discovery.
The decision making within the contract agreement phase has three aspects: Partner
selection: Often, one or both parties can choose which partner will deliver/receive a
service. Service selection: One party, usually the requestor, may need to select and
specify certain parameters of a service instance which weren’t specified during
discovery. Negotiation: Often, when a service specification is fully defined, other
contract parameters (e.g. price) will be fixed. However, in some cases, they may be
open to negotiation.

A Conceptual Architecture for Semantic Web Services 11

Any given contract agreement phase does not necessarily involve all three of these.
Furthermore, they can take place in any order, and may be interleaved.
Definition: A contract agreement choreography is a choreography between at least
one service requestor and at least one service provider which, on successful
termination, results in the agreement of a service contract between two of the parties.
Definition: A service contract is an agreement between a service provider and
requestor that the provider will supply a specific service instance to the requestor. A
service contract has (i) a service provider, (ii) a service requestor and (iii) a service
instance with associated service description and resource identifier

A contract agreement choreography may explicitly involve service selection and/or
negotiation. Service selection protocols can take different forms: A service provider
may offer a list of all contracts they are willing to offer, and the requestor simply
selects one. A requestor may iteratively build a definition of the service they wish to
receive using the ‘shopping trolley’ metaphor, and are given a price quote for it. A
requestor may refine a service template through dialog with the provider about
different options available. Example negotiation protocols include propose/counter-
propose (where each party proposes a contract, and the other party either accepts it or
proposes an alternative) and constraint relaxation (where parties relax constraints on a
contract template until both sets are satisfiable [12]). Many other possible approaches
to negotiation exist ([4], [13]).

The association of a contract agreement choreography to a given set of provider
and requestor agents must take place following discovery. The simplest way to do this
is for the advertising agent to associate a (pointer to) a contract agreement
choreography description with their advert, or to return a contract agreement
choreography when they are first queried directly.

Fig. 3. Service Delivery Model of Conceptual Architecture

12 Chris Preist

When a contract agreement choreography has terminated successfully, then service
delivery can take place. This may commence immediately on agreement of the
contract, or may be initiated later by a subsequent choreography. Fig. 3 illustrates the
concepts involved in the service delivery phase. A concrete service is supplied by the
provider agent to the requestor agent. This concrete service must be a member of the
agreed service (which, recall, is a set of concrete services). The agreed service has an
associated service contract which contains a description of the service agreed together
with a mapping from the agreed tasks within the service to choreographies about these
tasks. To distinguish these choreographies from the contract agreement
choreographies, we refer to them as post agreement choreographies:
Definition: A post-agreement choreography is a protocol for a conversation between
a service requestor and service provider about a contract which has been previously
agreed, or one or more tasks within such a contract.
There are at least three different kinds of post-agreement choreography. A delivery
choreography governs conversations which directly initiate and/or control the
execution of one or more tasks in a contract. A monitoring choreography allows the
requestor to monitor the task’s progress. A cancellation/renegotiation choreography
allows the termination or alteration of a service within a contract in certain
circumstances.
This completes the Semantic Web-enabled Web Services conceptual model (CA). We
now assess the architecture against the requirements of section 4.

6. Assessment of the Conceptual Architecture

Requirements 1, 2, 3 and 5 are straightforwardly satisfied by the structure of the
conceptual architecture applied to the discovery phase as discussed above.
Requirement 4, that discovery can be performed by informal browsing as well as
matching, is not satisfied immediately by the architecture. However, a browser can
easily be implemented within the conceptual framework described above; a set of
service offer descriptions can be filtered, ordered and presented to a user according to
certain parameters specified by a user.

To meet requirement 6, the architecture allows but does not require a contract
agreement choreography between the parties. Furthermore, we characterise services
which do not need such a choreography, and define them as basic services. While this
characterisation is not technically part of the architecture, a discovery service could
use it to determine if a contract agreement choreography will be necessary, satisfying
requirement 7. Requirements 8, 9 and 10 are straightforwardly satisfied by the
structure of the conceptual architecture as applied to the contract agreement phase as
discussed above. In the case of basic services, an explicit contract is provided by the
service offer description which is offered as take-it-or-leave-it and so needs no further
refinement.

The architecture makes a clear separation between the definition of a service,
interactions defining the service, and interactions involved in the delivery of the
service. In particular, the delivery of a service can take place independently of its
definition, satisfying requirement 11 and part of 16. The requirement that there be a

A Conceptual Architecture for Semantic Web Services 13

means of linking a conversation with its effect is enabled but not satisfied by the
architecture; use of a language which allows this is necessary. The other requirements
on service delivery choreographies (12, 13, 14, 15) are straightforwardly satisfied by
the structures defined above.

The conceptual architecture, like the WSA, allows ‘outsourcing’ of functionality
(17) as agents can act simultaneously both as service providers and service requestors,
possibly of several different services. We place no restrictions on the internal
reasoning used to determine how this is done. One option is to use a planner to
determine which service requests to make (18).

By separating out the definition of an agreed service from the choreographies to
define and deliver the service, the architecture allows different kinds of ‘composition’
to take place. In particular, it enables parties to reason over possible service
definitions at the domain level during the contract agreement phase to ensure
coordination between the different services agreed(19). It also enables parties to
reason about, and coordinate, choreographies associated with the agreement and
deployment of different services (20). However, both of these are merely enabled by
the architecture; reasoning strategies to do these must be embodied within specific
requestor/provider agents.

A third form of what could loosely be called ‘composition’ is the application of
some service to enable a choreography between provider and requestor of some other
service (21). For example, a ‘shopping trolley’ choreography to define a book
purchase may be enabled by component services, with functionality such as ‘book
search’ or ‘put in trolley’. The domain of application of these component services is
‘shopping trolley choreography’ as opposed to ‘book delivery’, the domain of the
‘higher level’ service being defined. However, within their domain, they can be
considered as services with associated contractual definitions, and can be located and
reasoned over by an agent which brings about the choreography between requestor
and provider of the book delivery service. Such an arrangement, as opposed to fixed
choreography definitions, would enable more flexible interactions between the two
parties. It is conceivable to imagine a hierarchy of services nested in this way; though
in the end it would bottom-out to fixed choreographies or basic services.

7. Analysis of OWL-S with respect to the Conceptual Architecture

OWL-S ([7],[9]) (formerly DAML-S [6]) is an ontology for use in providing semantic
markup for web services, developed by a coalition of researchers as part of the
DARPA Agent Markup Language program. In this section, we compare the
conceptual model implicit in OWL-S with our conceptual architecture.

The OWL-S ontology defines a service in terms of three top-level classes; the
profile, the service model and the grounding. The profile characterises what a service
requires and provides, and is used primarily in the discovery phase. The service model
describes how a service works, primarily in terms of a process model. This defines a
service’s functionality as the execution of a (potentially complex) process of
component web services. The grounding defines how a component web service can be
interacted with, primarily through WSDL/SOAP. These three classes roughly

14 Chris Preist

correspond to our requirement for a service definition at the domain level, a
description of how to interact with a service provider, and an implementation of that
interaction. However, there are some differences which mean that OWL-S would
need to be adapted and augmented if it were applied within our architecture.

In OWL-S, the profile is used almost exclusively as an advertisement/request.
Hence it focuses on the description and categorization of an abstract service, but does
not consider what is necessary to refine it to define an agreed service and to use this
as a specification of what interactions accomplish. To do this, the service model
(either within or outside the profile) would need to be augmented to provide complex
structured descriptions of abstract services, and the ability to constrain and instantiate
service parameters. The profile does not make a clear distinction between what a
service does and the way in which one interacts with a service provider to receive the
service. In particular, it is not clear that inputs/outputs should appear in the domain-
level description of an agreed service. (For example, the domain level agreed service
description may state that ‘provider pays £10 by credit card’; the associated
choreography will require a credit card number as its input. Hence the domain level
definition and the choreography to deliver it are kept separate.)

The process model in OWL-S appears to serve two separate functions. Firstly, it
can be used to define the exchange of messages with a service provider about a
service; secondly, it can be used to define how a service provider implements the
functionality of a service as a process of component web services. Both of these are
valid uses, but the conceptual architecture requires that they be separated out.

The required exchange of messages about a service is defined by one or more post
agreement choreographies in our conceptual architecture. The process model could be
used to represent this. Note that the architecture can have several choreographies
associated with a service, each performing different functions. Hence a given service
may need several process models, and links between the process models and the
domain-level service description to define what each does.

The definition of a service’s functionality in terms of a process over component
web services is a particular method of delivering a service. The CA requires that such
a method should not be proscribed and that a provider using such a method should not
be required to make public their method. For this reason, using the process model in
this way would not be compliant. A separate structure defining the internal process
should be used, and the publication of it would be optional. (Such a separation is
being adopted in the nascent WSMO [15])

8. Conclusions and Future Work

We have presented a conceptual architecture developed out of a requirements analysis
of a set of case studies in the SWWS project and example applications from the
literature. The architecture makes a clear separation between the domain-level
definition of a service to be provided, the message exchanges which bring about the
service, and the internal logic which provides the appropriate functionality.
Inevitably, the architecture is at an abstract level; however, it does shed light on the
required characteristics of service ontologies and infrastructure services to realise it.

A Conceptual Architecture for Semantic Web Services 15

We are currently working on an extension of the CA to include sub-communities of
service agents which share a problem-solving method (in particular, planning). We
also hope to expand it to cover mediation more effectively.
The conceptual architecture is being used to define, design and implement a general
technical architecture for Semantic Web Services able to demonstrate the four case
studies within the SWWS program. It is also being used as the underlying conceptual
model in the development of WSMO-full [15] and has been submitted for
consideration by the architecture subcommittee of the Semantic Web Services
Initiative.

References

1. Esplugas-Cuadrado, J., Preist, C. and Williams, S.: Integration of B2B Logistics using
Semantic Web Services. To appear, Proc. Artificial Intelligence: Methodology, Systems,
and Applications, 11th International Conference, (2004)

2. Fensel, D. and Bussler, C.: The Web Service Modeling Framework WSMF. Electronic
Commerce: Research and Applications, 1 (2002) 113-117

3. Grosof, B. and Poon, T.: SweetDeal: Representing Agent Contracts with Exceptions using
Semantic Web Rules, Ontologies and Process Descriptions. To appear, International
Journal of Electronic Commerce (2004)

4. He, M., Jennings, N.R. and Leung, H: On Agent Mediated Electronic Commerce. IEEE
Transactions on Knowledge and Data Engineering 15(4) (2003) 985-1003

5. Jennings, N.R., Faratin, P.,Johnson,M.J., O’Brien,P. and Wiegand, M.E.: Using Intelligent
Agents to Manage Business Processes. Proceedings of the First Int. Conference on the
Practical Application of Intelligent Agents and Multi-Agent Technology (1996) 345-360

6. McIlraith, S. and Martin, D.: Bringing Semantics to Web Services. IEEE Intelligent
Systems, 18(1) (2003) 90-93

7. OWL-S 1.0 Release. http://www.daml.org/services/owl-s/1.0/
8. Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K: Semantic Matching of Web

Service Capabilities. Proc. International Semantic Web Conference (2002) 333-347
9. Paolucci, M. and Sycara, K.: Autonomous Semantic Web Services. IEEE Internet

Computing, (September 2003) 34-41
10. Sycara, K., Paolucci, M., Ankolekar, A. and Srinivasan, N.: Automated Discovery,

Interaction and Composition of Web Services. Journal of Web Semantics 1(1), Elsevier
(2003)

11. Trastour, D., Bartolini, C. and Gonzalez-Castillo,J.: A Semantic Web Approach to Service
Description for Matchmaking of Services. In Proceedings of the Semantic Web Working
Symposium, Stanford, CA, USA, July 30 - August 1, 2001

12. Trastour, D., Bartolini, C. and Preist, C.: Semantic Web Support for the B2B E-commerce
pre-contractual lifecycle. Computer Networks 42(5) (August 2003) 661-673

13. Vulkan, N.: The Economics of E-Commerce. Princetown University Press, Princetown,
New Jersey (2003)

14. W3C. Web Services Architecture. W3C Working Group Note, 11 February 2004.
http://www.w3.org/TR/ws-arch/

15. Web Services Modelling Ontology: http://www.wsmo.org/

