A

invent

Generalized Knapsack Solversfor Multi-Unit
Combinatorial Auctions: Analysis and Application
to Computational Resour ce Allocation

Terence Kelly

Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2004-21

February 15", 2004+

E-mail: kterence@hpl.hp.com

knapsack The problem of allocating discrete computational resources among
problems, agents motivates interest in general multi-unit combinatorial
combinatorial exchanges. This paper considers the problem of computing optimal
auctions, (surplus-maximizing) alocations, assuming that agent utility
dynamic functions are quas-linear but otherwise unrestricted. We present a
programming, solver whose time and memory requirements are linear (in the
optimization, pseudo-polynomial sense) in three of four natural measures of
€conomics, problem size: number of agents, length of bids, and units of each
markets, pricing resource. In applications where the number of resource types is

inherently a small constant, e.g., computational resource allocation,
such a solver offers advantages over more elaborate approaches
developed for high-dimensional problems.

In this context, we aso describe the deep connection between
auction winner determination problems and generalized knapsack
problems, which has received remarkably little attention in the
literature. This connection leads directly to pseudo-polynomial
solvers, informs solver benchmarking by exploiting extensive
research on hard knapsack problems, and encourages a clean
separation between E-Commerce research and Operations Research.

* Internal Accession Date Only Approved for External Publication
a Copyright Hewlett-Packard Company 2004

Generalized Knapsack Solversfor Multi-Unit Combinatorial Auctions:
Analysis and Application to Computational Resource Allocation*

Terence Kelly
kt erence@pl . hp. com
Hewlett-Packard L aboratories
1501 Page Mill Road m/s 1125
PadoAlto CA 94304 USA

15 February 2004

Abstract

The problem of allocating discrete computational re-
sources among agents motivates interest in general multi-
unit combinatorial exchanges. This paper considers the
problem of computing optimal (surplus-maximizing) allo-
cations, assuming that agent utility functions are quasi-
linear but otherwise unrestricted. e present a solver whose
time and memory requirements are linear (in the pseudo-
polynomial sense) in three of four natural measures of prob-
lemsize: number of agents, length of bids, and units of each
resource. In applications where the number of resource
types is inherently a small constant, e.g., computational
resource allocation, such a solver offers advantages over
more elaborate approaches devel oped for high-dimensional
problems.

In this context, we also describe the deep connection be-
tween auction winner determination problems and gener-
alized knapsack problems, which has received remarkably
little attention in the literature. This connection leads di-
rectly to pseudo-polynomial solvers, informs solver bench-
marking by exploiting extensive research on hard knapsack
problems, and encourages a clean separation between E-
Commerce research and Operations Research.

1. Introduction

Recent years have witnessed an explosion of interest in
combinatorial auctions (CAs), which permit agents to de-
fine utility over bundles of different types of goods. Al-
though CAs are applicable to a wide range of allocation
problems, the FCC’s spectrum allocation problem largely

* A shorter but substantively similar version of this paper was submit-
ted to the Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS’04) on 22 January 2004. Author notifications are due
23 March 2004. htt p: // ww. aanmas- conf er ence. or g/
$Revision: 1.43 $ $Date: 2004/02/16 07:55:51 $

motivated the 1990s surge of CA research [10, 51]. Special
properties of spectrum auctions—particularly the restriction
that only a single unit of each type of good is available—
received much attention in E-commerce research literature.
An important measure of problem size in a single-unit CA
is the number of good types, and for this measure the win-
ner determination problem (WDP) is NP-hard by reduction
from the weighted set packing problem [57].

An unfortunate consequence of excessive attention to
single-unit CAs has been excessive pessimism regarding
efficient and exact winner determination in more general
problems. The few papers that have considered multi-unit
CAs (MUCAS) report that the WDP is NP hard when prob-
lem size is measured by number of good types [10, 15, 37].
Other natural measures, e.g., number of available units of
each good, number of agents, and the length of bids, re-
ceive far less attention.

This paper follows a very different trajectory from prac-
tical motivation to conclusions regarding the computational
complexity of CA WDPs. We begin with the problem of
allocating resources in large computing environments. The
number of resource types in reasonable formulations of this
problem is a small constant, whereas the number of units
of each resource is large and variable. The optimal alloca-
tion problem corresponding to WDP is a generalized multi-
dimensional knapsack problem (KP): allocating a bundle of
goods to an agent reduces the pool of available goods, just
as placing an item in a container with multiple capacity con-
straints (e.g., weight, volume) reduces its remaining capac-
ity along each dimension.

The deep connection between WDPs and KPs leads to
pseudo-polynomial exact algorithms for problems of fixed
and low dimensionality. If the coefficients describing a
problem instance are bounded, very simple exact solvers ex-
ist whose time and memory requirements are linear in the
number of agents, length of bids, and number of units of
each resource. Such solvers are entirely practical for low-
dimensional problem instances (i.e., few resource types)

and provide an attractive default solution method for in-
stances where their computational costs are not prohibitive.
In all cases they provide a well-understood baseline against
which more elaborate methods may be compared.

Straightforward MUCA WDP solvers inspired by
the auction-knapsack connection invite more detailed,
more balanced, and more nuanced analyses than are typ-
ically performed on complex heuristic solvers designed
for high-dimensional problems. Knapsack-based WDP
solvers furthermore support very general combinato-
rial exchanges with essentially no restrictions on the
expression of agent utility functions. The connection be-
tween CA WDPs and generalized KPs allows us to retain
much of the flexibility and generality of integer pro-
gramming [2] while exploiting the special structure of
KPs to obtain simple and efficient exact solvers. In spe-
cial cases such as single-good multi-unit auctions, textbook
uni-dimensional KP solvers compare rather well with spe-
cialized WDP algorithms. Finally, WDP benchmarks
can draw upon extensive Operations Research litera-
ture on hard KP instances.

The boundaries of the present investigation are as fol-
lows: We consider only one-shot sealed-bid auctions, an
important subset of auction types in a comprehensive tax-
onomy [74]. We consider only discrete allocation (inte-
gral quantities of goods). Our results apply to the alloca-
tor of proper economic mechanisms such as the General-
ized Vickrey Auction (GVA) [69] or Vickrey-Clarke-Groves
(VCG) mechanisms [42], but we do not consider incentive
issues surrounding auctions. Finally, although a wide range
of approximation schemes for KPs have been proposed, we
restrict attention to exact methods. This is appropriate in
light of recent results on the necessity of exact solvers for
incentive-compatible mechanisms [31, 34,47, 48].

The remainder of this paper is structured as follows:
Section 2 motivates interest in low-dimensional MUCAS
with a discussion of multi-agent resource allocation in large
computing environments. Section 3 formulates our general
allocation problem and explains the relationship between
auction winner determination and knapsack problems. Sec-
tion 4 presents a general solver for multi-unit CAs with un-
restricted agent preference expression and analyzes its time
and memory requirements in detail. Section 5 defines a suc-
cinct mode of expression for rational agent preferences in
the context of multi-unit CAs, derives a method of gener-
ating synthetic test inputs directly from the definition, and
relates MUCA inputs to Operations Research literature on
hard KP instances. Section 6 reviews related work and Sec-
tion 7 concludes with a discussion.

2. Motivation: Data Center Allocation

Large tightly-coupled computers remain popular for en-
terprise computing [19], and today entire data centers com-
prising large numbers of loosely-coupled hosts are offered
as commercial products [20]. Resource allocation in both
contexts has several properties that recommend auction-
mediated negotiation, and knapsack-based optimal alloca-
tors are ideal WDP solvers for these contexts.

The number of abstract resource types in computa-
tional allocation problems is inherently a small constant,
because only a few fundamental operations can be per-
formed on data: data can be manipulated, stored, and
transported. Corresponding resource types—processing,
storage, and bandwidth—often suffice in models of compu-
tational resource allocation [17]. For reasons of fault isola-
tion, security, and performance isolation, most computing
resources are allocated in integral quantities; examples in-
clude CPUs, switch ports, and logical devices (LDEVSs)
in storage arrays [18]. The number of units of each re-
source is typically large and expands with user needs: Mod-
ern data centers contain thousands of hosts and their
consolidated storage systems comprise comparable hum-
bers of LDEVs.

Applications and the resources allocated to them are par-
titioned so that an application’s performance depends only
on the resources it receives; this corresponds to a property
sometimes called “no externalities” in auction contexts [46].
Multi-tiered applications for large computing environments
are horizontally scalable by design, i.e., they exploit vari-
able quantities of resources at each tier. Application perfor-
mance exhibits both complementarities and substitutabil-
ities across resource types. For example, one application
may require minimal quantities of both memory and band-
width in order to perform acceptably; another may compen-
sate for lack of bandwidth by exploiting an additional CPU
for data compression. These properties suggest that agents
will define utility over bundles of resources, which in turn
recommends combinatorial auctions.

While the number of applications simultaneously shar-
ing an enterprise computing center may be large, the num-
ber of self-interested agents among whom resources are al-
located may be small. Agents might correspond to depart-
ments or projects within a firm, or to firms within a con-
sortium that jointly owns a data center. If the number of
agents is small it is reasonable to suppose that each will
behave strategically. Incentive-compatible mechanisms (in
which truth-telling is a dominant strategy for agents) are
therefore desirable, even for allocation within a hierarchi-
cal organization [32]. Given that the incentive properties
of GVA/VCG mechanisms sometimes require exact WDP
solvers [31, 34,47, 48], we prefer exact solvers to approxi-
mate ones where possible.

Computational resource allocation can be formalized as
a generalized knapsack problem [27]; Section 3 describes a
suitable formulation. Our straightforward solver, presented
in Section 4, is appropriate to the special properties of data-
center allocation. Its computational complexity is exponen-
tial in the number of resource typesbut is linear in the num-
ber of available units of each resource and in all other nat-
ural measures of problem size. A simple implementation of
the solver produces, as a side effect, a table describing the
aggregate utility of any subset of the data center’s resource
pool, thereby providing a wealth of information about the
marginal value of various resource types. This information
might be useful for purposes other than allocation, e.g., ca-
pacity planning.

3. Problem Formulation

We are given R resource types and T agents. At most
N indivisible units of resource type r are available, r =
1,...,R Each agent defines utility over a list of resource
bundles. Our goal is to maximize aggregate utility by choos-
ing exactly one bundle from each list, subject to resource
scarcity. Let B; denote the number of bundles in agent t’s
utility function, and let &, = (Qutp, - - - , Greb) @nd Ugp respec-
tively denote the quantities of resources in bundles and the
utility of bundles, b = 1,...,B;. Binary decision variable
Xip = 1 if agent t receives the bth resource bundle on its list,
zero otherwise. Formally, our “multi-dimensional multiple-
choice knapsack problem” (MDMCK) is the following in-
teger program:!

i1 Yoty Xblp)
SH X =1 t=1,...,T)
SUL SR X <N r=1,..,R (3)

The inequality in Equation 3 permits unallocated goods; to
forbid them we simply replace the inequality with equal-
ity. In the latter case we can express arbitrary disposal costs
of unallocated goods via an additional agent utility func-
tion. The solver of Section 4 takes a different approach: it
accepts an explicit disposal cost function as an input.
MDMCK reduces to classic knapsack problems as spe-
cial cases [27]. Extensive literature exists on these special
cases, but relatively little on MDMCK itself. Kellerer et al.
devote roughly three pages to MDMCK and identify ap-
proximate heuristic algorithms dating back to 1997 [26].
They report that to the best of their knowledge no exact

maximize
subject to

1 The definition here differs slightly from that of earlier work on
MDMCK: Whereas Reference [27] requires that at most one bundle
on each list be chosen, here we generalize the conventional definition
of the classic multiple-choice KP and require that exactly one bun-
dle be chosen. Otherwise the two formulations are identical. To obtain
“at most one bundle” allocation in the present formulation, we sim-
ply append a zero-utility null bundle to every agent utility function.

agent ID utility 1,$7 || 1,99
) :

L& (oo |

uantity of [as2z]| asw m

resource A

1,$9 1,$30
2,$20

quantity of
resource B

1, $30

available

resource B

2,$15

3, $19

available resource A

Figure 1. lllustration of 2-D MDMCK. Top left:
resource bundle. Top right: utility functions.
Bottom: optimal allocation.

algorithm for MDMCK has ever been published. In fact,
Tennenholtz briefly sketched an exact MUCA WDP solver
suitable for low-dimensional MDMCK instances, without
providing time or memory complexity analyses and with-
out connecting the WDP to generalized KPs [68].

Two-resource MDMCK admits a simple graphical inter-
pretation illustrated in Figure 1. A rectangle labeled with an
agent ID and a utility value can represent a resource bundle
(top left). Utility functions are collections of such rectan-
gles (top right). The allocator’s output is illustrated at bot-
tom: exactly one bundle is chosen from each utility function
such that utility is maximized while the sum of resource us-
age does not exceed the resource pool in any dimension.

A note on terminology: Neither MDMCK nor its spe-
cial cases should be confused with the multiple knapsack
problem, which involves several containers/resource pools
and which we do not consider in this paper. Furthermore
note that in MDMCK we do not seek to fill a container
in the sense of tiling in two dimensions; the term “multi-
dimensional knapsack” has been applied to this very dif-
ferent kind of packing problem [14]. Some authors pre-
fer “multi-constraint” for problems like MDMCK to avoid
confusion but “multi-dimensional” appears to be more stan-
dard [26, 43].

3.1. Application to Auctions

In an auction setting, we refer to the list of (T, Uip) pairs
that an agent submits to the allocator as its bid. In general
this reported utility function may differ from the agent’s
true utility function; we shall ignore the relationship be-
tween the two except to note that they may differ and that
our allocator receives the former. The constraint of Equa-
tion 3 ensures that each agent receives exactly one bundle

defined by its bid. In other words, we permit “XOR bids,”
which in turn permit the expression of arbitrary preferences
over bundles [46].

The MDMCK formulation requires that each agent’s
utility depends only on the bundle of resources the agent it-
self receives (“no externalities” [46]). No other restrictions
on agent preferences are inherent. For example, MDMCK
allows goods to be “bads,” i.e., free disposal is not required.
Furthermore agent utility need not be “normalized” in the
sense that no change in goods owned implies no change in
utility.

Some prior work on single-good multi-unit auctions has
restricted the expression of agent utility functions, e.g., by
requiring that demand be monotonic in per-unit price [29]
or that bids be divisible, i.e., “all-or-nothing” bids are for-
bidden [73]; monotonicity restrictions have also appeared in
multi-good CA analyses [33]. In the single-good-type case,
bid divisibility is required to ensure that a uniform price ex-
ists corresponding to any allocation that maximizes surplus
according to agent bids (which is not the same as maximiz-
ing surplus, because divisible bids might not represent ac-
tual agent utility functions). Uniform prices are sometimes
desired, e.g., for reasons of perceived fairness. The real mo-
tivation for restrictions on the form of bids, however, has of-
ten been to facilitate efficient clearing algorithms [71].

Computational issues aside, the greater generality and
flexibility of a MDMCK formulation makes it attractive in
auction settings where uniform prices are not required. The
components of resource vectors g and utilities u may as-
sume both negative and positive values, allowing agents
to express willingness to engage in complex atomic (all-
or-nothing) transactions. Properties including bid divisi-
bility, monotonicity, free disposal, and normalization are
permitted but not required. Thus the MDMCK formula-
tion supports very general two-sided multi-unit combina-
torial exchanges, e.g., the dozen CA variants considered in
Ref. [59].

3.2. Auction and KP Taxonomies

To some extent, relationships between problem fami-
lies are an aesthetic issue; whether a particular correspon-
dence appears natural or promising is partly in the eye of
the beholder. CA WDPs are frequently described as gen-
eralizations of set packing, even in the multi-unit case [15].
Connections with generalized knapsack problems, however,
seem more natural and more useful for several reasons.
First, KPs are more widely known among nonspecialists,
e.g., algorithm implementors in industry; they are intuitive,
memorable, and invite simple graphical interpretation (Fig-
ure 1). KPs are also far more widely studied in Operations
Research. Most importantly, KPs admit pseudo-polynomial
solution under restrictions that are acceptable in a wide

o
ST _ o
005 N \)QG common winner-determination
S ¥ 9 name / examples problem
S S S firstprice find max
double auctions, classic 0-1 KP;
S M S single-quantity subset-sum if
bids #units O utility
S M M doubleauctions, multiple-choice
XOR bids KP (MCKP)
M S S “combinatorial weighted set
auctions” packing (WSP) [57]
M S M single-unitCA, reducible to WSP
XOR bids via “dummy goods”
multi-unit CA, multi-
M M S single-bundle dimensional
bids KP (MDKP)
M M M multi-unit CA, MDMCK [27]

XOR bids [37]

Table 1. Auction types and winner-determi-
nation problems (S=single, M=multiple).

range of practical situations. Whereas connections with set
packing have led to the oversimplified pessimistic view that
“CA WDPs are NP hard,” the knapsack connection encour-
ages cautious optimism and more balanced and thorough
analyses.

Consider three aspects of sealed-bid auctions and their
knapsack counterparts:

1. the number of types of goods in an auction, or the di-
mensionality of a KP;

2. the number of units of each good available, or the ca-
pacity of a KP container in each dimension; and

3. the number of bundles over which agents define utility,
or the “multiple-choice” aspect of KP.

In each case the characteristic may be single or multiple,
e.g., an auction may involve multiple units of a single good
type, or single units of multiple good types. Table 1 summa-
rizes the seven meaningful combinations of these possibil-
ities. When KP items are partitioned into disjoint sets and
we must choose exactly one item from each set, we say that
a “multiple-choice” constraint applies; this corresponds to
an XOR constraint across elements of a compound bid. The
most general KP shown is MDMCK, which corresponds to
multi-unit CAs with arbitrary XOR bids (MMM in Table 1).

It is straightforward to convert an instance of the MSM
problem to an MSS instance by adding “dummy goods” to
enforce multiple-choice/XOR constraints: introduce an ex-
tra good type for each agent, one unit of which is included
in each of the agent’s bundles and of which exactly one unit
is available [37]. MMM instances can be converted to MMS

instances in the same way. This transformation increases the
dimensionality of problem instances, which may increase
computational burdens for some solvers.

Several of the correspondences in Table 1 have been
noted previously. Kothari et al. mention in a footnote that
their single-good multi-unit WDP is similar “in spirit” to
MCKP, citing a 1970s reference [29]. However they quickly
dismiss the connection on grounds that MCKP leads to an
infeasible formulation. In fact, simple MCKP solvers in
modern texts scale rather well with problem size (see Sec-
tion 6.2), and efficient specialized solvers are the subject of
sophisticated recent research [53]. Holte observes that Op-
erations Researchers have long investigated MDKPs that
are substantively identical to multi-unit CA WDPs [22],
contrary to claims in recent E-commerce literature that
MUCA WDPs were never before studied [37]. Years later,
however, MUCA WDP research that cites Holte does not
mention the connection he made [35]. A very recent text on
KPs discusses Holte’s insight in considerable detail but does
not make the connection between MDMCK and multi-unit
CAs with XOR bids; instead it suggests the use of dummy
goods to enforce XOR constraints for a MDKP solver [26].
Overall, we find remarkably few references to knapsack
problems in recent literature on auction WDPs, and nothing
approaching a comprehensive treatment of the relationship
between the two in the E-commerce literature. Section 6
considers in greater detail the state of the E-commerce lit-
erature in this regard.

4. Dynamic Programming Solver

This section presents a simple dynamic programming
(DP) algorithm for the MDMCK problem of Section 3;
it generalizes multi-dimensional and multiple-choice KP
solvers [26,41,43].

Let N = (Ni,...,Nr) denote the multi-dimensional
“size” of our resource pool, and let 0 denote the R-vector
consisting entirely of zeros. We say that & > b if every com-
ponent of vector & is not less than the corresponding com-
ponent of b.

Given an integer f and a resource pool size i, we de-
fine R(A) to be the optimal value of our objective func-
tion (Equation 1) for the sub-instance of MDMCK involv-
ing only agents 1,...,t and a resource pool of size A. Fy(M)
defines the utility of unallocated resources for feasible “left-
overs” fi > 0 and defines utility as —oo for infeasible alloca-
tions. Similarly we define A¢(A) as the bundle assigned to
agent f by the optimal assignment for the sub-instance de-

fined by f and Ai. F and A may be defined recursively:

—co f=0, ~(A>0)
R(M) = { D@ f=0, A>0
max {F_1(f—dgp) + U } 1<f<T
be B
(4)

A(M) = arg Max {Fo1(M—Tp) +up} 1<E<T ()

where B = {1,...,B¢} and D expresses the (dis)utility of
unallocated resources. To permit unallocated goods at no
cost we simply set D = 0; to forbid unallocated goods we
set D = —oo. Fr(N) is the value of an optimal solution,
and the corresponding choices of bundles may be recov-
ered as At (N), Ar_y(N— Oray (i)): etC.; conversion to de-
cision variables x, of Equatlons through 3 is trivial.

We may evaluate the dynamic program in two ways:
by constructing tables corresponding to F(-) and A(-) in
bottom -up fashion, or by recursively evaluating Fr(N) and
At (N). The former strategy yields a full Fr (i) table con-
taining information about the marginal utilities of every re-
source type for every resource pool size Ai: 0 <A < N; this
information may be useful for purposes other than alloca-
tion, e.g., as a guide for capacity planning. A major dis-
advantage of the bottom-up approach is that it achieves
worst-case performance on all inputs. Top-down evaluation
may save time on some inputs by evaluating F(-) and A(-)
for fewer (,M) pairs, and may permit more space-efficient
representation of the tables than naive arrays. Top-down
evaluation admits a variety of optimizations and elabora-
tions, including lower-bound heuristics and pruning via up-
per bounds; depending on how it is embellished, it may re-
semble branch-and-bound (B&B) search.

A no-frills top-down C implementation of our solver
runs to several dozen lines of code, comparable to succinct
uni-dimensional KP solvers [63].

4.1. Computational Complexity

The worst-case time and memory complexity of a
straightforward implementation of the the dynamic pro-
gram are easy to analyze. We assume that the coefficients
describing a problem instance (qrp and wp) are inte-
gers from a bounded range. We furthermore assume a
bottom-up implementation that stores F(-) and A(-) val-
ues in ordinary arrays. The arguments of F(-) and A(-) are
vectors whose components may in general exceed the cor-
responding components of N, because bundles g may
include negative components. Furthermore an implemen-
tation must store values of F(f) and A(f) even for f
vectors with negative components. Let V; denote the small-
est “width” of our F and A tables in the rth dimension
such that these requirements are satisfied. Conservative val-
ues for V; may be computed by a simple pass over the

input; we omit the details. In the special case where no in-
put coefficients are negative, Vy = N; +1 forall r.

The dynamic program requires storage proportional to
T |‘|5=1Vr. Evaluating Equations 4 and 5 requires time pro-
portional to Ry, (B [T, V) where the R term is due to
the R-dimensional vector subtraction in the recursive calls
to F. If V; =V for each resource, and if each agent defines
utility over B resource bundles, then the storage requirement
is O(TVR) and the time requirement is O(RTBVR). If each
agent defines utility over all VR possible resource bundles
(the case of rational preferences) then the time requirement
becomes O(RTV?ZR),

It is interesting to note that straightforward DP solu-
tions to the classic 0-1 KP and MCKP problems in the
uni-dimensional case have identical asymptotic time com-
plexity in terms of the total number of items that may be
packed [41, pages 39 and 78]. In other words, we pay no
price for the multiple-choice constraint. The same is true
for multi-dimensional knapsack problems in the dynamic
programming approach of this paper. In the context of auc-
tions, it has been suggested that XOR constraints over bun-
dles within compound bids be enforced through the use of
dummy goods as described in Section 3.2. This trick would
be a disaster for our DP solver because it expands the di-
mensionality of the problem. Fortunately, dummy goods are
entirely unnecessary for the algorithm of Equations 4 and 5,
which incorporates XOR constraints directly.

The classic 0-1 and integer knapsack problems are NP-
hard [11, 49]. Because MDMCK reduces to these as spe-
cial cases, it too is NP-hard. However knapsack problems
are not NP-hard in the strong sense, i.e., they admit pseudo-
polynomial solution if the coefficients describing instances
are bounded, as we have assumed in our analysis. See Pa-
padimitriou & Steiglitz for a good discussion of pseudo-
polynomial complexity analysis applied to classic KPs [49].
Restricting agent utilities uy, to the length of modern ma-
chine words, e.g., 64 bits, does not seem problematic. Sim-
ilar observations apply to the g, and N, coefficients.?

For classic uni-dimensional problems, branch-and-
bound algorithms are often favored over DP except for
hard problem instances, where DP usually performs bet-
ter [41, page 36]. For high-dimensional problems the
computational costs of DP are prohibitive and the best
method may be general integer programming (IP). Mod-
ern IP solvers support convenient and rapid solution of a
wide range of WDPs [2] and compute approximate solu-
tions to large MDMCK instances very rapidly [27]. Spe-
cialized KP algorithms for the low-dimensional case are
the subject of our ongoing research.

2 To put the issue in perspective, note that 48 bits suffices to represent
in cents the annual budget of the U.S. Federal Government.

5. Generating Test I nstances

The most basic hormative assumption that can be made
regarding agent preferences is that they are rational, i.e.,
transitive and complete. Merely to express arbitrary ratio-
nal preferences requires storage exponential in the number
of good types, but if this is a small constant the expression
and transmission of arbitrary rational preferences is feasi-
ble. This section describes a simple and fully general con-
structive definition of rational agent utility functions with
free disposal for the MDMCK problem. Our contribution
is to describe how to apply the definition to construct hard
problem instances, which may complement research toward
benchmarks that mimic typical CA WDP instances [36].

Let M(d) be an arbitrary non-negative scalar function de-
fined over resource bundles g, and let & denote the unit vec-
tor in direction i, i.e., the vector whose ith component is 1
and whose other components are all zero. We define the util-
ity of bundle g as

_ Uo q:
u(@ = { M(d) + maxi{u(d—&)} d>

The values of up and M (&) define the utility of a single unit
of each good; other values of M(d) define how utility in-
creases as we move away from the origin 0. To normalize
utility we set up = 0. The max term in Equation 6 ensures
that every bundle is more valuable than all of its proper sub-
sets (free disposal).

(6)

ol ol

5.1. Hard Knapsack Problems

Real-world CA WDP instances are not available for
solver benchmarking, so we must rely on synthetic bench-
marks. A thorough evaluation of any WDP solver should
include instances intended to mimic typical inputs, such as
those generated by CATS [36], as well as hard instances
to expose worst-case behavior. The connection between
WDPs and KPs allows us to exploit many years of research
on hard KP instances for WDP solver evaluation.

There are two ways to construct hard instances of clas-
sic uni-dimensional knapsack problems. The first is to make
the coefficients enormous; Chvatal describes how large they
must be in order to foil a range of common solution meth-
ods [9]. We shall continue to assume that coefficients are
bounded and therefore focus on the second method, which
involves the relationship between bundle size and utility.

The size/utility relationship is easy to visualize in the
uni-dimensional case. Figure 2, after Pisinger [52], illus-
trates four possibilities; Martello et al. and Kellerer et al.
describe others [26, 40]. Strongly-correlated instances are
hardest for today’s best KP solvers and are the subject of
ongoing research [40,54]. A generalized multi-dimensional
form of strongly-correlated instances may be obtained by

uncorrelated weakly correlated strongly correlated subset-sum
o [o o ,.x"/ o
S S S =]
] B | on] //'I]
> > e > >
size size size size

Figure 2. Uni-dimensional KPs.

setting up and M(-) of Equation 6 to strictly positive con-
stants. If random perturbation is added, generalized weakly-
correlated instances are obtained. (Little research appears to
exist on hard multi-dimensional KPs, and it is not obvious
that instances generated in this way are the hardest classes
of MDKPs; they are simply a natural starting point for an in-
vestigation of hard MDKPs.)

It is interesting to note that early empirical evaluations
of KP solvers focused excessively on “easy” problem in-
stances, specifically the uncorrelated and weakly-correlated
cases of Figure 2; only later did attention within the OR lit-
erature shift to characterizing hard instances and using them
in solver benchmarks [40]. A similar pattern is evident in
evaluations of WDP solvers many years later, as Andersson
et al. have noted [2]; see also Section 6.2. It is reasonable to
speculate that mis-steps in WDP benchmarking might have
been avoided if connections between WDPs and KPs had
been more prominent in E-commerce research.

6. Reated Work

The literature on knapsack problems is vast and grow-
ing; due to space restrictions we shall cite only a handful of
recent surveys. An excellent text by Martello & Toth [41]
is now out of print, but a very recent book by Kellerer
et al. provides an updated and much more comprehensive
treatment of the field, including multi-dimensional prob-
lems and MDMCK itself [26]. MDKP is routinely treated
in OR texts, e.g., Minoux [43]. Martello et al. review recent
research on exact solutions for large hard instances of 0-
1 KP [40]. Pisinger’s doctoral dissertation [52] summarizes
the state of the art in uni-dimensional KP research c. 1995,
much of which is directly applicable to WDPs in single-
good multi-unit auctions that attracted attention in subse-
quent years [29, 73].

6.1. WDP-KP Connections

An extensive literature search revealed little mention of
the connection between auction WDPs and KPs and noth-
ing approaching a comprehensive treatment. Recent surveys
on combinatorial auctions and auction theory [10,28, 30,51,
57,59] do not discuss knapsack problems, although some
describe connections to generalized set packing. The string

e} » \(S
N R©
(‘\)((\ ny \)c\\ W ‘\%‘Q \00\\&\

Source o°
Springer Link ? 152 103 zero
IEEE Xplore 990,765 313 150 zero

ACM Digital Lib 125,779 802 427 10
CiteSeer ? 1,686 922 12
Sci. Cit’n Index 33,117,604 2,379 989 zero
Elsevier Sci Direct “over4M” 5,143 2,084 11

Table 2. Summary of keyword searches,
December 2003 and January 2004.

“knap” appears in exactly five papers among all past pro-
ceedings of the ACM Conference on E-Commerce (EC).
Two mention in passing a relationship between special cases
of WDP and KPs [15, 29], one uses reduction from KP to
prove NP-hardness [33], and the remainder are unrelated to
our interests [7,76].

Queries to six literature search engines for “auction,”
“knapsack,” and “auction AND knapsack” yielded results
summarized in Table 2. In all cases the conjunctive query
yielded far fewer hits than the two basic queries, and the
documents at the intersection of the two keywords con-
tained no detailed or systematic treatment of the WDP-KP
connection. A few papers mention in passing a deep rela-
tionship between WDPs and KPs [8, 22], and a handful ca-
sually state that the connection is well known, without say-
ing by whom [3, 24, 75]. For completeness we include all of
the “auction AND knapsack” results: Ten ACM Digital Li-
brary hits [4,15,29,33,44,50,55,65,66,77]; twelve CiteSeer
hits [3,4, 8,16, 22, 24,29, 38, 45, 55, 56, 58]; and eleven Sci-
ence Direct hits [13, 23, 25,39, 60, 61,64,67,70,72, 75].

Somewhat ironically, the only detailed discussion of the
connection between combinatorial auction WDPs and gen-
eralized KPs of which we are aware occurs in a very re-
cent text written primarily by Operations Researchers with
little interest in E-commerce [26, pp. 478-482]. Because
their main interest is in knapsack problems rather than auc-
tions, Kellerer et al. do not explicitly compare taxonomies
of auction WDPs and KPs. It is but a short step, however,
from their discussion to the correspondences made explicit
in Section 3.2. (The present paper was written and submit-
ted for publication before Kellerer et al.’s excellent text be-
came available in the United States.)

In summary, the WDP-KP relationship is neither noted
nor exploited widely in E-commerce research at the inter-
section of computer science and auction theory. The remain-
der of this section reviews selected literature on multi-unit
auction WDPs, showing how the KP literature can enhance
several of these contributions.

6.2. Multi-Unit Auction WDPs

Kothari et al. consider single-good-type multi-unit auc-
tions and introduce a fully-polynomial algorithm to com-
pute approximately surplus-maximizing allocations [29].
Bids are restricted in several ways: they are divisible, the
utility they express is monotonic in per-unit price, and their
length is bounded. This paper mentions in passing that its
allocation problem can be solved by a multiple-choice KP
solver and that fully-polynomial approximation algorithms
exist for MCKP. However it offers no detailed comparison
with earlier approximate MCKP solvers or with simple ex-
act algorithms.

A textbook DP algorithm for MCKP [41, page 78] ap-
plied to the single-good multi-unit WDP supports a com-
pletely general two-sided exchange with unrestricted bids.
In the special case of a forward auction with N units for
sale and T agents whose bids define utility over all possi-
ble quantities 0,...,N, the (pseudo-polynomial) time and
memory requirements of this very simple exact method are
respectively O(TN?) and O(TN). The algorithm of Kothari
et al. computes a (1 + €) approximation for the restricted-
bid problem and requires O(T3/¢) time. A detailed com-
parison with the textbook DP solver would place the new
contribution in better perspective and would illuminate the
tradeoffs between computational complexity and general-
ity that are available to us. Discussion of the need for fully-
polynomial (vs. pseudo-polynomial) algorithms would help
to motivate the new method.

Bassamboo et al. consider online bid processing
in single-good-type multi-unit auctions with indivisi-
ble (all-or-nothing) single-quantity bids [6]. They describe
a remarkably storage-efficient algorithm for maintain-
ing a small set of potentially winning bids prior to clear-
ing; bids that cannot potentially win at the time they arrive
are rejected, permitting the bidder to adjust her bid if de-
sired. These authors note that literature on online knapsack
problems exists, but does not precisely match the auc-
tion rules they consider.

Tennenholtz notes that the multi-good-type/multi-unit
WDP is “tractable” when the number of types of goods is
fixed, and describes a longest-paths dynamic programming
algorithm in the context of a two-good-type example [68]. It
is not clear whether the intended meaning is that polynomial
or pseudo-polynomial solutions exist (the former cannot be
true, because this WDP includes NP-hard problems MCKP
and 0-1 KP as special cases). Neither knapsack problems
nor their close relationship with longest-path problems [1,
p. 100] are mentioned, nor are time and memory complex-
ity analyses presented.

WDP solver research for multi-good-type/multi-unit
CAs has emphasized heuristic branch-and-bound al-
gorithms [15, 37]. Such approaches are entirely rea-

multi-unit/
low-dimensional

single-unit/
high-dimensional

practical spectrum computational
motivation auctions resource alloc’n
good types variable, high low, fixed
#units/type fixedat 1 variable, high
WDP weighted set packing generalized KP

conventional “WDP is NP-hard,” linear solvers

wisdom rational preferences available, rational
infeasible preferences okay
solver heuristic B&B, exact DP,
research restricted prefs any preferences
OR leverage limited, late extensive, early

Table 3. Trajectories of CA research.

sonable, particularly for high-dimensional problems in
which DP solvers are likely to be infeasible. Compar-
isons with DP-based KP solvers could enhance B&B in-
vestigations by encouraging more detailed analyses of
worst-case time and memory requirements in terms of all
measures of problem size. B&B research to date has em-
phasized the number of good types, sometimes without
detailed quantitative analysis of computational require-
ments [37]. Furthermore, benchmarks for multi-unit
CAs could draw upon extensive research on hard KP in-
stances. Empirical evaluations of MUCA WDP solvers
to date have employed similar input synthesis proce-
dures [15, 37, 59], which produce multi-dimensional vari-
ants of the uncorrelated and weakly correlated cases of
Figure 2; for uni-dimensional KPs, these are not hard in-
stances.

Finally, awareness of the WDP-KP connection would
support more succinct and more precise descriptions of
novel WDP algorithms. Leyton-Brown et al., for instance,
introduce a “polynomial” subroutine for pre-processing
bids for a single good type (“singletons™) [35, 37]. In fact,
this subroutine implements the classic pseudo-polynomial
DP algorithm for the NP-hard 0-1 knapsack problem.

7. Discussion

This paper has compared two very different trajectories
of CA research, summarized in Table 3. Motivated largely
by FCC spectrum auctions, most CA research over the past
decade has taken the number of types of goods as a measure
of problem size while fixing the number of units of each
good at 1. This paper begins with the problem of compu-
tational resource allocation in modern data centers, which
in some formulations involves few types of goods but many
units of each. Whereas comparisons with set packing prob-

lems have led to the conclusion that the WDP is intractable
in the single-unit/high-dimensional case, different natural
measures of problem size lead us to conclude that the WDP
admits pseudo-polynomial solution in the multi-unit/low-
dimensional case. Realization that WDPs are special cases
of MDMCK leads to a very general solver whose simplic-
ity invites thorough analysis.

By recognizing connections between knapsack problems
and winner determination, we bring a wealth of Operations
Research knowledge to bear on problems central to multi-
agent resource allocation. This eliminates duplication of ef-
fort by allowing E-commerce research to focus on typical
WNDP instances while leaving to the OR community the task
of characterizing hard cases. It also allows WDP solver re-
search to focus on novel methods only when real-world
instances offer optimization opportunities that are not ex-
ploited by general-purpose KP solvers.

Straightforward dynamic-programming KP solvers of-
fer several attractive properties, including analytic tractabil-
ity and simplicity of implementation. These in turn re-
duce errors, which have been discovered in elaborate B&B
solvers after publication [12]. If nothing else, DP provides a
well-understood baseline for comparisons of more sophis-
ticated methods and highlights tradeoffs between algorith-
mic intricacy and computational efficiency. Furthermore for
hard instances of low-dimensional problems, DP may sim-
ply outperform alternatives. In the special case of single-
good/multi-unit auctions, textbook KP solvers provide ex-
act solutions for unrestricted inputs and scale remarkably
well with problem size; at the very least, they merit de-
tailed comparison with approximation algorithms for re-
stricted problems.

We have shown that a practical multi-agent alloca-
tion problem involving computational resources lends itself
readily to formulation as a generalized knapsack prob-
lem, and that for this low-dimensional problem an ex-
tremely simple DP solver scales to instances of non-trivial
size. In future work we intend to compare the perfor-
mance of DP, B&B, and integer program solvers on a range
of synthetic MDMCK instances and, if possible, to charac-
terize analytically the instances best suited to each solution
method.

Acknowledgments

Extensive discussions with Daniel Reeves and Profes-
sors Michael Wellman and Jeff Mason at the University
of Michigan improved this research enormously. Moises
Goldszmidt reviewed an early draft and provided valuable
feedback. David Pisinger answered several questions about
knapsack problems and their literature promptly and in de-
tail. Kevin Leyton-Brown and Bill Walsh answered many
questions about their respective research. Leyton-Brown,

Walsh, Daniel Lehmann and Yoav Shoham provided point-
ers to literature on the need for exact optimization solvers
in incentive-compatible mechanisms. Shoham and his Stan-
ford University research group provided feedback; detailed
written comments from Eugene Nudelman and Ryan Porter
were particularly helpful. Wei Deng assisted with the lit-
erature search. The Technical Publications department of
Hewlett-Packard Labs halted publication of this report so
that a review of Kellerer et al. [26] could be included.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Or-
lin. Network Flows. Prentice Hall, 1993. ISBN 0-13-617549-
X.

[2] Arne Andersson, Mattias Tenhunen, and Fredrik Ygge. In-
teger programming for combinatorial auction winner deter-
mination. In Proceedings Fourth International Conference
on MultiAgent Systems (ICMAS-2000), pages 39-46, July
2000. http://www.computer.org/proceedings/
icmas/0625/06250039abs . htm.

[3] Amitabha Bagchi, Amitabh Chaudhary, Rahul Garg,
Michael T. Goodrich, and Vijay Kumar. Seller-focused al-
gorithms for online auctioning. In F. Dehne, J.-R. Sack, and
R. Tamassia, editors, Lecture Notes in Computer Science,
volume 2125, chapter 4b, pages 135-147. Springer, January
2001. Originally appeared in 7th International Workshop on
Algorithms & Data Structures (WADS 2001).

[4] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund,
Joseph (Seffi) Naor, and Baruch Schieber. A unified
approach to approximating resource allocation and schedul-
ing. Journal of the ACM, 48(5):1069-1090, September
2001.

[5] Achal Bassamboo, Manish Gupta, and Sandeep Juneja. Ef-
ficient winner determination techniques for internet single
item multi-unit open-cry auctions. Technical Report RI
00027, IBM, December 2000. A later version is Ref. [6].

[6] Achal Bassamboo, Manish Gupta, and Sandeep Juneja.
Efficient winner-determination techniques for Internet
multi-unit auctions. In Proceedings of the First
IFIP Conference on E-Commerce, E-Business, and E-
Government, volume 202, October 2001. Proceed-
ings available as Ref. [62]. Draft dated 28 Febru-
ary 2002 available at http://www.tcs.tifr.res.
in/“sandeepj/avail_papers/ifip.ps. An ear-
lier version is Ref. [5].

[7]1 Yuan-Chi Chang, Chung-Sheng Li, and John R. Smith.
Searching dynamically bundled goods with pairwise rela-
tions. In Proceedings of the ACM Conference on Electronic
Commerce, pages 135-143, June 2003.

[8] Chunming Chen, Muthucumaru Maheswaran, and Michel
Toulouse. Supporting co-allocation in an auctioning-based
resource allocator for grid systems. In Proceedings of the In-
ternational Parallel and Distributed Processing Symposium
(IPDPS 2002), pages 89-96, April 2002.

[9] Vasek Chvatal. Hard knapsack problems. Operations Re-
search, 28(6):1402-1411, November 1980.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Sven de Vries and Rakesh V. Vohra. Combinatorial auctions:
A survey. INFORMS Journal on Computing, 15(3):284-309,
2003.

Michael R. Garey and David S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman, 1979. ISBN 0-7167-1045-5.

Kidane Asrat Ghebreamiak and Arne Andersson. Caching
in multi-unit combinatorial auctions. In Proceedings of the
First International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 164-165. ACM Press, 2002.
ISBN 1-58113-480-0.

M. Ghiassi and C. Spera. Defining the internet-based sup-
ply chain system for mass customized markets. Computers
& Industrial Engineering, 45(1):17-41, June 2003.

P. C. Gilmore and R. E. Gomory. The theory and computa-
tion of knapsack functions. Operations Research, 14:1045-
1074, 1966.

Rica Gonen and Daniel Lehmann. Optimal solutions for
multi-unit combinatorial auctions: Branch and bound heuris-
tics. In Proceedings of the 2nd ACM Conference on Elec-
tronic Commerce, pages 13-20, October 2000.

John Hershberger and Subhash Suri. Vickrey prices and
shortest paths: What is an edge worth? In IEEE Symposium
on Foundations of Computer Science, pages 252-259, Octo-
ber 2001.

Hewlett-Packard Corporation. An economy of IT:
Allocating resources in the computing utility, October
2003. http://www.hpl _hp.com/news/2003/oct_
dec/computons._html.

Hewlett-Packard Corporation. hp StorageWorks disk ar-
ray xp512, September 2003. http://www_hp.com/
productsl/storage/products/disk_arrays/
highend/xp512/.

Hewlett-Packard Corporation. HP Integrity Super-
dome servers, January 2004. http://www._hp.com/
productsl/servers/integrity/superdome_
high_end/.

Hewlett-Packard Corporation. HP Utility Data Center
(UDC) overview, January 2004. http://h30046.
www3 . hp.com/solutions/overview.html.
Robert C. Holte. Bibliography of combinato-
rial auctions and knapsack problems, June 2001.
http://www.cs.ualberta.ca/~holte/
CombinatorialAuctions/cabib.bib.

Robert C. Holte. Combinatorial auctions, knapsack prob-
lems, and hill-climbing search. In E. Stroulia and S. Matwin,
editors, Lecture Notes in Computer Science, volume 2056,
pages 57-66. Springer, January 2001. See Ref. [21] for an
extensive bibliography on knapsack problems and auctions.
Srinivasan Jagannathan, Jayanth Nayak, Kevin Almeroth,
and Markus Hofmann. On pricing algorithms for batched
content delivery systems. Electronic Commerce Research
and Applications, 1(3-4):264-280, 2002.

Joni L. Jones and Gary J. Koehler. An allocation heuristic
for combinatorial auctions, February 2001. This appears to
be an unpublished draft or a paper under review; related pa-
pers are available at the first author’s Web site at the Univer-
sity of South Florida.

10

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Joni L. Jones and Gary J. Koehler. Combinatorial auctions
using rule-based bids. Decision Support Systems, 34(1):59—
74, December 2002.

Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knap-
sack Problems. Springer, 2004. ISBN 3-540-40286-1.
This book considers a wide range of KP variants, includ-
ing MDMCK. It also discusses in some depth the relation-
ship between multi-dimensional KPs and winner determina-
tion in multi-unit CAs.

Terence Kelly. Utility-directed allocation. In First Work-
shop on Algorithms and Architectures for Self-Managing
Systems, July 2003. http://tesla.hpl.hp.com/
self-manage03/. Also available as HP Labs tech report
HPL-2003-115.

Paul Klemperer. Auction theory: A guide to the literature.
Journal of Economic Surveys, 13(3):227-260, July 1999.
Anshul Kothari, David C. Parkes, and Subhash Suri.
Approximately-strategyproof and tractable multi-unit auc-
tions. In Proceedings of the 4th ACM Conference on Elec-
tronic Commerce, pages 166-175, June 2003.

Vijay Krishna. Auction Theory. Academic Press, 2002.
ISBN 0-12-426297-X.

Ron Lavi, Ahuva Mu’alem, and Noam Nisan. Towards a
characterization of truthful combinatorial auctions (extended
abstract). In Proceedings of the 44th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), 2003.
John O. Ledyard. Incentive compatible space station pricing.
American Economic Review, 76:274-279, May 1987.
Benny Lehmann, Daniel Lehmann, and Noam Nisan. Com-
binatorial auctions with decreasing marginal utilities. In Pro-
ceedings of the 3rd ACM Conference on Electronic Com-
merce, pages 18-28, October 2001.

Daniel Lehmann, Liadan O’Callaghan, and Yoav Shoham.
Truth revelation in approximately efficient combinatorial
auctions. Journal of the ACM, 49(5):577-602, September
2002.

Kevin Leyton-Brown. Resource Allocation in Competitive
Multiagent Systems. PhD thesis, Stanford University, Au-
gust 2003.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. To-
wards a universal test suite for combinatorial auction algo-
rithms. In Proceedings of the Second ACM Conference on
Electronic Commerce, pages 66—76, October 2000.

Kevin Leyton-Brown, Yoav Shoham, and Moshe Tennen-
holtz. An algorithm for multi-unit combinatorial auctions.
In Proceedings of the Seventeenth National Conference on
Artificial Intelligence, July 2000.

Grace Y. Lin, Yingdong Lu, and David D. Yao. The stochas-
tic knapsack revisited: Structure, switch-over policies, and
dynamic pricing. columbia.edu/"yao/knaps7 .pdf.
Fiona Mackenzie. Exploring the connections: Structural ad-
justment, gender and the environment. Geoforum, 24(1):71-
87, February 1993.

Silvano Martello, David Pisinger, and Paolo Toth. New
trends in exact algorithms for the 0-1 knapsack problem. Eu-
ropean Journal of Operational Research, 123(2):325-332,
June 2000.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Silvano Martello and Paolo Toth. Knapsack Problems: Algo-
rithms and Computer Implementation. John Wiley & Sons
Ltd., 1990. ISBN 0-471-92420-2. Unfortunately this clas-
sic is out of print. See [26] for an updated and very compre-
hensive treatment of the subject.

Andreu Mas-Colell, Michael D. Whinston, and Jerry R.
Green. Microeconomic Theory. Oxford University Press,
1995. ISBN 0-19-507340-1.

Michel Minoux. Mathematical Programming. Wiley, 1986.
Translated from a French edition of 1983. ISBN 0-471-
90170-9.

Ahuva Mu’alem and Noam Nisan. Truthful approximation
mechanisms for restricted combinatorial auctions (extended
abstract). In Eighteenth National Conference on Artificial In-
telligence, pages 379-384, 2002.

Chaki Ng, David C. Parkes, and Margo Seltzer. Virtual
worlds: Fast and strategyproof auctions for dynamic re-
source allocation (poster presentation). In Proceedings of the
4th ACM Conference on Electronic Commerce, pages 238—
239, June 2003. Discussion of knapsack problems in ex-
tended version at http://www.eecs.harvard.edu/
econcs/pubs/virtual .pdf.

Noam Nisan. Bidding and allocation in combinatorial auc-
tions. In Proceedings of the Second ACM Conference on
Electronic Commerce, pages 1-12, October 2000.

Noam Nisan and Amir Ronen. Computationally feasible
VCG mechanisms. In Proceedings of the ACM Conference
on Electronic Commerce, pages 242-252, October 2000.
Noam Nisan and Amir Ronen. Algorithmic mechanism de-
sign. Games and Economic Behavior, 35:166-196, 2001.
Christos H. Papadimitriou and Kenneth Steiglitz. Combina-
torial Optimization: Algorithms and Complexity. Dover, sec-
ond edition, 1998. ISBN 0-486-40258-4.

David C. Parkes. Conference report: The third ACM con-
ference on electronic commerce. ACM SIGecom Exchanges,
3(1):57-61, 2002.

Aleksandar Pekec and Michael H. Rothkopf. Combinatorial
auction design. Management Science, 49(11):1485-1503,
November 2003.

David Pisinger. Algorithms for Knapsack Problems. PhD
thesis, University of Copenhagen, February 1995. http:
//www._diku.dk/users/pisinger/95-1_pdf.
David Pisinger. A minimal algorithm for the multiple-choice
knapsack problem. European Journal of Operations Re-
search, 83:394-410, 1995.

David Pisinger. A fast algorithm for strongly correlated
knapsack problems. Discrete Applied Mathematics, 89(1—
3):197-212, December 1998.

Paul S.A. Reitsma, Peter Stone, Janos A. Csirik, and
Michael L. Littman. Randomized strategic demand reduc-
tion: Getting more by asking for less. In Proceedings of the
First International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 162-163, July 2002.

Paul S.A. Reitsma, Peter Stone, Janos A. Csirik, and
Michael L. Littman. Self-enforcing strategic demand reduc-
tion. In J. Padget, O. Shehory, D. Parkes, N. Sadeh, and W.E.
Walsh, editors, Lecture Notes in Computer Science, volume
2531, pages 289-306. Springer, January 2002.

11

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]
[72]

Michael H. Rothkopf, Aleksandar Pekec, and Ronald M.
Harstad. Computationally manageable combinatorial auc-
tions. Management Science, 44(8):1131-1147, August 1998.
Tuomas Sandholm and Subhash Suri. Side constraints and
non-price attributes in markets. In 1IJCAI 2001 Workshop on
Distributed Constraint Reasoning, August 2001.

Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David
Levine. Winner determination in combinatorial auction gen-
eralizations. In Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems,
pages 69-76. ACM Press, 2002. ISBN 1-58113-480-0.
Jayaram K. Sankaran. Column generation applied to linear
programs in course registration. European Journal of Oper-
ational Research, 87(2):328-342, December 1995.

Jayaram K. Sankaran. A monotonic, dual-based bounding
procedure for integer programs. Computers & Operations
Research, 22(5):491-501, May 1995.

Beat Schmid, Katarina Stanoevska-Slabeva, and \olker
Tschammer, editors. Towards The E-Society: E-Commerce,
E-Business, and E-Government, The First IFIP Conference
on E-Commerce, E-Business, E-Government (I3E 2001), Oc-
tober 3-5, Zirich, Switzerland, volume 202 of IFIP Con-
ference Proceedings. Kluwer, 2001. ISBN 0-7923-7529-
7. Available for purchase at http://www.wkap.nl/
prod/b/0-7923-7529-7.

Robert Sedgewick. Algorithms in C. Addison-Wesley, 1998.
See page 215 of the 8th printing (August 2001) for a remark-
ably clear and compact integer knapsack solver in C.

Maiko Shigeno, Yasufumi Saruwatari, and Tomomi Matsui.
An algorithm for fractional assignment problems. Discrete
Applied Mathematics, 56(2-3):333-343, January 1995.
Narayanan Shivakumar, Jan Jannik, and Jennifer Widom.
Per-user profile replication in mobile environments: Algo-
rithms, analysis, and simulation results. Mobile Networks
and Applications, 2(2):129-140, October 1997.

Narayanan Shivakumar and Jennifer Widom. User pro-
file replication for faster location lookup in mobile environ-
ments. In Proceedings of the First Annual International Con-
ference on Mobile Computing and Networking, pages 161-
169, December 1995.

Jeffrey E. Teich, Hannele Wallenius, Jyrki Wallenius, and
Otto R. Koppius. Emerging multiple issue e-auctions. Euro-
pean Journal of Operational Research, 2004. In press as of
late December 2003.

Moshe Tennenholtz. Some tractable combinatorial auctions.
In Proceedings of the Seventeenth National Conference on
Artificial Intelligence, July 2000.

Hal Varian and Jeffrey K. MacKie-Mason. Generalized
Vickrey auctions. Technical report, Dept. of Economics,
University of Michigan, July 1994,

Jose A. Ventura and Sanjay Radhakrishnan. Single machine
scheduling with symmetric earliness and tardiness penalties.
European Journal of Operational Research, 144(3):598-
612, February 2003.

Bill Walsh. Personal communication, February 2003.

D. J. Wu. Software agents for knowledge management: co-
ordination in multi-agent supply chains and auctions. Expert
Systems with Applications, 20(1):51-64, January 2001.

[73]

[74]

[75]

[76]

[77]

Peter R. Wurman, William E. Walsh, and Michael P. Well-
man. Flexible double auctions for electronic commerce: The-
ory and implementation. Decision Support Systems, 24:17—
27, 1998.

Peter R. Wurman, Michael P. Wellman, and William E.
Walsh. A parametrization of the auction design space.
Games and Economic Behavior, 35:304-338, 2001.

Mu Xia, Gary J. Koehler, and Andrew B. Whinston. Pricing
combinatorial auctions. European Journal of Operational
Research, 154(1):251-270, April 2004.

Daniel D. Zeng, Fei-Yue Wang, and Sudha Ram. Storage al-
location in Web prefetching techniques. In Proceedings of
the ACM Conference on Electronic Commerce, pages 264—
265, June 2003.

Liangzhao Zeng, Boualem Benatallah, Marlon Dumas,
Jayant Kalagnanam, and Quan Z. Sheng. Web engineering:
Quality driven Web services composition. In Proceedings
of the Twelfth International Conference on World Wide Web,
pages 411-421, May 2003.

12

