

A Business-Driven Approach to Closed-loop Management

Mathias Salle, Akhil Sahai, Claudio Bartolini, Sharad Singhal
HP Laboratories Palo Alto
HPL-2004-205
November 9, 2004*

close loop
management,
MBO, business-
driven
management,
design, redesign,
SLA, policy

In this paper we describe a model based approach to making resource
allocation decisions driven by the value of those decisions to the
business. We believe this enables a generic approach to realizing close-
loop management. Our solution is centered on two technologies being
developed at HP Labs: Quartermaster and Management by Business
Objectives (MBO). Our approach was validated by a demonstrator built
using these technologies, and other commercially available HP products.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

A Business-Driven Approach to Closed-loop Management

Mathias Sallé, Akhil Sahai, Claudio Bartolini and Sharad Singhal

HP Laboratories
1501 Page Mill Road

Palo Alto, CA94303, USA

Abstract
In this paper we describe a model based approach to making resource allocation decisions driven by the
value of those decisions to the business. We believe this enables a generic approach to realizing close-loop
management. Our solution is centered on two technologies being developed at HP Labs: Quartermaster
and Management by Business Objectives (MBO). Our approach was validated by a demonstrator built
using these technologies, and other commercially available HP products.

1 Introduction and Motivation

Businesses are increasingly dependent on their IT environments for critical business
functions, where every business “event” triggers corresponding IT events. IT systems
therefore have the ability to significantly help (or hinder) business by handling (or not
responding to) these events. As business needs change, it is therefore increasingly
important that the underlying IT systems also change to allow the business to run
smoothly. A critical issue within IT systems is one of resource allocation—how much
resource to allocate to which service. Usually, mission critical systems are over-
provisioned to ensure that they are always available when needed. However, even
elsewhere, enterprises have typically found that resources are underutilized. As
enterprises move towards virtualized environments where resources are shared and
dynamically allocated between various applications, decisions need to be made about
how this resource allocation should be done. The problem is made more complex by the
fact that resources may be shared between multiple lines of business, and applications of
different business criticality.

It is thus important to understand not only how much resources are required by
applications, but also the value of those applications to the enterprise when making
resource allocation decisions. Similarly, when responding to IT incidents or creating
change management plans, it is important to understand the business impact of those
incidents or changes.

Thus, shared IT resources must be managed according to criteria that maximize the
business value of those resources for the enterprise. As the pace of change increases,
rapid and effective decision making becomes part of automated IT operations, and the
resource assignment criteria must morph into the decision support capability of IT
management solutions.

2 Closed-loop management
To enable rapid changes within IT based on business requirements, it is important that
“closed loop” management systems be created. The goal of these management systems

would be to reduce the delay between the time business needs become visible (or
business level changes are required) and the time when IT systems are ready to meet
those business needs. Figure 1 shows a high level view of these closed-loop systems as a
lifecycle. Design and deployment decisions are typically required for creating service
delivery systems. Examples of service delivery systems include data storage systems,
servers, and the networks that connect them, as well applications, services or portals that
use the IT infrastructure to provide business functions. Once these systems are deployed,
service levels are monitored within a service delivery management system. As business
needs change, so do the requirements on the service delivery. As a result, decisions need
to be made to adjust service delivery systems based on business-level criteria, which may
lead to a re-design (or re-adjustment) of the service delivery system.

Figure 1: Close loop logical view

In the remainder of this section we discuss the key lifecycle stages in more detail.

2.1 Decision Making
The decision-making process within this loop needs to be tied to business value of the
service delivery system. The effectiveness of the support to the decision making process
is heavily dependent on modeling the dependencies between measures made at the
service delivery level, and indicators that have relevance at the business level. On the
other hand, there is a clear tradeoff between the cost of modeling and its effectiveness.
For a closed-loop management system to be useful, the cost of modeling has to be kept
low. This means that the elicitation of the preferences of the business has to be extracted
from knowledge that is readily available. One typical way of capturing business
requirements is through Service Level Agreements (SLAs) that define technical
requirements on the service delivery systems. These service-level agreements have to be
evaluated in the light of business objectives and financial/market and customer data to
help make management decisions based on the business-level consequences of meeting
or violating the outstanding SLAs. Useful knowledge on business requirements is also
present in other forms within the enterprise (such as balanced scorecards [1], business
objectives, key performance indicators etc.).

The decision problem that IT managers are faced with is one of assessing the business
impact of their available options, or courses of action aimed at managing the IT delivery
systems. To assess the business impact means to compute a measure of the alignment to
the business objectives that is expected for each of the possible given course of action.

We define the alignment with a given business objective for an option as the measure of
the likelihood – given the best knowledge about the current situation – that the
objective will be met. Then IT managers need to be able to monetize the measure of
alignment thus derived and use the monetization value together with other information on
the cost of carrying out the respective course of action to rank the available options. The
decision problem consists in ranking the options to decide what course of action to take.
It is quite easy to see how options can be ranked based on their alignment with respect to
one objective. The option’s rank is as high as the likelihood of meeting the objective that
it guarantees, given the best knowledge about the dynamics of the system available.
Things are made more complicated when there is more than one objective to be
considered when determining the best course of action. The relative importance of the
different objectives is taken into account in determining the monetization value, and
therefore the overall rank of the various options.

The generic decision problem just described can be cast into more specific ones
depending on the particular domain of IT management that is of interest. For example, in
the incident management domain, the problem is to prioritize among concurrent service
incidents based on their impact on business objectives [5]. In that context, each option is
a possible assignment of a priority value to the incidents. The prioritization that is finally
chosen is the one that guarantees the optimal alignment with objectives that were
propagated down from the business level, such as maximization of profit, or
maximization of total customer experience (TCE), defined as a function of some key
performance indicators (KPI). Knowledge about the domain is necessary to assess the
impact of the incidents onto the value of the KPIs. Another instance of decision problem
in the context of problem management is given in [4].

2.2 Design and deploy
As the business objectives change, the importance of various guarantees of service to be
met by the underlying service delivery systems may also change. Thus, the management
system may trigger various allocation, design, configuration, and deployment activities
on the service deployment systems to enable them to meet the changing business
requirements. Currently, many of these processes are manual, and hence lack the agility
required for rapid re-configuration. Thus it is also important to automate the design,
configuration, and deployment activities to make them more responsive typical resource
allocation and design engine may provide the following capabilities:

1. Maintain and manage models of the infrastructure that capture the networking,

storage, systems, virtual machines, applications and service details.
2. Create a configuration that meets users requirements keeping in mind the directives

and policies specified by the administrators.
3. Undertake capacity allocation where reservations for resources are maintained and

concurrent reservations about resource capacities are managed. These reservations
could be about resources required in future.

4. Map Resource design to actual infrastructure instances when the reservations become
current.

5. Deploy the designs by configuring resources within the resource pools, or re-
configure existing systems to meet the new design goals.

Expanding on the second item of the list, resource design depends on multiple
requirements:

§ users’ requirements (that may be minimally specific),
§ Operator/administrator’s constraints,
§ technical capabilities of the systems and the corresponding constraints

In a typical utility environment there will be thousands of components and a similar order
of rules that dictate typical resource design. Based on user request a variety of resources,
may be used to create a system design, these may be:

1. Abstract, transient, virtual, polymorphic resources: The user may request resources
that can be realized in multiple ways and the design system determines how to instantiate
the resource. For example a user may request a switch, and the design system may choose
a CISCO Switch during instantiation. Some virtual resources have to be sometimes
instantiated on the fly, e.g. virtual machines. Similarly polymorphic resources are those
that can perform multiple functions and so have to be configured to perform a particular
function.
2. Composite resources: One can request a resource that is composed from several other
resources. Instead of asking for each of the component resources, a requestor could
simply ask for the aggregate resource.
3. Constrained resources: One can request a resource that satisfies certain constraints –
for e.g., constraints on a resource’s properties, or on the associations it has with other
resources.
4. Combination of the above: A request can be made for a resource that in turn contains
composite resources. In addition, the requestor could specify constraints on top of the
requested resource. An operator could specify an additional set of constraints that further
restrict the design choices.

In the next section we will describe a prototype closed-loop management system that was
built to follow the lifecycle described above.

3 A Prototype of a Closed-loop Management System

Figure 2 grounds the closed-loop management lifecycle into a system architecture view.
In this figure, the service delivery system has been segmented into infrastructure services
(e.g., networks, resource pools, storage pools etc.), application services (e.g., business
applications, portals, etc.) and business services (e.g., revenue generating transactions, or
inventory turns within a supply chain). At each level, different metrics that are important
at that level are monitored. These metrics then feed into management systems that
provide incident, problem and change management capabilities. The goal of the change
management system is to control the underlying service delivery systems consistent with
information provided by business level objectives as described in the previous section.

Figure 2: Generic Close Loop Architecture

In order to produce a proof of concept for the architecture discussed above, we have built
a prototype system that brings together state-of-art technologies we are currently
developing at HP Labs and a large number of commercially available products. The
realization of the proposed architecture has been grounded in a specific scenario focused
on a hypothetical financial institution, "First Agility Bank". In this scenario, the First
Agility Bank achieves a high degree of synchronization between its lines of business and
its IT through the adoption of design principles (standardization, simplification,
modularity and integration) and close loop control systems that follows the architecture
introduced in Section 2. Among the many business services that First Agility Bank runs,
we concentrate on their wire transfer service. Figure 3 depicts the business process that
underpins that specific service and highlights the set of applications (Check Funds, Check
Identity, etc.) used for delivering the service.

The scenario also shows how the various applications are supported by the resources in
the Utility Data Center. The IT function and the Line of Business responsible for the
Wire Transfer service enter in a service level agreement in which the IT organization
commits to running the service with the guarantee that the “average time to completion of
wire transfer requests should be less than 30 ms”.

In that setting, the key challenge that the IT function faces is to manage its service
delivery systems such that any degradation of service is proactively handled therefore
minimizing the risk of violating the SLA and hence reducing the impact on the line of
businesses. This challenge is made even more complex by the fact that it is advantageous
for the IT function to share resources among many lines of business, in order to better
leverage IT investments.

Figure 3: Closed-loop management system implementation

The close loop management illustrated in Figure 3 starts with the modeling and
monitoring of the business service using Openview Business Process Insight (OVBPI)
[12] as presented in the screenshot in Figure 4.

Figure 4: Business Process for Wire Transfer
Business Service

Figure 5: Monitoring the service level
agreement using SD-SLM

OVBPI is used here to monitor the “Time to Completion” of each fund transfer request
(step 0) and to determine the average time for time to completion over a reviewing
period. That metric is then fed (step 1) to the Service Level Management module of
Openview Service Desk (SD-SLM). As presented in the screenshot of Figure 5, SD-SLM
monitors the metric values and computes the compliance to the SLA. SD-SLM also
provides the ability to predict the compliance level at the end of the reviewing period.
This allows for the proactive management of the delivery systems.

Let’s now imagine that an unexpected load of service requests threatens the SLA
compliance. This translates into a “Violated” predictive compliance status as presented in
Figure 4. As a result, the proactive capability of the service level management system
triggers an incident. That incident (step 2) is sent to the decision making system

(Management by Business Objectives – MBO) and is prioritized based on its relative
impact on the business objectives of the IT function.

Figure 6 drills down into MBO to give a high level description of the system. MBO
defines a generic information model that is populated through knowledge that is present
in other forms within the enterprise (such as Balanced Scorecards, Business Objectives,
Key Performance Indicators, etc.). The MBO reasoning engine solves the decision
problem described in Section 2.1: it computes the alignment to objectives that is expected
for each of the possible given options, or course of action aimed at managing the IT
delivery systems. The engine is then able to monetize the measure of alignment thus
derived and use the monetization value together with other information on the cost of
carrying out the respective course of action to ranks the available options. On ranking the
options, it returns a suggestion on what course of action to take, substantiated by the
evidence that it has for assessing the alignment with respect to the business objectives.

Figure 6: MBO high-level diagram

The MBO information model (Figure 7) is articulated around a pair of key concepts:
Objectives and Key Performance Indicators (KPI).

Figure 7: MBO Information Model

Objectives are expressed a target value over a key performance indicator, or KPI. KPIs
are measurable indicators of performance of the enabling factors of IT processes,
indicating how well the process enables the goal to be reached.

Figure 8 shows a screen capture of the business objectives of the IT function. The overall
objective is to improve Total Customer Experience by 20%. This objective is based on a
composite KPI defined over two supporting objectives. The supporting objectives are the
reduction of 10% of the problems associated with the Touch Point Experience of
customer, the other one being related to the End to End Transactional Experience. Each
of the objectives comes into the definition of the composite KPI through a weight factor
(a real number between 0 and 1) that in the example is 0.4 for the Touch Point
Experience and 0.6 for the End to End Transactional Experience. The weight factor is
multiplied by the expected alignment with the supporting objectives for each incident to
get to a measure of the alignment with the top level objective. The quantitative measure
of the alignment is translated in a qualitative measure by mapping intervals in the value
of the alignment with description such as “aligned” (alignment value greater than 0.9),
“slightly misaligned” (alignment value between 0.7 and 0.9) and so on.

Figure 9 presents the prioritization screen and shows the incident associated with the
Wire Transfer. A relative ranking is established between the various registered incidents
and a High priority is associated to that service. The bottom right hand pane shows the
impact of that incident on the alignment of each of the supportive objectives. Here, the
incident impacts the End to End Transactional Experience, moving it from an aligned
state to a slightly misaligned state.

Figure 8: Business Objectives of the IT Function

Figure 9: Prioritization of incident using

Impact on Business Objectives

Once the root cause has been determined – in this case an under provisioning of Check
Funds application - this problem is communicated to Quartermaster (step 4), the resource
allocation and design tool, which redesigns the system to overcome this problem.

Quartermaster, is an integrated set of tools and technologies targeted at providing
automation capabilities to utility computing environments [15]. Quartermaster tools
currently provide the following capabilities to IT users and system operators:
§ Policy-based design and composition: Quartermaster allows operators to capture

system composition rules and best practices in models, and provides users the ability
to automatically create custom designs that conform to those policies. This reduces
the time to design applications and IT environments and reduces the likelihood of
error in system design.

§ Capacity management: Quartermaster includes scheduling and capacity management
algorithms that can track complex patterns of time varying resource demands and
react accordingly. This enables operators to manage infrastructure use and permits
specific qualities-of-service to be achieved.

§ Resource assignment: Quartermaster uses mathematical programming techniques to
ensure that resource-level requirements (e.g., network bandwidth) of the application
are met and bottlenecks are not created in the shared infrastructure when resources
are assigned to applications. This enables efficient use of the infrastructure resources
while ensuring application-level quality of service

Quartermaster policy based design and composition [3] enables the capability to capture
domain knowledge in hierarchical models and constraints that can then be solved through
a logic based solver for creating mathematically provable configurations. In order to
achieve this, QuarterMaster extends CIM meta-model to incorporate the concept of
policies. The current CIM meta-model does not provide the capability to capture such
rules. We associate these rules with resource types. These policies capture the technical
constraints and choices made by the operators or administrators that need to be obeyed by
every instance of the associated class. Below is an example of a resource type declaration
in Quartermaster, showing its MOF description as well as an example of policies that
could be associated with the type. This is a small part of the actual model and policies

used for the prototype. The example shows how a class QM_Tier can be built by using a
number of Logical Servers. These Logical Servers can be AppServers, Web Servers, or
Database Servers depending on what kind of Tier is being designed. The Three Tier Site
that was configured for the prototype contains three such tiers, namely a web server tier,
an appserver tier and a database tier connected to three LANs.

[Version ("1.0.0"), IconUrl ("QM_Tier.gif"), Designable]
class QM_Tier : QM_Resource
{
 [Description (
 "The Cost of the Tier ")]
 real32 Cost;
 [Description (
 "The Number of Servers in the Tier ")]
 uint16 NumServers;
 [Description (
 "The Minimum Number of Servers in the Tier ")]
 uint16 MinServers;
 [Description (
 "The Maximum Number of Servers in the Tier ")]
 uint16 MaxServers;
 [Description (
 "The Number of Subnets the Tier is connected to")]
 uint16 NumSubnet;
 string Name;
 [Description (
 "The Tier can be connected to two subnets")]
 String ConnectedTo__0;
 String ConnectedTo__1;
};
[Version ("1.0.0"), Association, Composition]
class LogicalServerInTier
{
 [Key, Composite]
 QM_Tier REF Tier;

 [Key, Component]
 QM_LogicalServer REF LogicalServer;
};
instance of QM_ClassScopedPolicy
{
 Id = "ae-008-05-04";
 AssociatedClasses = {"QM_Tier"};
 Assertions = {
 "MinServers >= 1",
 "NumSubnet == 1 || NumSubnet == 2",
 "NumServers >= MinServers",
 "NumServers <= MaxServers",
 "LogicalServer <: QM_WebServer ||

 LogicalServer <: QM_AppServer ||
 LogicalServer <: QM_DatabaseServer”

 };
};

The users can request customization of particular resources from the available resource
types by specifying additional constraints on their attribute values and on their
arrangement in the system. These requests could be for instances of “raw” resources or
for composite resources. Quartermaster automatically generates a system configuration
by selecting the appropriate resource classes and assigning values to their attributes so
that all constraints specified in the underlying resource models are satisfied. We have
developed a tool, called Cauldron, that solves these problems. The input to Cauldron is a
set of class definitions with attributes and relationships (e.g., composition, association,
references, and supertypes) defined. Policy constraints are embedded in the classes as
satisfy clauses, expressed by combining the class attributes and relationships using a
subset of first-order logic and linear arithmetic. Cauldron, in turn, uses a theorem prover
based on a fast SAT solver to assign values to the attributes in the satisfy clauses such
that all constraints are satisfied. The requested system is specified to Cauldron as a
distinguished class (main), which can have user policies on the requested system
embedded in it.

All the classes, their inheritances, associations with other classes and constraints are
specified. As these constraints are first-order logic expressions they can be solved using
SAT Solvers to create system instances that meet all the constraints. As soon as the
design is completed the corresponding resource capacities are allocated so that the design
can be deployed at the requested dates. Sometimes if the infrastructure on which the
system is being deployed has potential of network bottlenecks, Quartermaster resource
assignment tool may be used to assign resources optimally to machines in the
infrastructure [15].

Based on the initial Check Funds application model depicted in Figure 10, Quartermaster
determines a more complex design based on the new requirements.

Figure 10: Logical View of the initial design

Figure 11: Logical View of the result of the

re-design operation

These options are then passed back to the decision system that decides on the best
allocation based on its impact on the business objectives of the IT function. Deployment
and implementation of the chosen solution is then conducted using Openview Service

Delivery Controller [14] and Application Manager [13], the configuration and
deployment systems. The result is the addition of a new application server (Figure 11) to
the pool of application server supporting check fund application. Once properly
provisioned, the business service returns to normal performance behavior hence
conforming to the SLA.

4 Related work

Driving IT management from business objectives is quite a novel proposition. In [11],
Buco et. al. present a business-objectives-based utility computing SLA management
system. The business objective(s) that they consider is the minimization of the exposed
business impact of service level violation, for which we presented a solution in [4].
However, the Management by Business Objective (MBO) technology presented in this
paper goes far beyond just using impact of service level violations. It provides a
comprehensive method for IT management that can take into account strategic business
objectives; thereby, going a long way towards the much needed synchronization of IT
and business objectives. For a more detailed discussion of the MBO capability applied to
the incident management domain see [5].

There is some work that has been done in the context of design. Introducing constraints in
UML specification of systems for configuration purposes is discussed in [16]. They
define a set of construction rules at one place termed a domain. In that sense the approach
is similar to expert systems. In Quartermaster approach, we embed constraints
hierarchically thus distributing constraints on to various resource types, and taking into
account these constraints as the construction happens as opposed to creating a large
number of constraints (rules) a priori. Our approach enables flexibility and extensibility
in specification of constraint and in automatic construction depending on the user
requirements. The differing user requirements may result in one construction being
different from another. We have also applied the concept to CIM, which is de-facto
standard for management of infrastructure. The ClassAds MatchMaking work [17]
assumes that the match-maker matches the requestor entity’s request against the provider
entity’s ClassAds (which are specifications in a semi-structured language). The
assumption is that all the resources (like machines) exist a-priori and have been
advertised. In a resource-utility environment however, some of the resource instances
may not even exist a-priori (as is the case with transient/virtual resources) or may be
logically constructed resources that have to be instantiated on-demand (e.g.
appserver/tier/farm/e-commerce site). This causes a problem for approaches that
undertake match-making only on instances. We enable construction on-the-fly by
embedding constraints hierarchically in the resource types as described in this paper. The
same concepts are extensible to resource instances as well. It is also not clear whether the
ClassAds language supports first-order logic and linear arithmetic. As we have shown in
the examples, it is important to have notions of quantifiers, implications, equivalences
and other first order-logic expressions for reasoning.

Closed-loop management is also a well-researched area. Multiple approaches to closed-
loop management exist. Control-theoretic approaches to closed-loop management

involves identifying system transfer functions and designing controllers for certain
specific products (Web Server [6], [7] Lotus Notes [8]). These approaches are highly
focused on undertaking closed-loop management on specific products and do not tackle
the closed-loop management in a generic manner for a variety of products involved in a
typical design. Other approaches involve using expert systems or pre-specified policies
to undertake changes in the system design based on performance/monitoring/failure data
[9], [10]. These expert systems are usually case-based systems where possible scenarios
are specified as event-action pairs. The problem in such approaches is that if the system
reaches an un-previewed state the controller becomes redundant and humans have to be
involved in closing the loop.

5 Conclusion and future work
The success reported by the demonstrator described above is very encouraging. We were
able to demonstrate an approach to closed-loop management. In the process, we were
able to create an end-to-end solution using HP management software products and HP
labs prototypes together and to carry out a technology gap analysis. Building the
demonstrator resulted therefore in an exercise of a loose-coupled integration of software
and systems.
We believe that a greater benefit will derive from a closer coupling of the technologies
presented here (namely Quartermaster and MBO). Our approach to bringing
Quartermaster and MBO together is based on definition of a common information model
that touches on many aspects of the IT resources and services and business objectives
through the management lifecycle.

References

[1] Nils-Goran Olve, Roy J, Wetter M. Performance Drivers. John Wiley.
[2] Sahai A, Singhal S, Joshi R, Machiraju V. Automated Configuration Generation through policies. In

the proceedings of IEEE Policy 2004.
[3] Sahai A, Singhal S, Joshi R, Machiraju V. Policy-based Automatic Construction of Resources. In the

proceedings of IEEE/IFIP NOMS 2004.
[4] Sallé M.; Bartolini C.; "Management by Contract", In the proceedings of IEEE/IFIP NOMS 2004.
[5] Bartolini, C.; Salle, M.; "Business Driven Prioritization of Service Incidents", In the proceedings of

DSOM 2004.
[6] Lu C, Abdelzahar, T.F., Stankovic, J.A., Son S.H.: A feedback control architecture and design

methodology for service delay guarantees in web servers, Technical Report CS2001-06, University of
Virginia, Department of Computer Science, (2001)

[7] Xue Liu, Lui Sha, Yixin Diao, Steve Froehlich, Joseph L. Hellerstein, Sujay Parekh: Online Response
Time Optimization of Apache Web Server. IWQoS 2003: 461-478

[8] Joseph L. Hellerstein, Neha Gandhi, Sujay Parekh: Managing the Performance of Lotus Notes: A
Control Theoretic Approach. Int. CMG Conference 2001: 397-408

[9] Devarakonda M et al. Policy-based Autonomic Storage Allocation. In the proceedings of IEEE/IFIP
DSOM 2003

[10] Lymberopoulos L, Lupu E, Sloman M. PONDER Policy Implementation and Validation in A CIM and
Differentiated Services Framework. In the proceedings of NOMS 2004

[11] Buco M. et al., "Managing of eBusiness on Demand SLA Contracts in Business Terms Using the
Cross-SLA Execution Manager SAM", IBM, In the proceedings of IEEE ISADS, 2003.

[12] HP Openview Business Process Insight http://www.openview.hp.com/products/bpi/
[13] HP Openview Application Manager http://www.openview.hp.com/products/radia_appm

[14] HP Service Delivery Controller http://www.openview.hp.com/products/sdc
[15] Singhal S, Graupner S, Sahai A et al. Quartermaster-A Resource Utility System. HPL-2004-152.
[16] Felfernig A, Friedrich G. E et al. UML as a domain specific knowledge for the construction of

knowledge based configuration systems. In the Proceedings of SEKE'99 Eleventh International
Conference on Software Engineering and Knowledge Engineering, 1999.

[17] Raman R, Livny M, Solomon M. MatchMaking: Distributed Resource Management for High
Throughput Computing. In the proceedings of HPDC 98.

